Near-Field Optical Microscopy of Plasmonic Nanostructures

  • Kohei Imura
  • Hiromi Okamoto
Reference work entry

Abstract

Plasmonic metal nanostructures exhibit unique optical properties, and fundamental studies of them are relevant to wide range of research areas. Unique characteristics of the plasmonic nanostructures originate from the localized optical fields and are closely related to spatiotemporal properties of plasmon waves. In this chapter, visualization of plasmon wave functions and localized optical fields by scanning near-field optical microscopy is described.

Keywords

Surface Enhance Raman Scattering Scanning Tunneling Microscope Optical Field Gold Nanorods Plasmon Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank Dr. T. Nagahara (Kyoto Inst. Tech.), Dr. J. K. Lim (Chosun Univ.), Dr. N. Horimoto (Tohoku Univ.), Dr. T. Shimada (Hirosaki Univ.), Dr. M. K. Hossain (King Fahd Univ.), Prof. M. Kitajiama (Natl. Def. Acad.), Profs. K. Ueno, and H. Misawa (Hokkaido Univ.) for their many essential contributions to this work. The authors also thank the Equipment Development Center of IMS for collaboration in construction of the SNOM apparatus. This work was supported by the Asahi Glass Foundation, the Sumitomo foundation, the Research Foundation for Opto-Science and Technology, Grants-in-Aid for Scientific Research (Grant Nos. 16350015, 16750017, 17655011, 17034062, 18205004, 18685003, 19049015, 22655007, and 22225002) from the Ministry of Education, Culture, Sports, Science and Technology, the Asian CORE program from the Japan Society for the Promotion of Science, and JST PRESTO.

References

  1. 1.
    M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969)Google Scholar
  2. 2.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)Google Scholar
  3. 3.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998)Google Scholar
  4. 4.
    R.H. Ritchie, Surf. Sci. 34, 1 (1973)ADSGoogle Scholar
  5. 5.
    S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, Berlin, 2001)Google Scholar
  6. 6.
    M. Moskovits, Rev. Mod. Phys. 57, 783 (1985)ADSGoogle Scholar
  7. 7.
    M. Fleishmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26, 163 (1974)ADSGoogle Scholar
  8. 8.
    D.J. Jeanmaire, R.P. Van Duyne, J. Electroanal. Chem. 84, 1 (1978)Google Scholar
  9. 9.
    M.G. Albrecht, J.A. Creighton, J. Am. Chem. Soc. 99, 5215 (1977)Google Scholar
  10. 10.
    S. Nie, S.R. Emory, Science 275, 1102 (1997)Google Scholar
  11. 11.
    K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997)ADSGoogle Scholar
  12. 12.
    G.C. Schatz, R.P. Van Duyne, Handbook of Vibrational Spectroscopy, ed. by J.M. Chalmers, P.R. Griffiths (Wiley, New York, 2002)Google Scholar
  13. 13.
    S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, H.A. Atwater, Adv. Mater. 13, 1501 (2001)Google Scholar
  14. 14.
    N.F. van Hulst, Nature 448, 141 (2007)ADSGoogle Scholar
  15. 15.
    N. Engheta, Science 317, 1698 (2007)ADSGoogle Scholar
  16. 16.
    R.M. Stöckle, Y.D. Suh, V. Deckert, R. Zenobi, Chem. Phys. Lett. 318, 131 (2000)ADSGoogle Scholar
  17. 17.
    N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, Chem. Phys. Lett. 335, 369 (2001)ADSGoogle Scholar
  18. 18.
    K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, H. Misawa, J. Am. Chem. Soc. 130, 6928 (2008)Google Scholar
  19. 19.
    Y. Tsuboi, R. Shimuzu, T. Shoji, N. Kitamura, J. Am. Chem. Soc. 131, 12623 (2009)Google Scholar
  20. 20.
    A.N. Grigorenko, N.W. Roberts, M.R. Dickinson, Y. Zhang, Nat. Photon. 2, 365 (2008)ADSGoogle Scholar
  21. 21.
    M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F.J. García de Abajo, R. Quidant, Nano Lett. 9, 3387 (2009)ADSGoogle Scholar
  22. 22.
    W. Zhang, L. Huang, C. Santschi, O.J.F. Martin, Nano Lett. 10, 1006 (2010)ADSGoogle Scholar
  23. 23.
    Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, H. Ishihara, J. Phys. Chem. Lett. 1, 2327 (2010)Google Scholar
  24. 24.
    E. Pordan, C. Radloff, N.J. Halas, P. Nordlander, Science 302, 419 (2003)ADSGoogle Scholar
  25. 25.
    W.L. Banes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)ADSGoogle Scholar
  26. 26.
    E. Ozbay, Science 311, 189 (2006)ADSGoogle Scholar
  27. 27.
    R. Zia, M.L. Bringersma, Nat. Nanotechnol. 2, 426 (2007)ADSGoogle Scholar
  28. 28.
    N. Fang, H. Lee, C. Sun, X. Ahang, Science 308, 534 (2005)ADSGoogle Scholar
  29. 29.
    M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F.J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, Nature 446, 301 (2007)ADSGoogle Scholar
  30. 30.
    A.V. Akimov, A. Mukherjee, C.L. Yu, D.E. Chang, A.S. Zibrov, P.R. Hemmer, H. Park, M.D. Lukin, Nature 450, 402 (2007)ADSGoogle Scholar
  31. 31.
    S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, S.-W. Kim, Nature 453, 757 (2008)ADSGoogle Scholar
  32. 32.
    H.J. Lezec, J.A. Dionne, H.A. Atwater, Science 316, 430 (2007)ADSGoogle Scholar
  33. 33.
    R. Liu, C. Ji, J.J. Mock, J.Y. Chin, T.J. Cui, D.R. Smith, Science 323, 366 (2009)ADSGoogle Scholar
  34. 34.
    E. Abbe, Ark. Mikrosk. Anat. 9, 413 (1873)Google Scholar
  35. 35.
    M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999)Google Scholar
  36. 36.
    D.W. Pohl, W. Denk, M. Lanz, Appl. Phys. Lett. 44, 651 (1984)ADSGoogle Scholar
  37. 37.
    U. Durig, D.W. Pohl, F. Rohner, J. Appl. Phys. 59, 3318 (1986)ADSGoogle Scholar
  38. 38.
    E. Betzig, J.K. Trautman, T.D. Harris, J.S. Weiner, R.L. Kostelak, Science 251, 1468 (1991)ADSGoogle Scholar
  39. 39.
    L. Novotony, B. Hecht, Principle of Nano-Optics (Cambridge University Press, Cambridge, 2006)Google Scholar
  40. 40.
    N. Hosaka, T. Saiki, Opt. Rev. 13, 262 (2006)Google Scholar
  41. 41.
    T. Taubner, R. Hillenbrand, K. Keilmann, Appl. Phys. Lett. 85, 5064 (2004)ADSGoogle Scholar
  42. 42.
    H. Okamoto, K. Imura, Surf. Sci. Rep. 84, 199 (2009)ADSGoogle Scholar
  43. 43.
    K. Imura, H. Okamoto, Bull. Chem. Soc. Jpn. 81, 659 (2008)Google Scholar
  44. 44.
    H. Okamoto, K. Imura, J. Mater. Chem. 16, 3920 (2006)Google Scholar
  45. 45.
    G. Mie, Ann. Phys. 25, 377 (1908)MATHGoogle Scholar
  46. 46.
    R. Ganz, Ann. Phys. 37, 881 (1912)Google Scholar
  47. 47.
    S. Link, M.B. Mohamed, M.A. El-Sayed, J. Phys. Chem. B 103, 3073 (1999); S. Link, M.A. El-Sayed, J. Phys. Chem. B 109, 10531 (2005)Google Scholar
  48. 48.
    M. Meier, A. Wokaun, Opt. Lett. 8, 581 (1983)ADSGoogle Scholar
  49. 49.
    A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Aetech House, Norwood, 2005)Google Scholar
  50. 50.
    B.T. Drain, P.J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994)ADSGoogle Scholar
  51. 51.
    C. Girard, A. Dereux, Rep. Prog. Phys. 59, 657 (1996)ADSGoogle Scholar
  52. 52.
    J.-J. Greffet, R. Carminati, Prog. Surf. Sci. 56, 133 (1997)ADSGoogle Scholar
  53. 53.
    K. Imura, K. Ueno, H. Misawa, H. Okamoto, Nano Lett. 11, 960 (2011)ADSGoogle Scholar
  54. 54.
    M.F. Crommie, C.P. Lutz, D.M. Eigler, Nature 363, 524 (1993)ADSGoogle Scholar
  55. 55.
    A. Nilius, T.W. Wallis, W. Ho, Science 297, 1853 (2002)ADSGoogle Scholar
  56. 56.
    G. Colas des Francs, C. Girard, J.-C. Weeber, C. Chiane, T. David, A. Dereux, Phys. Rev. Lett. 86, 4950 (2001)Google Scholar
  57. 57.
    R.Y. Chiao, P.G. Kwiat, A.M. Steinberg, Physica B 175, 257 (1991)ADSGoogle Scholar
  58. 58.
    E.N. Economou, Green’s Function in Quantum Physics (Springer, Berlin, 1983)Google Scholar
  59. 59.
    K. Masuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, T. Takagahara, Phys. Rev. Lett. 91, 177401 (2003)ADSGoogle Scholar
  60. 60.
    C. Chicanne, T. David, R. Quidant, J.C. Weeber, Y. Lacroute, E. Bourillot, A. Dereux, Phys. Rev. Lett. 88, 097402 (2002)ADSGoogle Scholar
  61. 61.
    E.H. Synge, Philos. Mag. 6, 356 (1928)Google Scholar
  62. 62.
    M. Ohtsu, Near-Field Nano/Atom Optics and Technology (Springer, Tokyo Berlin Heidelberg New York, 1998)Google Scholar
  63. 63.
    S. Smith, N. Christian, R. Holme, B. Orr, R. Kopelman, T. Norris, Ultramicroscopy 71, 213 (1998)Google Scholar
  64. 64.
    B.A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, U. Keller, Rev. Sci. Instrum. 70, 2758 (1999)ADSGoogle Scholar
  65. 65.
    T. Guenther, C. Lienau, T. Elsaesser, M. Glanemann, V. Martin Axt, T. Kuhn, Phys. Rev. Lett. 89, 057401 (2002)ADSGoogle Scholar
  66. 66.
    T. Nagahara, K. Imura, H. Okamoto, Rev. Sci, Instrum. 75, 4528 (2004)Google Scholar
  67. 67.
    M. Labardi, M. Zavelani-Rossi, D. Polli, G. Cerullo, M. Allegrini, S. De Silvestri, O. Svelto, Appl. Phys. Lett. 86, 031105 (2005)ADSGoogle Scholar
  68. 68.
    K. Imura, T. Nagahara, H. Okamoto, J. Phys. Chem. B 108, 16344 (2004)Google Scholar
  69. 69.
    B. Hecht, H. Bielefeldt, Y. Inouye, D.W. Pohl, L. Novotny, J. Appl. Phys. 81, 2492 (1997)ADSGoogle Scholar
  70. 70.
    P.M. Morse, H. Feshbash, Methods of Theoretical Physics (McGraw-Hill, New York, 1953)MATHGoogle Scholar
  71. 71.
    K. Imura, H. Okamoto, Opt. Lett. 31, 1474 (2006)ADSGoogle Scholar
  72. 72.
    C.E. Jordan, S.J. Stranick, L.J. Richter, R.R. Cavanagh, J. Appl. Phys. 86, 2785 (1999)ADSGoogle Scholar
  73. 73.
    K. Imura, T. Nagahara, H. Okamoto, Chem. Phys. Lett. 400, 500 (2004)ADSGoogle Scholar
  74. 74.
    B.J. Messinger, K. Ulrich von Raben, R.K. Chang, P.W. Barber, Phys. Rev. B 24, 649 (1981)ADSGoogle Scholar
  75. 75.
    K. Imura, T. Nagahara, H. Okamoto, J. Chem. Phys. 122, 154701 (2005)ADSGoogle Scholar
  76. 76.
    G. Schider, J.R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F.R. Aussenegg, Phys. Rev. B 68, 155427 (2003)ADSGoogle Scholar
  77. 77.
    J.K. Lim, K. Imura, T. Nagahara, S.K. Kim, H. Okamoto, Chem. Phys. Lett. 41, 412 (2005)Google Scholar
  78. 78.
    S. Link, M.A. El-Sayed, J. Phys. Chem. B 103, 8410 (1999)Google Scholar
  79. 79.
    H. Petek, G. Ogawa, Prog. Surf. Sci. 56, 239 (1997)ADSGoogle Scholar
  80. 80.
    J.-Y. Bigot, V. Halté, J.-C. Merle, A. Daunois, Chem. Phys. 251, 181 (2000)ADSGoogle Scholar
  81. 81.
    C.-K. Sun, F. Vallée, L. Acioli, E.P. Ippen, J.G. Fujimoto, Phys. Rev. B 48, 12365 (1993)ADSGoogle Scholar
  82. 82.
    J.H. Hodak, A. Henglein, G.V. Hartland, J. Phys. Chem. B 104, 9954 (2000)Google Scholar
  83. 83.
    C. Voisin, D. Christofilos, P.A. Loukakos, N. Del Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, B. Broyer, Phys. Rev. B 69, 195416 (2004)ADSGoogle Scholar
  84. 84.
    M. Hu, G.V. Hartland, J. Phys. Chem. B 106, 7029 (2002)Google Scholar
  85. 85.
    O.L. Muskens, N. Del Fatti, F. Vallée, Nano Lett. 6, 552 (2006)ADSGoogle Scholar
  86. 86.
    M. Pelton, M. Liu, S. Park, N.F. Scherer, P. Guyot-Sionnest, Phys. Rev. B 73, 155419 (2006)ADSGoogle Scholar
  87. 87.
    D. Brinks, F.D. Stefani, F. Kulzer, R. Hildner, T.M. Taminiau, Y. Avlasevich, K. Müllen, N.F. van Hulst, Nature 465, 905 (2010)ADSGoogle Scholar
  88. 88.
    A. Kubo, K. Onda, H. Petek, Z. Sun, Y.S. Jung, H.K. Kim, Nano Lett. 5, 1123 (2005)ADSGoogle Scholar
  89. 89.
    A. Kubo, N. Pontius, H. Petek, Nano Lett. 7, 470 (2007)ADSGoogle Scholar
  90. 90.
    A. Stella, M. Nisoli, S. De Silvesti, O. Svelto, G. Lanzani, P. Cheyssac, R. Kofman, Phys. Rev. B 53, 15497 (1996)ADSGoogle Scholar
  91. 91.
    T.V. Chahbazyan, I.E. Perakis, J.-Y. Bigot, Phys. Rev. Lett. 81, 3120 (1998)ADSGoogle Scholar
  92. 92.
    C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, B. Prével, E. Cottancin, J. Lérme, M. Pellarin, M. Broyer, Phys. Rev. Lett. 85, 2200 (2000)ADSGoogle Scholar
  93. 93.
    K. Imura, H. Okamoto, Phys. Rev. B 77, 041401 (R) (2008)Google Scholar
  94. 94.
    S.D. Brorson, J.G. Fujimoto, E.P. Ippen, Phys. Rev. Lett. 59, 1962 (1987)ADSGoogle Scholar
  95. 95.
    N. Bloembergen, Nonlinear Optics (World Scientific, Singapore, 1996)MATHGoogle Scholar
  96. 96.
    A. Mooradian, Phys. Rev. Lett. 22, 185 (1969)ADSGoogle Scholar
  97. 97.
    K. Imura, T. Nagahara, H. Okamoto, J. Am. Chem. Soc. 126, 12730 (2004)Google Scholar
  98. 98.
    P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner, Phys. Rev. Lett. 94, 017402 (2005)ADSGoogle Scholar
  99. 99.
    R.A. Farrer, F.L. Butterfield, V.W. Chen, J.T. Fourkas, Nano Lett. 5, 1139 (2005)ADSGoogle Scholar
  100. 100.
    A. Bouhelier, R. Bachelot, G. Lerondel, P. Royer, G.P. Wiederrecht, Phys. Rev. Lett. 95, 267405 (2006)ADSGoogle Scholar
  101. 101.
    A. Hohenau, J.R. Krenn, J. Beermann, S.I. Bozhevolnyi, S.G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, Phys. Rev. B 73, 155404 (2006)ADSGoogle Scholar
  102. 102.
    M. Mühlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Science 308, 1607 (2005)ADSGoogle Scholar
  103. 103.
    H. Wang, T.B. Huff, D.A. Zweifel, W. He, P.S. Low, A. Wei, J.-X. Cheng, Proc. Natl. Acad. Sci. USA 102, 15752 (2005)ADSGoogle Scholar
  104. 104.
    N.J. Durr, T. Larson, D.K. Smith, B.A. Korgel, K. Sokolov, A. Ben-Yakar, Nano Lett. 7, 945 (2007)ADSGoogle Scholar
  105. 105.
    Y. Jiang, N.N. Horimoto, K. Imura, H. Okamoto, K. Matsui, R. Shigemoto, Adv. Mater. 21, 2309 (2009)Google Scholar
  106. 106.
    K. Imura, T. Nagahara, H. Okamoto, J. Phys. Chem. B 109, 13214 (2005)Google Scholar
  107. 107.
    K. Imura, T. Nagahara, H. Okamoto, Appl. Phys. Lett. 88, 023104 (2006)ADSGoogle Scholar
  108. 108.
    K. Imura, H. Okamoto, M.K. Hossain, M. Kitajima, Chem. Lett. 35, 78 (2006)Google Scholar
  109. 109.
    K. Imura, H. Okamoto, M.K. Hossain, M. Kitajima, Nano Lett. 6, 2173 (2006)ADSGoogle Scholar
  110. 110.
    T. Shimada, K. Imura, M.K. Hossain, H. Okamoto, M. Kitajima, J. Phys. Chem. C 112, 4033 (2008)Google Scholar
  111. 111.
    M.K. Hossain, T. Shimada, M. Kitajima, K. Imura, H. Okamoto, Langmuir 24, 9241 (2008)Google Scholar
  112. 112.
    G.T. Boyd, Z.H. Yu, Y.R. Shen, Phys. Rev. B 33, 7923 (1986)ADSGoogle Scholar
  113. 113.
    P. Apell, R. Monreal, S. Lundqvist, Phys. Scr. 38, 174 (1988)ADSGoogle Scholar
  114. 114.
    R. Rosei, Phys. Rev. B 10, 474 (1974); M. Guerrrisi, R. Rosei, P. Winsemius, Phys. Rev. B 12, 557 (1975)Google Scholar
  115. 115.
    J.I. Gersten, J. Chem. Phys. 72, 5779 (1980)ADSGoogle Scholar
  116. 116.
    J. Gersten, A. Nitzan, J. Chem. Phys. 73, 3023 (1980)ADSGoogle Scholar
  117. 117.
    P.F. Liao, A. Wokaun, J. Chem. Phys. 76, 751 (1982)ADSGoogle Scholar
  118. 118.
    A.M. Michaels, M. Nirmal, L.E. Brus, J. Am. Chem. Soc. 121, 9932 (1999)Google Scholar
  119. 119.
    H. Xu, J. Aizpurua, M. Käll, P. Apell, Phys. Rev. E 62, 4318 (2000)ADSGoogle Scholar
  120. 120.
    E. Hao, G.C. Schatz, J. Chem. Phys. 120, 357 (2004)ADSGoogle Scholar
  121. 121.
    T.E. Talley, J.B. Jackson, C. Oubre, N.K. Grady, C.W. Hollars, S.M. Lane, T.R. Huser, P. Nordlander, N.J. Halas, Nano Lett. 5, 1569 (2005)ADSGoogle Scholar
  122. 122.
    H. Watanabe, N. Hayazawa, Y. Inouye, S. Kawata, J. Phys. Chem. B 109, 5012 (2005)Google Scholar
  123. 123.
    H. Wang, C.J. Levin, N.J. Halas, J. Am. Chem. Soc. 127, 14992 (2005)Google Scholar
  124. 124.
    J.A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N.J. Halas, V.N. Manoharan, P. Nordlander, G. Shvets, F. Capasso, Science 328, 1135 (2010)ADSGoogle Scholar
  125. 125.
    T. Kodo, F. Matsumoto, K. Nishio, H. Masuda, Chem. Lett. 37, 466 (2008)Google Scholar
  126. 126.
    N. Nedyalkov, T. Sakai, T. Miyanishi, M. Obara, Appl. Phys. Lett. 90, 123106 (2007)ADSGoogle Scholar
  127. 127.
    H. Okamoto, K. Imura, T. Shimada, M. Kitajima, J. Photochem. Photobiol. A 221, 154 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kohei Imura
    • 1
  • Hiromi Okamoto
    • 2
  1. 1.Department of Chemistry and BiochemistrySchool of Advanced Science and Engineering, Waseda UniversityTokyoJapan
  2. 2.PRESTOJapan Science and Technology AgencySaitamaJapan

Personalised recommendations