Advertisement

The Family Holosporaceae

  • Huarrisson Azevedo Santos
  • Carlos Luiz Massard
Reference work entry

Abstract

The Holosporaceae family (Görtz H-D, Schmidt HJ (2005) Genus Holospora. In: Garrity et al. (eds) Bergey’s manual of systematic of bacteriology, vol 2, part C, 2nd edn. Springer, New York, pp 149–151) in the Rickettsiales order (Gieszczykiewicz 1939) includes a group of gram-negative bacteria without motility and obligatory symbionts. Routinely, these bacteria occupy specific compartments in their host cells, which are generally rich in metabolites (Heckmann, K. Görtz H-D (1991) Procaryotic symbionts of ciliates. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, Berlin/Heidelberg/New York, pp 3865–3890; Fokin and Karpov, Endocyt Cell Res 11:81–94, 1995). Individuals of this family are mostly endosymbionts of ciliated protozoa of the genus Paramecium (Müller 1772) that parasitize, according to the species, the macronucleus and micronucleus. The family has only one consolidated genus, Holospora, and others seven genera considered to be incertae sedis in this family, including Caedibacter, Lyticum, Odyssella, Paracedibacter, Pseudocaedibacter, Pseudolyticum, and Tectibacter (Fujishima and Fujita, J Cell Sci 76:179–187, 1985). However, Lyticum was recently moved to the Midichloriaceae family (Boscaro et al., Microb Ecol 65:255–267, 2013). Among those cited, Holospora and Caedibacter are commonly studied. Thus, H. obtusa, H. caryophila, and H. curviuscula are parasitize the macronucleus of P. caudatum and P. biaurelia; H. elegans, H. undulate, and H. accuminata can be found in micronucleus of P. caudatum and P. bursaria. The specificity for the host does not occur only by the success of cell penetration, which demonstrates that the specificity for a habitat is influenced by nuclear genes (Fujishima and Fujita, J Cell Sci 76:179–187, 1985). Its distribution is still not clearly defined, but it is believed to be associated with the distribution of its host (Fokin et al., Eur J Protistol 32:19–24, 1996).

Keywords

Spotted Fever Food Vacuole Spotted Fever Group Digestive Vacuole Infectious Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amann R, Springer N, Ludwig W, Görtz H-D, Schleifer K-H (1991) Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature 351:161–164PubMedCrossRefGoogle Scholar
  2. Andersson GE, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Ismark UCM, Podowski RM, Na¨slund AK, Eriksson A-S, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140PubMedCrossRefGoogle Scholar
  3. Baker BJ, Hugenholtz P, Dawson SC, Banfield JF (2003) Extremely acidophilic protists from acid mine drainage host Rickettsiales-lineage endosymbionts that have intervening sequences in their 16S rRNA genes. Appl Environ Microbiol 69:5512–5518PubMedCentralPubMedCrossRefGoogle Scholar
  4. Beier CL, Horn M, Michel R, Schweikert M, Görtz H-D, Wagner M (2002) The genus Caedibacter comprises Endosymbionts of Paramecium spp. related to the Rickettsiales (Alphaproteobacteria) and to Francisella tularensis (Gammaproteobacteria). Appl Environ Microbiol 68:6043–6050PubMedCentralPubMedCrossRefGoogle Scholar
  5. Birtles RJ, Rowbotham TJ, Michel R, Pitcher DG, Lascola B, Alexiou-Daniel S, Raoult D (2000) ‘Candidatus Odyssella thessalonicensis’ gen. nov., sp. nov., an obligate intracellular parasite of Acanthamoeba species. Int J Syst Evol Microbiol 50:63–72PubMedCrossRefGoogle Scholar
  6. Bishop R (2010) Applications of fluorescence in situ hybridization (FISH) in detecting genetic aberrations of medical significance. Biohorizons 3:85–95Google Scholar
  7. Boscaro V, Fokin SI, Schrallhammer M, Schweikert M, Petroni G (2013) Revised systematics of Holospora-like bacteria and characterization of “Candidatus Gortzia infectiva”, a novel macronuclear symbiont of Paramecium jenningsi. Microb Ecol 65:255–267PubMedCrossRefGoogle Scholar
  8. Burger G, Lang BF (2003) Parallels in genome evolution in mitochondria and bacterial symbionts. IUBMB Life 55:205–212PubMedCrossRefGoogle Scholar
  9. Darriba S, Ruiz M, López C (2012) Phage particles infecting branchial Rickettsiales-like organisms in banded carpet shell Polititapes virgineus (Bivalvia) from Galicia (NW Spain). Dis Aquat Organ 100:269–272PubMedCrossRefGoogle Scholar
  10. Dohra H, Fujishima M (1999) Cell Structure of the infectious form of Holospora, an endonuclear symbiotic bacterium of the ciliate Paramecium. Zoolog Sci 16:93–98CrossRefGoogle Scholar
  11. Dohra H, Suzuki H, Suzuki T, Tanaka K, Fujishima M (2013) Draft genome sequence of Holospora undulata strain HU1, a micronucleus-specific symbiont of the ciliate Paramecium caudatum. Genome Announc 1:664-13CrossRefGoogle Scholar
  12. Dorah H, Suzuki H, Suzuki T, Tanaka K, Fujishima M (2013) Draft genome sequence of Holospora undulata strain HU1, a micronucleus-specific symbiont of the ciliate Paramecium caudatum. Genome Announc 1:1–2Google Scholar
  13. Dumler JS, Barbet AF, Bekker CPJ, Dasch GA, Palmer GH, Ray SC, Rikihisa Y, Rurangirwa FR (2001) Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: Unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 51:2145–2165PubMedCrossRefGoogle Scholar
  14. Eschbach E, Pfannkuchena M, Schweikerta M, Drutschmannb D, Brümmera F, Fokin S, Ludwigd W, Görtz H-D (2009) “Candidatus Paraholospora nucleivisitans”, an intracellular bacterium in Paramecium sexaurelia shuttles between the cytoplasm and the nucleus of its host. Syst Appl Microbiol 32:490–500PubMedCrossRefGoogle Scholar
  15. Excoffier L, Smouse PE Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedCentralPubMedGoogle Scholar
  16. Ferla MP, Thrash JC, Giovannoni SJ, Patrick WM (2013) New rRNA gene-based phylogenies of the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability. PLos One 8:1–14CrossRefGoogle Scholar
  17. Fok AK, Allen RD (1988) The lysosome system. In: Gortz HD (ed) Paramecium. Springer, Berlin, pp 301–324Google Scholar
  18. Fokin S (2004) Bacterial endocytobionts of ciliophora and their interactions with the host cell. Int Rev Cytol 236:181–249PubMedCrossRefGoogle Scholar
  19. Fokin SI, Karpov S (1995) Bacterial endocytobionts inhabiting the perinuclear space of protista. Endocyt Cell Res 11:81–94Google Scholar
  20. Fokin SI, Bridge T, Brenner J, Görtz H-D (1996) Holospora species infecting the nuclei of Paramecium appear to belong into two groups of bacteria. Eur J Protistol 32:19–24CrossRefGoogle Scholar
  21. Fujisawa T, Barraclough TG (2013) Delimiting species using single-locus data and the generalized mixed yule coalescent (GMYC) approach: a revised method and evaluation on simulated datasets. Syst Biol 62:707–724PubMedCentralPubMedCrossRefGoogle Scholar
  22. Fujishima M, Fujita M (1985) Infection and maintenance of Holospora obtusa, a macronucleus specific bacterium of the ciliate Paramecium caudatum. J Cell Sci 76:179–187PubMedGoogle Scholar
  23. Fujishima M, Görtz HD (1983) Infection of macronuclear anlagen of Paramecium caudatum with the macronucleusspecific symbiont Holospora obtusa. J Cell Sci 64:137–146PubMedGoogle Scholar
  24. Fujishima K, Horie R, Mochizuki A Kengaku M (2012) Principles of branch dynamics governing shape characteristics of cerebellar Purkinje cell dendrites. Development 139:3442–3455PubMedCentralPubMedCrossRefGoogle Scholar
  25. Fujishima M, Kodama Y (2012) Endosymbionts in Paramecium. Eur J Protistol 48:124–137PubMedCrossRefGoogle Scholar
  26. Fujishima M, Nagahara K, Kojima Y, Sayama Y (1991) Sensitivity of the infectious longform of the macronuclear endosymbiont Holospora obtusa of the ciliate Paramecium caudatum against chemical and physical factors. Eur J Protistol 27(2):119–126PubMedCrossRefGoogle Scholar
  27. Garrity GM, Bell JA, Lilburn TG (2004) Taxonomic outline if the prokaryotes Bergey’s manual® of systematic bacteriology, 2nd ed, 401p, Springer, New YorkGoogle Scholar
  28. Garrity GM, Bell JA, Lilburn T (2005) Phylum XIV. Proteobacteria phyl. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn, The Proteobacteria, part B (the Gammaproteobacteria). Springer, New York, p 1CrossRefGoogle Scholar
  29. Garrity GM, Bell JA, Lilburn T (2006) Class I. Alphaproteobacteria class. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn, The proteobacteria, part C (the alpha-, beta-, delta-, and Epsilonproteobacteria). Springer, New York, p 1Google Scholar
  30. Georgiades K, Madoui M-A, Le P, Robert C, Raoult D (2011) Phylogenomic analysis of Odyssella thessalonicensis fortifies the common origin of Rickettsiales, Pelagibacter ubique and Reclimonas americana mitochondrion. Plos One 6:1–8Google Scholar
  31. Gieszczykiewicz (1939) Zagadnienie systematihki w bakteriologii – Zur Frage der Bakterien-Systematic. Bull Acad Pol Sci Ser Sci Biol 1:9–27 (in Polish with German Abstract)Google Scholar
  32. Görtz HD (1986) Endonucleobiosis in ciliates. Int Rev Cytol 12:63–71Google Scholar
  33. Görtz H-D, Schmidt HJ (2005) Genus Holospora. In: Garrity (ed) Bergey’s manual of systematic of bacteriology, vol 2, part C, 2nd edn. Springer, New York, pp 149–151Google Scholar
  34. Görtz HD, Wiemann M (1989) Route of infection of the bacteria Holospora elegans and Holospora obtusa into the nuclei of Paramecium caudatum. Eur J Protistol 24:101–109PubMedCrossRefGoogle Scholar
  35. GORTZ H-D (1983) Endonuclear symbionts in ciliates. Int Rev Cytol 14(suppl.):145–176Google Scholar
  36. Gortz HD (2006) Symbiotic associations between ciliates and prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: symbiotic associations, biotechnology, applied microbiology, 3rd edn. Springer, New York, pp 364–402Google Scholar
  37. Gouin E, Gantelet H, Egile GC, Lasa I, Ohayon H, Villiers V, Gounon P, Sansonetti, PJ, Cossart P (1999) A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. J Cell Sci 112:1697–1708PubMedGoogle Scholar
  38. Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338CrossRefGoogle Scholar
  39. Gromov BV, Ossipov DV (1981) Holospora (ex Hafkine 1890) nom. rev., a genus of bacteria inhabiting the nuclei of paramecia. Int J Syst Bacteriol 31:348–352CrossRefGoogle Scholar
  40. Haeckel E (1894) Systematische Phylogenie: Entwuf eines natürlichen Systems der Organismen auf Grund ihrer Stammesgeschichte, 3 v: vol 1. BerlinGoogle Scholar
  41. Heckmann K, Görtz H-D (1991) Procaryotic symbionts of ciliates. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, Berlin/Heidelberg/New York, pp 3865–3890Google Scholar
  42. Heinzen RA, Hackstadt T, Samuel JE (1999) Developmental biology of Coxiella burnetii. Trends Microbiol 7:149–154PubMedCrossRefGoogle Scholar
  43. Heinzen RA, Hayes SF, Peacock MG Hackstadt T (1993) Directional actin polymerization associated with spotted fever group Rickettsia infection of vero cells. Infect Immun 61:1926–1935PubMedCentralPubMedGoogle Scholar
  44. Hori M, Fujishima M (2003) The endosymbiotic bacterium Holospora obtusa enhances heat-shock gene expression of the host Paramecium caudatum. J Eukaryot Microbiol 50:293–298PubMedCrossRefGoogle Scholar
  45. Kusch J, Stremmel M, Breiner HW, Adams V, Schweikert M, Schmidt HJ (2000) The toxic symbiont Caedibacter caryophila in the cytoplasm of Paramecium novaurelia. Microb Ecol 40:330–335PubMedGoogle Scholar
  46. Lang BF, Brinkmann H, Koski LB, Fujishima M, Görtz H-D, Burger G (2005) On the origin of mitochondria and Rickettsia-related eukaryotic endosymbionts. Jpn J Protozool 38:171–183Google Scholar
  47. Lee K-B, Liu C-T, Anzai Y, Kim H, Aono T, Oyaizu H (2005) The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 55:1907–1919PubMedCrossRefGoogle Scholar
  48. Loy JK, Dewhirst FE, Weber W, Frelier PF, Garbar TL, Tasca SI, Templeton JW (1996) Molecular phylogeny and in situ detection of the etiologic agent of necrotizing Hepatopancreatitis in shrimp. Appl Environ Microbiol 62(9):3439–3445PubMedCentralPubMedGoogle Scholar
  49. Masahiro F (2009) Endosymbionts in Paramecium. Microbiology monographs, 1 edn, vol 12. Springer, Berlin, pp 201–225Google Scholar
  50. Montagna M, Sassera D, Epis S, Bazzocchi C, Vannini C, Lo N, Sacchi L, Fukatsu T, Petroni G, Bandi C (2013) “Candidatus Midichloriaceae” fam. Nov. (Rickettsiales), an ecologically widespread clade of intracellular Alphaproteobacteria. Appl Environ Microbiol 79:3241–3248PubMedCentralPubMedCrossRefGoogle Scholar
  51. Nidelet T, Koella JC, Kaltz O (2009) Effects of shortened host life span on the evolution of parasite life history and virulence in a microbial host-parasite system. BMC Evol Biol 9:1–10CrossRefGoogle Scholar
  52. Nunan LM, Pantoja CR, Gomez-Jimenez S, Lightner DV (2013) “Candidatus Hepatobacter penaei”, an intracellular pathogenic enteric bacterium in the Hepatopancreas of the Marine Shrimp Penaeus vannamei (Crustacea: Decapoda). Appl Environ Microbiol 79:1407–1409PubMedCentralPubMedCrossRefGoogle Scholar
  53. Pronk LM, Sanderson KE (2001) Intervening sequences in rrn genes and fragmentation of 23S rRNA in genera of the family Enterobacteriaceae. J Bacteriol 183:5782–5787PubMedCentralPubMedCrossRefGoogle Scholar
  54. Rautian MS, Wackerow-Kouzova ND (2013) Phylogenetic placement of two previously described intranuclear bacteria from the ciliate Paramecium bursaria (Protozoa, Ciliophora): ‘Holospora acuminata’ and ‘Holospora curviuscula’. Int J Syst Evol Microbiol 63:1930–1933PubMedCrossRefGoogle Scholar
  55. Reid NM, Carstens BC (2012) Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evol Biol 12:196PubMedCentralPubMedCrossRefGoogle Scholar
  56. Schmidt HJ, Gortz H-D, Quackenbush RL (1987) Caedibacter caryophila sp. nov. a killer symbiont inhabiting the macronucleus of Paramecium caudatum. Int J Syst Evol Microbiol 37(4):459–462Google Scholar
  57. Schrallhammer M (2010) The killer trait of Paramecium and its causative agents. Palaeodiversity 3:78–88Google Scholar
  58. Springer N, Ludwig TW, Amann R, Schmidtt HJ, Gortz H-D, Schleifer K-H (1993) Occurrence of fragmented 16S rRNA in an obligate bacterial endosymbiont of Paramecium caudatum. Proc Natl Acad Sci USA 90:9892–9895PubMedCentralPubMedCrossRefGoogle Scholar
  59. Sneath PHA, Sokal RR (1973) Numerical taxonomy. W. H. Freeman and Company, San FranciscoGoogle Scholar
  60. Thrash JC, Boyd A, Huggett MJ, Grote J, Carini P, Yoder RJ, Robbertse B, Spatafora JW, Rappé MS, Giovannoni SJ (2011) Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Nature 13:1–9Google Scholar
  61. Vakkerov-Kouzova ND, RAUTIAN MS (2011) Obtaining and characterization of “Holospora curviuscula” and Holospora obtusa, bacterial symbionts of the macronuclei of Paramecium bursaria and Paramecium caudatum. Microbiology 80:728–732CrossRefGoogle Scholar
  62. Vannini C, Boscaro V, Ferrantini F, Benken KA, Mironov TI, Schweikert M, Görtz H-D, Fokin SI, Sabaneyeva EV, Petroni G (2014) Flagellar movement in two bacteria of the family Rickettsiaceae: a re-evaluation of motility in an evolutionary perspective. PLoS One 9:1–9Google Scholar
  63. Weinert LA, Werren JH, Aebi A, Stone GN, Jiggins FM (2009) Evolution and diversity of Rickettsia bacteria, BMC Biology 7:6. doi:10.1186/1741-7007-7-6Google Scholar
  64. Wichterman R (1986) The biology of Paramecium, 2nd edn. Plenum Press, New YorkCrossRefGoogle Scholar
  65. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Huarrisson Azevedo Santos
    • 1
  • Carlos Luiz Massard
    • 2
  1. 1.Departmento de Epidemiologia e Saúde PºblicaUniversidade Federal Rural do Rio de Janeiro (UFRRJ)SeropédicaBrazil
  2. 2.Departmento de ParasitologiaUniversidade Federal Rural do Rio de Janeiro (UFRRJ)SeropédicaBrazil

Personalised recommendations