Temperature-Induced and Photo-Induced Phase Transition in a BistableMetal-Cyanide Polymer

  • Hiroko Tokoro
  • Shin-ichi Ohkoshi
Reference work entry


Studies that are related to thermal-induced phase transition and photo-induced phase transition are important issues in the field of solid state science. Rubidium manganese hexacyanoferrate RbMn[Fe(CN)6], one of the Prussian blue analogs, is a suitable system for observing thermal-induced and photo-induced phase transitions since this compound is a mixed-valence compound that has a strong cooperativity due to the CN ligand bridges. Here, we describe the crystal structure, magnetic properties, thermal-induced phase transition, and photo-induced phase collapse and photomagnetic effect based on photo-induced phase transition of RbMn[Fe(CN)6].


Prussian Blue Laser Power Density Spin Crossover Mixed Aqueous Solution Prussian Blue Analog 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Professor Yutaka Moritomo (University of Tsukuba) and Professor Kenji Ohoyama (Tohoku University) for the measurement of neutron powder diffraction. The present research was supported partly by the CREST program from the JST, a Grant-in-Aid for Young Scientists (S) from the JSPS, the Asahi Glass Foundation, the Next program form JSPS, a Grant for the Global COE Program “Chemistry Innovation through Cooperation of Science and Engineering,” APSA from the MEXT, the Cryogenic Research Center, the University of Tokyo, and the Center for Nano Lithography & Analysis, the University of Tokyo, supported by the MEXT.


  1. 1.
    O. Kahn, Molecular Magnetism (VCH, New York, 1993)Google Scholar
  2. 2.
    K. Nasu, Relaxations of Excited States and Photo-Induced Structural Phase Transitions (Springer, Berlin, 1997)CrossRefGoogle Scholar
  3. 3.
    P. Gutlich, A. Hauser, H. Spiering, Angew. Chem. Int. Ed. Engl. 33, 2024 (1994)CrossRefGoogle Scholar
  4. 4.
    S. Ohkoshi, K. Hashimoto, J. Photochem. Photobiol. C 2, 71 (2001)CrossRefGoogle Scholar
  5. 5.
    J.F. Letard, P. Guionneau, E. Codjovi, O. Lavastre, G. Bravic, D. Chasseau, O. Kahn, J. Am. Chem. Soc. 119, 10861 (1997)CrossRefGoogle Scholar
  6. 6.
    G.A. Renovitch, W.A. Baker, J. Am. Chem. Soc. 89, 6377 (1967)CrossRefGoogle Scholar
  7. 7.
    M. Sorai, Bull. Chem. Soc. Jpn. 74, 2223 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    K. Prassides, Mixed Valency Systems, Applications in Chemistry, Physics and Biology. NATO ASI series (Kluwer, Dordrecht, 1991)Google Scholar
  9. 9.
    M.B. Robin, P. Day, Adv. Inorg. Chem. Radiochem. 10, 247 (1967)CrossRefGoogle Scholar
  10. 10.
    N.S. Hush, Prog. Inorg. Chem. 8, 391 (1967)CrossRefGoogle Scholar
  11. 11.
    S.B. Piepho, E.R. Krausz, P.N. Schatz, J. Am. Chem. Soc. 10, 2996 (1978)CrossRefGoogle Scholar
  12. 12.
    R.D. Cannon, L. Montri, D.B. Brown, K.M. Marshall, C.M. Elliot, J. Am. Chem. Soc. 106, 2591 (1984)CrossRefGoogle Scholar
  13. 13.
    H. Kitagawa, T. Mitani, Coord. Chem. Rev. 190, 1169 (1999)CrossRefGoogle Scholar
  14. 14.
    O.S. Jung, D.H. Jo, Y.A. Lee, B.J. Conklin, C.G. Pierpont, Inorg. Chem. 36, 19 (1997)CrossRefGoogle Scholar
  15. 15.
    N. Shimamoto, S. Ohkoshi, O. Sato, K. Hashimoto, Inorg. Chem. 41, 678 (2002)CrossRefGoogle Scholar
  16. 16.
    R.J. Zimmermann, Phys. Chem. Solids. 44, 151 (1983)ADSCrossRefGoogle Scholar
  17. 17.
    T.J. Kambara, Phys. Soc. Jpn. 49, 1806 (1980)ADSCrossRefGoogle Scholar
  18. 18.
    S. Ohnishi, S. Sugano, J. Phys. C 14, 39 (1981)ADSCrossRefGoogle Scholar
  19. 19.
    A. Ludi, H.U. Gudel, Struct. Bonding (Berlin) 14, 1 (1973)CrossRefGoogle Scholar
  20. 20.
    M. Verdaguer, T. Mallah, V. Gadet, I. Castro, C. Helary, S. Thiebaut, P. Veillet, Conf. Coord. Chem. 14, 19 (1993)Google Scholar
  21. 21.
    S. Ohkoshi, K. Hashimoto, Electrochem. Soc. Interface fall 11, 34 (2002)Google Scholar
  22. 22.
    T. Mallah, S. Thiebaut, M. Verdaguer, P. Veillet, Science 262, 1554 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    W.R. Entley, G.S. Girolami, Science 268, 397 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    S. Ferlay, T. Mallah, R. Ouahes, P. Veillet, M. Verdaguer, Nature 378, 701 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    S. Ohkoshi, T. Iyoda, A. Fujishima, K. Hashimoto, Phys. Rev. B 56, 11642 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    S. Ohkoshi, A. Fujishima, K. Hashimoto, J. Am. Chem. Soc. 120, 5349 (1998)CrossRefGoogle Scholar
  27. 27.
    O. Hatlevik, W.E. Bushmann, J. Zhang, J.L. Manson, J.S. Miller, Adv. Mater. 11, 914 (1999)CrossRefGoogle Scholar
  28. 28.
    S.M. Holmes, G.S. Girolami, J. Am. Chem. Soc. 121, 5593 (1999)CrossRefGoogle Scholar
  29. 29.
    S. Ohkoshi, Y. Abe, A. Fujishima, K. Hashimoto, Phys. Rev. Lett. 82, 1285 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    S. Ohkoshi, K. Arai, Y. Sato, K. Hashimoto, Nat. Mater. 3, 857 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    S. Margadonna, K. Prassides, A.N. Fitch, J. Am. Chem. Soc. 126, 15390 (2004)CrossRefGoogle Scholar
  32. 32.
    S.S. Kaye, J.R. Long, J. Am. Chem. Soc. 127, 6506 (2005)CrossRefGoogle Scholar
  33. 33.
    A.L. Goodwin, K.W. Chapman, C.J. Kepert, J. Am. Chem. Soc. 127, 17980 (2005)CrossRefGoogle Scholar
  34. 34.
    S. Ohkoshi, H. Tokoro, T. Matsuda, H. Takahashi, H. Irie, K. Hashimoto, Angew. Chem. Int. Ed. 3, 857 (2007)Google Scholar
  35. 35.
    S. Ohkoshi, K. Nakagawa, K. Tomono, K. Imoto, Y. Tsunobuchi, H. Tokoro, J. Am. Chem. Soc. 132, 6620 (2010)CrossRefGoogle Scholar
  36. 36.
    S. Ohkoshi, S. Yorozu, O. Sato, T. Iyoda, A. Fujishima, K. Hashimoto, Appl. Phys. Lett. 70, 1040 (1997)ADSCrossRefGoogle Scholar
  37. 37.
    A. Bleuzen, C. Lomenech, V. Escax, F. Villain, F. Varret, C.C.D. Moulin, M. Verdaguer, J. Am. Chem. Soc. 122, 6648 (2000)CrossRefGoogle Scholar
  38. 38.
    O. Sato, S. Hayami, Y. Einaga, Z.Z. Gu, Bull. Chem. Soc. Jpn. 76, 443 (2003); H. Tokoro, S. Ohkoshi, K. Hashimoto, Appl. Phys. Lett. 82, 1245 (2003)Google Scholar
  39. 39.
    H. Tokoro, S. Ohkoshi, K. Hashimoto, Appl. Phys. Lett. 82, 1245 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    S. Ohkoshi, N. Machida, Z.J. Zhong, K. Hashimoto, Synth. Met. 122, 523 (2001)CrossRefGoogle Scholar
  41. 41.
    G. Rombaut, M. Verelst, S. Golhen, L. Ouahab, C. Mathoniere, O. Kahn, Inorg. Chem. 40, 1151 (2001)CrossRefGoogle Scholar
  42. 42.
    J.M. Herrera, V. Marvaud, M. Verdaguer, J. Marrot, M. Kalisz, C. Mathoniere, Angew. Chem. Int. Ed. 43, 5468 (2004)CrossRefGoogle Scholar
  43. 43.
    S. Ohkoshi, H. Tokoro, T. Hozumi, Y. Zhang, K. Hashimoto, C. Mathoniere, I. Bord, G. Rombaut, M. Verelst, C.C.D. Moulin, F. Villain, J. Am. Chem. Soc. 128, 270 (2006)CrossRefGoogle Scholar
  44. 44.
    S. Ohkoshi, S. Ikeda, T. Hozumi, T. Kashiwagi, K. Hashimoto, J. Am. Chem. Soc. 128, 5320 (2006)CrossRefGoogle Scholar
  45. 45.
    S. Ohkoshi, Y. Hamada, T. Matsuda, Y. Tsunobuchi, H. Tokoro, Chem. Mater. 20, 3048 (2008)CrossRefGoogle Scholar
  46. 46.
    N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, J. Appl. Phys. 69, 2849 (1991)ADSCrossRefGoogle Scholar
  47. 47.
    A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominaga, T. Uruga, Nat. Mater. 3, 703 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    M. Wuttig, N. Yamada, Nat. Mater. 6, 824 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    S. Decurtins, P. Gutlich, C.P. Kohler, H. Spiering, A. Hauser, Chem. Phys. Lett. 105, 1 (1984)ADSCrossRefGoogle Scholar
  50. 50.
    J.F. Letard, J.A. Real, N. Moliner, A.B. Gaspar, L. Capes, O. Cadpr, O. Kahn, J. Am. Chem. Soc. 121, 10630 (1999)CrossRefGoogle Scholar
  51. 51.
    S. Ohkoshi, K. Imoto, Y. Tsunobuchi, S. Takano, H. Tokoro, Nat. Chem. 3, 564 (2011)CrossRefGoogle Scholar
  52. 52.
    S. Koshihara, Y. Tokura, T. Mikami, G. Saito, T. Koda, Phys. Rev. B 42, 6853 (1990)ADSCrossRefGoogle Scholar
  53. 53.
    E. Collet, M.H. Lemee-Cailleau, M.B.L. Cointe, H. Cailleau, M. Wulff, T. Luty, S. Koshihara, M. Meyer, L. Toupet, P. Rabiller, S. Techert, Science 300, 612 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    S. Ohkoshi, Y. Tsunobuchi, T. Matsuda, K. Hashimoto, A. Namai, F. Hakoe, H. Tokoro, Nat. Chem. 2, 539 (2010)CrossRefGoogle Scholar
  55. 55.
    M. Fiebig, K. Miyano, Y. Tomioka. Y, Tokura, Science 280, 1925 (1998)ADSCrossRefGoogle Scholar
  56. 56.
    N. Takubo, I. Onishi, K. Takubo, T. Mizokawa, K. Miyano, Phys. Rev. Lett. 101, 177403 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    H. Tokoro, M. Shiro, K. Hashimoto, S. Ohkoshi, Z. Anorg. Allg. Chem. 633, 1134 (2007)CrossRefGoogle Scholar
  58. 58.
    S. Ohkoshi, H. Tokoro, M. Utsunomiya, M. Mizuno, M. Abe, K. Hashimoto, J. Phys. Chem. B 106, 2423 (2002)CrossRefGoogle Scholar
  59. 59.
    H. Tokoro, S. Ohkoshi, T. Matsuda, K. Hashimoto, Inorg. Chem. 43, 5231 (2004)CrossRefGoogle Scholar
  60. 60.
    H. Osawa, T. Iwazumi, H. Tokoro, S. Ohkoshi, K. Hashimoto, H. Shoji, E. Hirai, T. Nakamura, S. Nanao, Y. Isozumi, Solid State Commun. 125, 237 (2003)ADSCrossRefGoogle Scholar
  61. 61.
    T. Yokoyama, H. Tokoro, S. Ohkoshi, K. Hashimoto, K. Okamoto, T. Ohta, Phys. Rev. B 66, 184111 (2002)ADSCrossRefGoogle Scholar
  62. 62.
    S. Ohkoshi, T. Nuida, T. Matsuda, H. Tokoro, K. Hashimoto, J. Mater. Chem. 5, 3291 (2005)CrossRefGoogle Scholar
  63. 63.
    K. Kato, Y. Moritomo, M. Takata, M. Sakata, M. Umekawa, N. Hamada, S. Ohkoshi, H. Tokoro, K. Hashimoto, Phys. Rev. Lett. 91, 255502 (2003)ADSCrossRefGoogle Scholar
  64. 64.
    H. Tokoro, S. Ohkoshi, T. Matsuda, T. Hozumi, K. Hashimoto, Chem. Phys. Lett. 388, 379 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    T. Nakamoto, Y. Miyazaki, M. Itoi, Y. Ono, N. Kojima, M. Sorai, Angew. Chem. Int. Ed. 40, 4716 (2001)CrossRefGoogle Scholar
  66. 66.
    H.M.J. Blote, Phys. B 79B, 427 (1975)CrossRefGoogle Scholar
  67. 67.
    T. Matsumoto, Y. Miyazaki, A.S. Albrecht, C.P. Landee, M.M. Turnbull, M. Sorai, J. Phys. Chem. B 104, 9993 (2000)CrossRefGoogle Scholar
  68. 68.
    R.L. Carlin, Magnetochemistry (Springer, New York, 1986)CrossRefGoogle Scholar
  69. 69.
    L.J.D. Jongh, A.R. Miedema, Adv. Phys. 23, 1 (1974)ADSCrossRefGoogle Scholar
  70. 70.
    M.A. Subramanian, A.P. Ramirez, W.J. Marshall, Phys. Rev. Lett. 82, 1558 (1999)ADSCrossRefGoogle Scholar
  71. 71.
    N. Ohmae, A. Kajiwara, Y. Miyazaki, M. Kamachi, M. Sorai, Thermochim. Acta 267, 435 (1995)CrossRefGoogle Scholar
  72. 72.
    B. Mayoh, P. Day, J. Chem. Soc. Dalton 15, 1483 (1976)CrossRefGoogle Scholar
  73. 73.
    H. Tokoro, S. Miyashita, K. Kazuhito, S. Ohkoshi, Phys. Rev. B 73, 172415 (2006)ADSCrossRefGoogle Scholar
  74. 74.
    C.P. Slichter, H.G. Drickamer, J. Chem. Phys. 56, 2142 (1972)ADSCrossRefGoogle Scholar
  75. 75.
    K.P. Purcell, M.P. Edwards, Inorg. Chem. 23, 2620 (1984)CrossRefGoogle Scholar
  76. 76.
    H. Tokoro, S. Ohkoshi, Appl. Phys. Lett. 93, 021906 (2008)ADSCrossRefGoogle Scholar
  77. 77.
    H. Tokoro, T. Matsuda, K. Hashimoto, S. Ohkoshi, J. Appl. Phys. 97, 10M508 (2005)CrossRefGoogle Scholar
  78. 78.
    H. Tokoro, K. Hashimoto, S. Ohkoshi, J. Magn. Magn. Mater. 310, 1422 (2007)ADSCrossRefGoogle Scholar
  79. 79.
    S. Ohkoshi, H. Tokoro, K. Hashimoto, Coord. Chem. Rev. 249, 1830 (2005)CrossRefGoogle Scholar
  80. 80.
    H. Tokoro, T. Matsuda, T. Nuida, Y. Moritomo, K. Ohoyama, E.D.L. Dangui, K. Boukheddaden, S. Ohkoshi, Chem. Mater. 20, 423 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Chemistry, School of ScienceThe University of TokyoTokyoJapan
  2. 2.Department of Chemistry, School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations