Probe-Free Nanophotonic Systems: Macroscale Applications Based on Nanophotonics

  • Naoya Tate
  • Makoto Naruse
  • Motoichi Ohtsu
Reference work entry


To implement innovative nanometric optical processing systems as probe-free nanophotonic systems, it is necessary to exploit the unique attributes of nanometer-scale optical near-field interactions in a completely parallel fashion. This chapter is devoted to describing basic concepts necessary for two-dimensional parallel processing of light–matter interactions on the nanometer scale in order to realize probe-free nanophotonic systems. Additionally, the concepts and some demonstrations of the hierarchy inherent in nanophotonics, based on the hierarchy between optical near- and far-fields, are described as practical applications of optical near-field interactions.


Grid Structure Polarization Dependency Fiber Probe Surface Charge Distribution Nanophotonic Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the members of the Ohtsu Research Group in theDepartment of Electrical Engineering and Information Systems, the University ofTokyo; and also thank Prof. S. Ohkoshi, Dr. H. Tokoro, and Dr. K. Takeda in theDepartment of Chemistry, the University of Tokyo, Prof. T. Matsumotoin Yokohama National University; and Dr. M. Hoga, Mr. Y. Ohyagi,Ms. Y. Sekine, Mr. T. Fukuyama, and Mr. M. Kitamura in Dai NipponPrinting Co. Ltd., for their valuable contributions to our collaborative research.

These works were supported in part by a comprehensive program for personnel training and industry–academia collaboration based on projects funded by the New Energy and Industrial Technology Development Organization (NEDO), Japan, the Global Center of Excellence (G-COE) Secure-Life Electronics project, Special Coordination Funds for Promoting Science and Technology sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and Strategic Information and Communications R&D Promotion Programme (SCOPE) sponsored by the Ministry of Internal Affairs and Communications (MIC).


  1. 1.
    M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8(4), 839 (2002)CrossRefGoogle Scholar
  2. 2.
    M. Naruse, T. Miyazaki, T. Kawazoe, K. Kobayashi, S. Sangu, F. Kubota, M. Ohtsu, IEICE Trans. Electron. E88-C, No. 9, 1817 (2005)CrossRefGoogle Scholar
  3. 3.
    T. Nishida, T. Matsumoto, F. Akagi, H. Hieda, A. Kikitsu, K. Naito, J. Nanophotonics B, 011597 (2007)Google Scholar
  4. 4.
    E. Ozbay, Science 311, 189 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    M. Ohtsu, J. Nanophotonics 1, 011590 (2007)CrossRefGoogle Scholar
  6. 6.
    M. Naruse, T. Kawazoe, T. Yatsui, S. Sangu, K. Kobayashi, M. Ohtsu, Progress in Nano-Electro-Optics V (Springer, Berlin, 2006)Google Scholar
  7. 7.
    S. Mononobe, Near-Field Nano/Atom Optics and Technology (Springer, Berlin, 1998)Google Scholar
  8. 8.
    U. Maheswari Ra–jagopalan, S. Mononobe, K. Yoshida, M. Yoshimoto, M. Ohtsu, Jpn. J. Appl. Phys. 38(12A), 6713 (1999)Google Scholar
  9. 9.
    Y. Inao, S. Nakasato, R. Kuroda, M. Ohtsu, Microelectron. Eng. 84, 705 (2007)CrossRefGoogle Scholar
  10. 10.
    T. Kawazoe, M. Ohtsu, Y. Inao, R. Kuroda, J. Nanophotonics 1, 011595 (2007)CrossRefGoogle Scholar
  11. 11.
    T. Yatsui, K. Hirata, W. Nomura, Y. Tabata, M. Ohtsu, Appl. Phys. B 93, 55 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    K. Kobayashi, S. Sangu, T. Kawazoe, A. Shojiguchi, K. Kitahara, M. Ohtsu, J. Microscopy 210, 247 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, M. Ohtsu, Appl. Phys. B 84, 243 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S.-J. An, J. Yoo, Appl. Phys. Lett. 90, No. 22, 223110 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    W. Nomura, T. Yatsui, T. Kawazoe, M. Ohtsu, J. Nanophotonics 1, 011591 (2007)CrossRefGoogle Scholar
  16. 16.
    W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, M. Ohtsu, Appl. Phys. B 100, in press (2010)Google Scholar
  17. 17.
    T. Yatsui, Y. Ryu, T. Morishima, W. Nomura, T. Kawazoe, T. Yonezawa, M. Washizu, H. Fujita, M. Ohtsu, Appl. Phys. Lett. 96(13), 133106 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    U. Schendel, Introduction to Numerical methods for parallel computers (Ellis Horwood, New York, 1984)zbMATHGoogle Scholar
  19. 19.
    H.H. Hopkins, Proc. Roy. Soc. A217, 408 (1953)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    N. Tate, W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, M. Ohtsu, Nat. Comput. 2, 298 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    M. Naruse, T. Yatsui, T. Kawazoe, N. Tate, H. Sugiyama, M. Ohtsu, Appl. Phys. Exp. 1, 112101 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    N. Tate, W. Nomura, T. Yatsui, M. Naruse, M. Ohtsu, Appl. Phys. B 96(1), 1 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, M. Naruse (eds.), Principles of Nanophotonics (Taylor and Francis, Boca Raton, 2008)Google Scholar
  24. 24.
    T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, M. Ohtsu, Phys. Rev. Lett. 88, 067404 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    T. Kawazoe, K. Kobayashi, M. Ohtsu, The optical nanofountain: a biomimetic device that concentrates optical energy in a nanometric region. Appl. Phys. Lett. 86, 103102 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    M. Naruse, T. Yatsui, H. Hori, M. Yasui, M. Ohtsu, J. Appl. Phys. 103, 113525 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, M. Ohtsu, Opt. Exp. 17, 11113 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    D.W. Lynch, W.R. Hunter, in Handbook of Optical Constants of Solids (Academic, Orlando, 1985)Google Scholar
  29. 29.
    M. Naya, I. Tsurusawa, T. Tani, A. Mukai, S. Sakaguchi, S. Yasutani, Appl. Phys. Lett. 86, 201113 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    H. Yonemitsu, T. Kawazoe, K. Kobayashi, M. Ohtsu, J. Lumin. 122–123, 230 (2007)CrossRefGoogle Scholar
  31. 31.
    P.-Y. Chiou, A.T. Ohta, A. Jamshidi, H.-Y. Hsu, M.C. Wu, IEEE J. Microelectromech. Sys. 17, 525 (2008)CrossRefGoogle Scholar
  32. 32.
    M. Naruse, T. Inoue, H. Hori, Jpn. J. Appl. Phys. 46, 6095 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Phys. Rev. Lett. 101, 047401 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    N. Tate, H. Tokoro, K. Takeda, W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, S. Ohkoshi, M. Ohtsu, Appl. Phys. B 98(4), 685 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    J. Tanida, Y. Ichioka, Appl. Opt. 27, No.14, 2926 (1988)ADSCrossRefGoogle Scholar
  36. 36.
    M. Ishikawa, A. Morita, N. Takayanagi, Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Releigh, NC, p. 373 (1992)Google Scholar
  37. 37.
    M. Ohtsu, T. Kawazoe, T. Yatsui, M. Naruse, IEEE J. Sel. Top. Quantum Electron. 14(6), 1404 (2008)CrossRefGoogle Scholar
  38. 38.
    M. Naruse, T. Yatsui, W. Nomura, N. Hirose, M. Ohtsu, Opt. Exp. 13(23), 9265 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    B. Lee, J. Kang, K.-Y. Kim, Proc. SPIE 4803, 220 (2002)CrossRefGoogle Scholar
  40. 40.
    O. Sato, S. Hayami, Y. Einaga, Z.Z. Gu, Bull. Chem. Soc. Jpn. 76(3), 443 (2003)CrossRefGoogle Scholar
  41. 41.
    H. Tokoro, T. Matsuda, T. Nuida, Y. Morimoto, K. Ohoyama, E.D.L.D. Dangui, K. Boukheddaden, S. Ohkoshi, Chem. Mater. 20, 423 (2008)CrossRefGoogle Scholar
  42. 42.
    S. Ohkoshi, H. Tokoro, M. Utsunomiya, M. Mizuno, M. Abe, K. Hashimoto, J. Phys. Chem. B 106, 2423 (2002)CrossRefGoogle Scholar
  43. 43.
    H. Tokoro, S. Ohkoshi, T. Matsuda, K. Hashimoto, Inorg. Chem. 43, 5231 (2004)CrossRefGoogle Scholar
  44. 44.
    H. Tokoro, T. Matsuda, K. Hashimoto, S. Ohkoshi, J. Appl. Phys. 97, 10M508 (2005)Google Scholar
  45. 45.
    W.F. Fagan (ed.), Optical Security and Anti-counterfeiting systems (Society of Photo Optical Instrumentation Engineers, Washington, D.C. 1990)Google Scholar
  46. 46.
    B. Javidi, J.L. Horner, Opt. Eng. 33, 1752 (1994)ADSCrossRefGoogle Scholar
  47. 47.
    P. Refregier, B. Javidi, Opt. Lett. 20, 767 (1995)ADSCrossRefGoogle Scholar
  48. 48.
    G.A. Rakuljic, V. Leyva, A. Yariv, Opt. Lett. 17, 1471 (1992)ADSCrossRefGoogle Scholar
  49. 49.
    R.L. Van Renesse (ed.), Optical Document Security (Artech House Optoelectronics Library, Boston/London, 1998)Google Scholar
  50. 50.
    S.P. McGrew, Proc. SPIE 1210, 66 (1990)ADSCrossRefGoogle Scholar
  51. 51.
    G.S. Zhdanov, M.N. Libenson, G.A. Martsinovskii, PHYS-USP 41, 719 (1998)ADSCrossRefGoogle Scholar
  52. 52.
    M. Ohtsu, Tech. Dig. 18th Congr. Int. Commission for Optics, SPIE 3749, 478 (1999)Google Scholar
  53. 53.
    T. Yatsui, K. Itsumi, M. Kourogi, M. Ohtsu, Appl. Phys. Lett. 80, 2257 (2002)ADSCrossRefGoogle Scholar
  54. 54.
    N. Tate, W. Nomura, T. Yatsui, M. Naruse, M. Ohtsu, Opt. Exp. 16, 607 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, M. Ohtsu, Opt. Exp. 18, 7497 (2010)CrossRefGoogle Scholar
  56. 56.
    H. Matsumoto, T. Matsumoto, Technical report of IEICE, ISEC 2000–59, 7 (2000)Google Scholar
  57. 57.
    M. Naruse, H. Hori, K. Kobayashi, M. Ishikawa, K. Leibnitz, M. Murata, N. Tate, M. Ohtsu, J. Opt. Soc. Am. B 26, 1772 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of EngineeringThe University of TokyoTokyoJapan
  2. 2.Nanophotonics Research CenterThe University of TokyoTokyoJapan
  3. 3.Photonic Network Research InstituteNational Institute of Information and Communications TechnologyTokyoJapan

Personalised recommendations