Advertisement

The Family Brucellaceae

  • Peter Kämpfer
  • Steffen Wohlgemuth
  • Holger Scholz
Reference work entry

Abstract

The family Brucellaceae comprises the type genus Brucella and six further genera, namely, Crabtreella, Daeguia, Mycoplana, Ochrobactrum, Paenochrobactrum, and Pseudochrobactrum, phylogenetically members of the order Rhizobiales within the class Alphaproteobacteria. Organisms are Gram-negative and have a rod-shaped morphology with varying length, occasionally motile, do not produce spores, and have an aerobic respiratory type of metabolism. The majority of Brucella species have been isolated from animals and occasionally humans, whereas the species belonging to the other genera have been predominantly isolated from environmental sources such as sludge, soil, and water and only rarerly from human or animal sources. Brucella species of the B. melitensis type (B. melitensis, B. abortus, B. suis, B. ovis, B. neotomae, B. canis, and B. ceti, considered by some taxonomists as one species, because of their high genetic relatedness) are the causal agents of Brucellosis, a severe disease of animals and man by comparative genetic analyses, it has been demonstrated that the family Brucellaceae especially the genus Brucella is genetically highly related to plant symbionts/pathogens, such as Agrobacterium, Rhizobium, and Mesorhizobium, and also to animal pathogens such as Bartonella.

Several Ochrobactrum species are opportunistic living organisms, which cycle from soil-rhizoplane to immunocompromised humans/animals; however, the species of the Brucella melitensis group live as intracellular primary parasites that do not require predisposing conditions and are capable to cycle directly from animal to animal.

Keywords

Predominant Fatty Acid Brucella Species Brucella Melitensis Brucella Strain Peritrichous Flagellum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The excellent and comprehensive treatise of Moreno and Moriyon from the 2nd edition of The Prokaryotes is still highly recommended for a more deep study on classical approaches in the biology of Brucella.

References

  1. Abraham WR, Strompl C, Meyer H, Lindholst S, Moore ER et al (1999) Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. Int J Syst Bacteriol 49(Pt 3):1053–1073PubMedCrossRefGoogle Scholar
  2. Al Dahouk S, Hofer E, Tomaso H, Vergnaud G et al (2012) Intraspecies biodiversity of the genetically homologous species Brucella microti. Appl Environ Microbiol 78(5):1534–1543PubMedCentralPubMedCrossRefGoogle Scholar
  3. Apisarnthanarak A, Kiratisin P, Mundy LM (2005) Evaluation of Ochrobactrum intermedium bacteremia in a patient with bladder cancer. Diagn Microbiol Infect Dis 53:153–155PubMedCrossRefGoogle Scholar
  4. Appelbaum PC, Campbell DB (1980) Pancreatic abscess associated with Achromobacter group Vd biovar 1. J Clin Microbiol 12:282–283PubMedCentralPubMedGoogle Scholar
  5. Arimi SM, Koroti E, Kang’ethe EK, Omore AO, McDermott JJ (2005) Risk of infection with Brucella abortus and Escherichia coli O157:H7 associated with marketing of unpasteurized milk in Kenya. Acta Trop 96:1–8PubMedCrossRefGoogle Scholar
  6. Audic S, Lescot M, Claverie JM, Scholz HC (2009) Brucella microti: the genome sequence of an emerging pathogen. BMC Genomics 10:352PubMedCentralPubMedCrossRefGoogle Scholar
  7. Audic S, Lescot M, Claverie JM, Cloeckaert A, Zygmunt MS (2011) The genome sequence of Brucella pinnipedialis B2/94 sheds light on the evolutionary history of the genus Brucella. BMC Evol Biol 11:200PubMedCentralPubMedCrossRefGoogle Scholar
  8. Baily GG, Krahne JB, Drasar BS, Stoker NG (1992) Detection of Brucella melitensis and Brucella abortus by DNA amplification. Trop Med Hyg 95:271–275Google Scholar
  9. Barrow GI, Feltham RKA (1993) Appendix A: Preparation and control of culture media. In: Barrow F (ed) Cowan and Steele’s manual of the identification of medical bacteria, 3rd edn. Cambridge University Press, Cambridge, pp 188–213CrossRefGoogle Scholar
  10. Barson WJ, Cromer BA, Marcon MJ (1987) Puncture wound osteochondritis of the foot caused by CDC group Vd. J Clin Microbiol 25:2014–2016PubMedCentralPubMedGoogle Scholar
  11. Bohlin J, Snipen L, Cloeckaert A, Lagesen K, Ussery D et al (2010) Genomic comparisons of Brucella spp. and closely related bacteria using base compositional and proteome based methods. BMC Evol Biol 10:249PubMedCentralPubMedCrossRefGoogle Scholar
  12. Boyce KJ, Edgar AW (1966) Production of freeze-dried Brucella abortus Strain 19 vaccine using cells produced by continuous culture. J Appl Bacteriol 29:401–408PubMedCrossRefGoogle Scholar
  13. Brenner DJ, O’Connor SP, Winkler HH, Steigerwalt AG (1993) Proposals to unify the genera Bartonella and Rochalimaea, with descriptions of Bartonella quintana comb. nov., Bartonella vinsonii comb. nov., Bartonella henselae comb. nov., and Bartonella elizabethae comb. nov., and to remove the family Bartonellaceae from the order Rickettsiales. Int J Syst Bacteriol 43:777–786PubMedCrossRefGoogle Scholar
  14. Bricker BJ, Halling SM (1994) Differentiation of Brucella abortus bv. 1, 2, and 4, Brucella melitensis, Brucella ovis, and Brucella suis bv. 1 by PCR. J Clin Microbiol 32:2660–2666PubMedCentralPubMedGoogle Scholar
  15. Bricker BJ, Ewalt DR, Halling SM (2003) Brucella ‘HOOF-Prints’: strain typing by multi-locus analysis of variable number tandem repeats (VNTRs). BMC Microbiol 3:15PubMedCentralPubMedCrossRefGoogle Scholar
  16. Brivet F, Guibert M, Kiredjian M, Dormont J (1993) Necrotizing fasciitis, bacteremia, and multiorgan failure caused by Ochrobactrum anthropi. Clin Infect Dis 17:516–518PubMedCrossRefGoogle Scholar
  17. Brown GM, Ranger CR, Kelley DJ (1971) Selective media for the isolation of Brucella ovis. Cornell Vet 61:265–280PubMedGoogle Scholar
  18. Castaneda MR (1947) A practical method for routine blood cultures in brucellosis. Proc Soc Exp Biol Med 64:114PubMedCrossRefGoogle Scholar
  19. Corbel MJ (1987) Brucella phages: advances in the development of a reliable phage typing system for smooth and non-smooth Brucella isolates. Ann Inst Pasteur Microbiol 138:70–75PubMedCrossRefGoogle Scholar
  20. Corbel MJ (1989) Microbiology of the genus Brucella. In: Young C (ed) Brucellosis: clinical and laboratory aspects. CRC Press, Boca Raton, pp 53–72Google Scholar
  21. Corbel MJ, Banai M (2005) Genus I. Brucella Meyer and Shaw 1920. In: Brenner DJ, Krig NR, Staley JT (eds) Bergey’s manual of systematic bacteriology. Springer, New YorkGoogle Scholar
  22. Crabtree K, McCoy E (1967) Zoogloea ramigera itzigsohn, identification and description. Int J Syst Bacteriol 17:1–10CrossRefGoogle Scholar
  23. Crawford RP, Huber JD, Adams BS (1990) Epidemiology and surveillance. In: Klaus N, Robert D (eds) Animal brucellosis. CRC Press, Boca Raton, pp 131–151Google Scholar
  24. Davies G, Hebert CN, Casey AD (1973) Preservation of Brucella abortus (Strain 544) in liquid nitrogen and its virulence when subsequently used as a challenge. J Biol Stand 1:165–170CrossRefGoogle Scholar
  25. De BK, Stauffer L, Koylass MS, Sharp SE et al (2008) Novel Brucella strain (BO1) associated with a prosthetic breast implant infection. J Clin Microbiol 46(1):43–49PubMedCentralPubMedCrossRefGoogle Scholar
  26. Deley J, Mannheim W, Segers P, Lievens A, Denijn M et al (1987) Ribosomal Ribonucleic-Acid Cistron similarities and taxonomic neighborhood of Brucella and Cdc Group-Vd. Int J Syst Bacteriol 37:35–42CrossRefGoogle Scholar
  27. DelVecchio VG, Kapatral V, Elzer P, Patra G, Mujer CV (2002) The genome of Brucella melitensis. Vet Microbiol 90:587–592PubMedCrossRefGoogle Scholar
  28. Farrell ID (1974) The development of a new selective medium for the isolation of Brucella abortus from contaminated sources. Res Vet Sci 16:280–286PubMedGoogle Scholar
  29. Foster G, Osterman BS, Godfroid J, Jacques I, Cloeckaert A (2007) Brucella ceti sp. nov. and Brucella pinnipedialis sp. nov. for Brucella strains with cetaceans and seals as their preferred hosts. Int J Syst Evol Microbiol 57:2688–2693PubMedCrossRefGoogle Scholar
  30. Foster JT, Okinaka RT, Svensson R, Shaw K, De BK et al (2008) Real-time PCR assays of single-nucleotide polymorphisms defining the major Brucella clades. J Clin Microbiol 46:296–301PubMedCentralPubMedCrossRefGoogle Scholar
  31. Foster JT, Beckstrom-Sternberg SM, Pearson T, Beckstrom-Sternberg JS, Chain PS et al (2009) Whole-genome-based phylogeny and divergence of the genus Brucella. J Bacteriol 191:2864–2870PubMedCentralPubMedCrossRefGoogle Scholar
  32. Garcia-Yoldi D, Marin CM, de Miguel MJ, Munoz PM, Vizmanos JL et al (2006) Multiplex PCR assay for the identification and differentiation of all Brucella species and the vaccine strains Brucella abortus S19 and RB51 and Brucella melitensis Rev1. Clin Chem 52:779–781PubMedCrossRefGoogle Scholar
  33. Gopaul KK, Koylass MS, Smith CJ, Whatmore AM (2008) Rapid identification of Brucella isolates to the species level by real time PCR based single nucleotide polymorphism (SNP) analysis. BMC Microbiol 8:86PubMedCentralPubMedCrossRefGoogle Scholar
  34. Gransden WR, Eykyn SJ (1992) 7 cases of bacteremia due to Ochrobactrum-Anthropi. Clin Infect Dis 15:1068–1069PubMedCrossRefGoogle Scholar
  35. Gray PHH, Thornton HG (1928) Soil bacteria decompose certain aromatic compounds. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 2:74–96Google Scholar
  36. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59:307–321PubMedCrossRefGoogle Scholar
  37. Halling SM, Peterson-Burch BD, Bricker BJ, Zuerner RL et al (2005) Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J Bacteriol 187(8):2715–2726PubMedCentralPubMedCrossRefGoogle Scholar
  38. Harwood CS, Parales RE (1996) The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590PubMedCrossRefGoogle Scholar
  39. Holmes B, Popoff M, Kiredjian M, Kersters K (1988) Ochrobactrum-Anthropi Gen-Nov, Sp-Nov from Human Clinical Specimens and Previously Known as Group Vd. Int J Syst Bacteriol 38:406–416CrossRefGoogle Scholar
  40. Hoyer BH, Mccullou NB (1968a) Homologies of deoxyribonucleic acids from Brucella Ovis Canine abortion organisms and other Brucella species. J Bacteriol 96:1783–1790PubMedCentralPubMedGoogle Scholar
  41. Hoyer BH, Mccullou NB (1968b) Polynucleotide homologies of Brucella deoxyribonucleic acids. J Bacteriol 95:444–448PubMedCentralPubMedGoogle Scholar
  42. Huber B, Scholz HC, Kämpfer P, Falsen E, Langer S et al (2010) Ochrobactrum pituitosum sp. nov., isolated from an industrial environment. Int J Syst Evol Microbiol 60:321–326PubMedCrossRefGoogle Scholar
  43. Hughes MR (1893) The natural history of certain fevers occurring in the Mediterranean. Mediterranean Nat 2:299–300; 325–327; 332–334Google Scholar
  44. Imran A, Hafeez FY, Fruhling A, Schumann P, Malik KA et al (2010) Ochrobactrum ciceri sp. nov., isolated from nodules of Cicer arietinum. Int J Syst Evol Microbiol 60:1548–1553PubMedCrossRefGoogle Scholar
  45. Kämpfer P, Rossello-Mora R, Scholz HC, Welinder-Olsson C, Falsen E et al (2006) Description of Pseudochrobactrum gen. nov., with the two species Pseudochrobactrum asaccharolyticum sp. nov. and Pseudochrobactrum saccharolyticum sp. nov. Int J Syst Evol Microbiol 56:1823–1829PubMedCrossRefGoogle Scholar
  46. Kämpfer P, Scholz HC, Huber B, Thummes K, Busse HJ et al (2007) Description of Pseudochrobactrum kiredjianiae sp. nov. Int J Syst Evol Microbiol 57:755–760PubMedCrossRefGoogle Scholar
  47. Kämpfer P, Huber B, Lodders N, Warfolomeow I, Busse HJ et al (2009) Pseudochrobactrum lubricantis sp. nov., isolated from a metal-working fluid. Int J Syst Evol Microbiol 59:2464–2467PubMedCrossRefGoogle Scholar
  48. Kämpfer P, Martin E, Lodders N, Jackel U, Huber BE et al (2010) Paenochrobactrum gallinarii gen. nov., sp. nov., isolated from air of a duck barn, and reclassification of Pseudochrobactrum glaciei as Paenochrobactrum glaciei comb. nov. Int J Syst Evol Microbiol 60:1493–1498PubMedCrossRefGoogle Scholar
  49. Kämpfer P, Huber B, Busse HJ, Scholz HC, Tomaso H et al (2011) Ochrobactrum pecoris sp. nov., isolated from farm animals. Int J Syst Evol Microbiol 61:2278–2283PubMedCrossRefGoogle Scholar
  50. Kavita B, Keharia H (2012) Reduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium-contaminated soil. 3 Biotech 2:79–87PubMedCentralPubMedCrossRefGoogle Scholar
  51. Kern WV, Oethinger M, Kaufhold A, Rozdzinski E, Marre R (1993) Ochrobactrum-Anthropi Bacteremia – Report of 4 cases and short review. Infection 21:306–310PubMedCrossRefGoogle Scholar
  52. Kuhnigk T, Konig H (1997) Degradation of dimeric lignin model compounds by aerobic bacteria isolated from the hindgut of xylophagous termites. J Basic Microbiol 37:205–211PubMedCrossRefGoogle Scholar
  53. Lapage SP, Shelton JE, Mitchell TG, MacKenzie AR (1970) Culture collections in the preservation of bacteria. In: Norris R (ed) Methods microbiol. Academic, London, pp 136–228Google Scholar
  54. Laura D, De Socio G, Frassanito R, Rotilio D (1996) Effects of atrazine on Ochrobactrum anthropi membrane fatty acids. Appl Environ Microbiol 62:2644–2646PubMedCentralPubMedGoogle Scholar
  55. Le Fleche P, Jacques I, Grayon M, Al Dahouk S, Bouchon P et al (2006) Evaluation and selection of tandem repeat loci for a Brucella MLVA typing assay. BMC Microbiol 6:9PubMedCentralPubMedCrossRefGoogle Scholar
  56. Lebuhn M, Achouak W, Schloter M, Berge O, Meier H et al (2000) Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots, and description of Ochrobactrum tritici sp. nov. and Ochrobactrum grignonense sp. nov. Int J Syst Evol Microbiol 50(Pt 6):2207–2223PubMedCrossRefGoogle Scholar
  57. Lista F, Reubsaet FA, De Santis R, Parchen RR, de Jong AL et al (2011) Reliable identification at the species level of Brucella isolates with MALDI-TOF-MS. BMC Microbiol 11:267PubMedCentralPubMedCrossRefGoogle Scholar
  58. Lopez-Goni I, Garcia-Yoldi D, Marin CM, de Miguel MJ, Barquero-Calvo E et al (2011) New Bruce-ladder multiplex PCR assay for the biovar typing of Brucella suis and the discrimination of Brucella suis and Brucella canis. Vet Microbiol 154:152–155PubMedCrossRefGoogle Scholar
  59. Madkour MM (2000) Madkour’s brucellosis. Springer, BerlinGoogle Scholar
  60. Mayer-Scholl A, Draeger A, Gollner C, Scholz HC, Nockler K (2010) Advancement of a multiplex PCR for the differentiation of all currently described Brucella species. J Microbiol Methods 80:112–114PubMedCrossRefGoogle Scholar
  61. Meyer KF, Shaw EB (1920) A comparison of the morphologic, cultural and biochemical characteristics of B. abortus and B. melitensis. J Infect Dis 27:173–184CrossRefGoogle Scholar
  62. Michaux-Charachon S, Bourg G, JumasBilak E, GuigueTalet P, AllardetServent A et al (1997) Genome structure and phylogeny in the genus Brucella. J Bacteriol 179:3244–3249PubMedCentralPubMedGoogle Scholar
  63. Moller LVM, Arends JP, Harmsen HJM, Talens A, Terpstra P et al (1999) Ochrobactrum intermedium infection after liver transplantation. J Clin Microbiol 37:241–244PubMedCentralPubMedGoogle Scholar
  64. Moreno E, Moriyon I (2006) The genus Brucella. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) Prokaryotes, 3rd edn. Springer, New YorkGoogle Scholar
  65. O’Callaghan D, Whatmore AM (2011) Brucella genomics as we enter the multi-genome era. Brief Funct Genomics 10:334–341PubMedCrossRefGoogle Scholar
  66. O’Connor SP, Dorsch M, Steigerwalt AG, Brenner DJ, Stackebrandt E (1991) 16S rRNA sequences of Bartonella bacilliformis and cat scratch disease bacillus reveal phylogenetic relationships with the alpha-2 subgroup of the class Proteobacteria. J Clin Microbiol 29:2144–2150PubMedCentralPubMedGoogle Scholar
  67. Paulsen IT, Seshadri R, Nelson KE, Eisen JA et al (2002) The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci USA 99(20):13148–13153PubMedCentralPubMedCrossRefGoogle Scholar
  68. Romanenko LA, Tanaka N, Frolova GM, Mikhailov VV (2008) Pseudochrobactrum glaciei sp. nov., isolated from sea ice collected from Peter the Great Bay of the Sea of Japan. Int J Syst Evol Microbiol 58:2454–2458PubMedCrossRefGoogle Scholar
  69. Scholz HC, Hubalek Z, Sedlacek I, Vergnaud G et al (2008) Brucella microti sp. nov. isolated from the common vole Microtus arvalis. Int J Syst Bacteriol 58:375–382CrossRefGoogle Scholar
  70. Scholz HC, Nockler K, Gollner C, Bahn P, Vergnaud G et al (2010) Brucella inopinata sp. nov., isolated from a breast implant infection. Int J Syst Evol Microbiol 60:801–808PubMedCrossRefGoogle Scholar
  71. Sobral BW, Wattam AR (2011) Comparative genomics and phylogenomics of Brucella. In: López-Goñi I, O’Callaghan D (eds) Brucella molecular microbiology and genomics. Caister Academic Press, NorfolkGoogle Scholar
  72. Swai ES, Schoonman L (2009) Human brucellosis: seroprevalence and risk factors related to high risk occupational groups in Tanga Municipality, Tanzania. Zoonoses Public Health 56:183–187PubMedCrossRefGoogle Scholar
  73. Teyssier C, Marchandin H, Jean-Pierre H, Masnou A, Dusart G et al (2007) Ochrobactrum pseudintermedium sp. nov., a novel member of the family Brucellaceae, isolated from human clinical samples. Int J Syst Evol Microbiol 57:1007–1013PubMedCrossRefGoogle Scholar
  74. Thakur SD, Vaid RK, Panda AK, Saini Y (2012) Marine mammal brucellosis: a new dimension to an old zoonosis. Curr Sci 103:902–910Google Scholar
  75. Tiller RV, Gee JE, Lonsway DR, Gribble S et al (2010a) Identification of an unusual Brucella strain (BO2) from a lung biopsy in a 52 year-old patient with chronic destructive pneumonia. BMC Microbiol 10:23PubMedCentralPubMedCrossRefGoogle Scholar
  76. Tiller RV, Gee JE, Frace MA, Taylor TK et al (2010b) Characterization of novel Brucella strains originating from wild native rodent species in North Queensland, Australia. Appl Environ Microbiol 76(17):5837–5845PubMedCentralPubMedCrossRefGoogle Scholar
  77. Tripathi AK, Verma SC, Chowdhury SP, Lebuhn M, Gattinger A et al (2006) Ochrobactrum oryzae sp. nov., an endophytic bacterial species isolated from deep-water rice in India. Int J Syst Evol Microbiol 56:1677–1680PubMedCrossRefGoogle Scholar
  78. Unz RF (1971) Neotype strain of Zoogloea ramigera Itzigsohn. Request for an opinion. Int J Syst Bacteriol 21:91–99CrossRefGoogle Scholar
  79. Urakami T, Oyanagi H, Araki H, Suzuki K, Komagata K (1990) Recharacterization and Emended Description of the Genus Mycoplana and Description of 2 New Species, Mycoplana-Ramosa and Mycoplana-Segnis. Int J Syst Bacteriol 40:434–442CrossRefGoogle Scholar
  80. Valdezate S, Cervera I, Hernandez P, Navarro A, Saez Nieto JA (2007) Characterisation of human outbreaks of brucellosis and sporadic cases by the use of hyper-variable octameric oligonucleotide fingerprint (HOOF) variable number tandem repeats. Clin Microbiol Infect 13:887–892PubMedCrossRefGoogle Scholar
  81. Velasco J, Romero C, Lopez-Goni I, Leiva J, Diaz R et al (1998) Evaluation of the relatedness of Brucella spp. and Ochrobactrum anthropi and description of Ochrobactrum intermedium sp. nov., a new species with a closer relationship to Brucella spp. Int J Syst Bacteriol 48:759–768PubMedCrossRefGoogle Scholar
  82. Verger JM, Grimont F, Grimont PAD, Grayon M (1985) Brucella, a monospecific genus as shown by deoxyribonucleic-acid hybridization. Int J Syst Bacteriol 35:292–295CrossRefGoogle Scholar
  83. Wattam AR, Williams KP, Snyder EE, Almeida NF Jr, Shukla M et al (2009) Analysis of ten Brucella genomes reveals evidence for horizontal gene transfer despite a preferred intracellular lifestyle. J Bacteriol 191:3569–3579PubMedCentralPubMedCrossRefGoogle Scholar
  84. Whatmore AM, Shankster SJ, Perrett LL, Murphy TJ, Brew SD et al (2006) Identification and characterization of variable-number tandem-repeat markers for typing of Brucella spp. J Clin Microbiol 44:1982–1993PubMedCentralPubMedCrossRefGoogle Scholar
  85. Whatmore AM, Perrett LL, MacMillan AP (2007) Characterisation of the genetic diversity of Brucella by multilocus sequencing. BMC Microbiol 7:34PubMedCentralPubMedCrossRefGoogle Scholar
  86. Xie CH, Yokota A (2006) Zoogloea oryzae sp. nov., a nitrogen-fixing bacterium isolated from rice paddy soil, and reclassification of the strain ATCC 19623 as Crabtreella saccharophila gen. nov., sp. nov. Int J Syst Evol Microbiol 56:619–624PubMedCrossRefGoogle Scholar
  87. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–2999PubMedCrossRefGoogle Scholar
  88. Yoon JH, Kang SJ, Park S, Oh TK (2008) Daeguia caeni gen. nov., sp. nov., isolated from sludge of a textile dye works. Int J Syst Evol Microbiol 58:168–172PubMedCrossRefGoogle Scholar
  89. Young EJ, Corbel MJ (1989) Brucellosis: clinical and laboratory aspects. In: Young EJ, Corbel MJ (ed.) CRC Press, Boca RatonGoogle Scholar
  90. Yu WL, Nielsen K (2010) Review of detection of Brucella spp. by polymerase chain reaction. Croat Med J 51:306–313PubMedCentralPubMedCrossRefGoogle Scholar
  91. Zurdo-Pineiro JL, Rivas R, Trujillo ME, Vizcaino N, Carrasco JA et al (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Peter Kämpfer
    • 1
  • Steffen Wohlgemuth
    • 2
  • Holger Scholz
    • 3
  1. 1.Institute of Applied MicrobiologyJustus-Liebig-University GiessenGiessenGermany
  2. 2.Institut für Angewandte MikrobiologieJustus-Liebig-Universität GiessenGiessenGermany
  3. 3.Institut für Mikrobiologie der BundeswehrAbteilung Bakteriologie und ToxinologieMunichGermany

Personalised recommendations