The Family Rickettsiaceae

  • Huarrisson Azevedo Santos
  • Carlos Luiz Massard
Reference work entry


The Rickettsiaceae family is composed of two genera, Rickettsia and Orientia, which are obligate intracellular bacteria that belong to the order Rickettsiales. The species of these genera are divided into two groups based on antigenic, molecular, and ecological patterns: (1) the typhus group, composed of the species Rickettsia prowazekii, Rickettsia typhi, and Orientia tsutsugamushi, which are transmitted by lice, fleas, and mites, respectively; and (2) the spotted fever group (SFG), which is composed of more than 23 valid species. The transmission of great majority of species in SFG is associated with ticks, with the exception of Rickettsia felis and Rickettsia akari, which are associated with fleas and mites, respectively. Other Rickettsia species, such as Rickettsia bellii and Rickettsia canadensis, are not included in either of the two groups. In SFG, at least 12 species of Rickettsia cause infections in humans (Rickettsia rickettsii, Rickettsia conorii, Rickettsia africae, Rickettsia parkeri, Rickettsia australis, Rickettsia honei, Rickettsia sibirica, Rickettsia japonica, Rickettsia massiliae, Rickettsia aeschlimannii, R. akari, and R. felis). However, species of nonpathogenic rickettsiae or of unknown pathogenicity might have a key role in the natural history of the pathogenic species; ticks infected by a kind of rickettsia that is nonpathogenic to humans (e.g.: Rickettsia montana, Rickettsia peacockii) may become unable to maintain (via transovarial transmission) infection by other pathogenic species (e.g., R. rickettsii). This fact is of great practical importance because there are populations of ticks infected with nonpathogenic rickettsiae for which the infection rate is often higher compared to pathogenic rickettsiae.


Scrub Typhus Spotted Fever Group Rickettsia Species Mediterranean Spot Fever Rocky Mountain Spot Fever 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen AC, Spitz S (1945) A comparative study of the pathology of scrub typhus (tsutsugamushi disease) and other rickettsial diseases. Am J Pathol 21:603–681PubMedCentralPubMedGoogle Scholar
  2. Amano K, Tamura A, Ohashi N (1987) Deficiency of peptiodeoglycan and lipopolissaccharide componentes in Rickettsiia tsutsugamushi. Infect Immun 55:2290PubMedCentralPubMedGoogle Scholar
  3. Amiri H, Alsmark CM, Andersson SG (2002) Proliferation and deterioration of Rickettsia palindromic elements. Mol Biol Evol 19:1234–1243PubMedCrossRefGoogle Scholar
  4. Ammerman NC, Gillespie JJ, Neuwald AF, Sobral BW, Azad AF (2009) A typhus group-specific protease defies reductive evolution in rickettsiae. J Bacteriol 191:7609–7613PubMedCentralPubMedCrossRefGoogle Scholar
  5. Anderson BE, Tzianabos T (1989) Comparative sequence analysis of a genus-common rickettsial antigen gene. J Bacteriol 171:5199–5201PubMedCentralPubMedGoogle Scholar
  6. Anderson BE, Regnery RL, Carlone GM, Tzianabos T, McDade JE, Fu ZY, Bellini WJ (1987) Sequence analysis of the 17-kilodalton-antigen gene from Rickettsia rickettsii. J Bacteriol 169:2385–2390PubMedCentralPubMedGoogle Scholar
  7. Anderson BE, Baumstark BR, Bellini WJ (1988) Expression of the gene encoding the 17-kilodalton antigen from Rickettsia rickettsii: transcription and posttranslational modification. J Bacteriol 170:4493–4500PubMedCentralPubMedGoogle Scholar
  8. Anderson BE, MacDonald GA, Jones DC, Regnery RL (1990) A protective protein antigen of Rickettsia rickettsia has tandemly repeated, hear-identical sequences. Infect Immun 58:2760–2769PubMedCentralPubMedGoogle Scholar
  9. Andersson SG, Zomorodipour A, Andersson JO et al (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140PubMedCrossRefGoogle Scholar
  10. Anton E, Font B, Munoz T, Sanfeliu I, Segura F (2003) Clinical and laboratory characteristics of 144 patients with Mediterranean spotted fever. Eur J Clin Microbiol Infect Dis 22:126–128PubMedGoogle Scholar
  11. Audic S, Robert C, Campagna B, Parinello H, Claverie JM, Raoult D, Drancourt M (2007) Genome analysis of Minibacterium massiliensis highlights the convergent evolution of water-living bacteria. PLoS Genet 3:138CrossRefGoogle Scholar
  12. Azad AF (1990) Epidemiology of murine typhus. Annu Rev Entomol 35:553–569PubMedCrossRefGoogle Scholar
  13. Bacellar F, De Sousa R, Santos A, Santos-Silva M, Parola P (2003) Boutonneuse fever in Portugal: 1995–2000. Data of a state laboratory. Eur J Epidemiol 18:275–277PubMedCrossRefGoogle Scholar
  14. Badger LF (1933) Rocky Mountain spotted fever: susceptibility of the dog and sheep to the virus. Public Health Rep 48:795CrossRefGoogle Scholar
  15. Baldridge GD, Burkhardt NY, Felsheim RF, Kurtti TJ, Munderloh UG (2007) Transposon insertion reveals pRM, a plasmid of Rickettsia monacensis. Appl Environ Microbiol 73:4984–4995PubMedCentralPubMedCrossRefGoogle Scholar
  16. Baldridge GD, Burkhardt NY, Felsheim RF, Kurtti TJ, Munderloh UG (2008) Plasmids of the pRM/pRF family occur in diverse Rickettsia species. Appl Environ Microbiol 74:645–652PubMedCentralPubMedCrossRefGoogle Scholar
  17. Batra HV, Bakshi D (2011) Orientia. In: Liu D (ed) Molecular detection of human bacterial pathogens. CRC Press, Boca Raton, pp 671–670CrossRefGoogle Scholar
  18. Bechah Y, Karkouri EK, Mediannikov O et al (2010) Genomic, proteomic and transcriptomic analysis of virulent and avirulent Rickettsia prowazekii reveals its adaptive mutation capabilities. Genome Res 20:655–663PubMedCentralPubMedCrossRefGoogle Scholar
  19. Bell-Sakyi L, Zweygarth E, Blouin EF, Gould EA, Jongejan F (2007) Tick cell lines: tools for tick and tickborne disease research. Trends Parasitol 23:450–457PubMedCrossRefGoogle Scholar
  20. Binford CH, Ecker HD (1947) Endemic (murine) typhus: report of autopsy findings in three cases. Am J Clin Pathol 17:797–806PubMedGoogle Scholar
  21. Blanc G, Ngwamidiba M, Ogata H, Fournier PE, Claverie JM, Raoult D (2005) Molecular evolution of rickettsia surface antigens: evidence of positive selection. Mol Biol Evol 22:2073–2083PubMedCrossRefGoogle Scholar
  22. Blanc G, Ogata H, Robert C, Audic S, Claverie JM, Raoult D (2007a) Lateral gene transfer between obligate intracellular bacteria: evidence from the Rickettsia massiliae genome. Genome Res 17:1657–1664PubMedCentralPubMedCrossRefGoogle Scholar
  23. Blanc G, Ogata H, Robert C, Audic S, Suhre K, Vestris G, Claverie JM, Raoult D (2007b) Reductive genome evolution from the mother of Rickettsia. PLoS Genet 3:14CrossRefGoogle Scholar
  24. Boussau B, Karlberg EO, Frank AC, Legault BA, Andersson SG (2004) Computational inference of scenarios for alpha-proteobacterial genome evolution. Proc Natl Acad Sci U S A 101:9722–9727PubMedCentralPubMedCrossRefGoogle Scholar
  25. Bouyer DH, Stenos J, Crocquet-Valdes P, Moron CG, Popov VL, Zavala-Velazquez JE, Foil LD, Stothard DR, Azad AF, Walker DH (2001) Rickettsia felis: molecular characterization of a new member of the spotted fever group. Int J Syst Evol Microbiol 51:339–347PubMedCrossRefGoogle Scholar
  26. Brindefalk B, Ettema TJG, Viklund J, Thollesson M, Andersson SGE (2011) A phylometagenomic exploration of oceanic Alphaproteobacteria reveals mitochondrial relatives unrelated to the SAR11 clade. Plos One 6:1–13CrossRefGoogle Scholar
  27. Brouqui P, Houpikian P, Tissot-Dupont H et al (1996) Survey of the seroprevalence of Bartonella quintana in homeless people. Clin Infect Dis 23(4):756–759PubMedCrossRefGoogle Scholar
  28. Brouqui P, Harle JR, Delmont J, Frances C, Weiller PJ, Raoult D (1997) African tick-bite fever: an imported spotless rickettsiosis. Arch Intern Med 157(1):119–124PubMedCrossRefGoogle Scholar
  29. Brouqui P, La Scola B, Roux V, Raoult D (1999) Chronic Bartonella quintana bacteremia in homeless patients. N Engl J Med 340(3):184–189PubMedCrossRefGoogle Scholar
  30. Brouqui P, Bacellar F, Baranton G, Birtles RJ, Bjoersdorff A, Blanco JR, Caruso G, Cinco M, Fournier PE, Francavilla E, Jensenius M, Kazar J, Laferl H, Lakos A, Lotric Furlan S, Maurin M, Oteo JA, Parola P, Perez-Eid C, Peter O, Postic D, Raoult D, Tellez A, Tselentis Y, Wilske B (2004) ESCMID Study Group on Coxiella, Anaplasma, Rickettsia and Bartonella; European Network for Surveillance of Tick-Borne Diseases. Guidelines for the diagnosis of tick-borne bacterial diseases in Europe. Clin Microbiol Infect 12:1108–1132CrossRefGoogle Scholar
  31. Brumpt E (1932) Longévité du virus de la fièvre boutonneuse (Rickettsia conorii n. sp.) chez la tique Rhipicephalus sanguineus. C R Soc Biol 110:1119Google Scholar
  32. Burgdorfer W (1975) A review of Rocky Mountain spotted fever (tick-borne typhus), its agent, and its tick vectors in the United States. J Med Entomol 12:269–278PubMedCrossRefGoogle Scholar
  33. Burgdorfer W (1988) Ecological and epidemiological considerations of Rocky Mountain spotted fever and scrub typhus. In: Walker DH (ed) Biology of rickettsial disease. CRC Press, Boca Raton, pp 34–50Google Scholar
  34. Burgess IF (1995) Human lice and their management. In: Baker JR, Muller R, Rollinson D (eds) Advances in parasitology, vol 36. Academic, London, pp 271–342Google Scholar
  35. Centers for Disease Control and Prevention (2006) Diagnosis and management of tickborne rickettsial diseases: Rocky Mountain spotted fever, ehrlichiosis, and anaplasmosis—United States: a practical guide for physicians and other health-care and public health professionals. Morb Mortal Wkly Rep 55(RR-4):1–29Google Scholar
  36. Champman AS, Bakken JS, Folk SM (2006) Diagnosis and management of tickborne rickettsial diseases: Rocky Mountain spotted fever, ehrlichiosis, and anaplasmosis – United States: a practical guide for physicians and other health-care and public health professionals. MMWR Recomm REP 55:1–27Google Scholar
  37. Chaniotis B, Psarulaki A, Chaliotis G et al (1994) Transmission cycle of murine typhus in Greece. Ann Trop Med Parasitol 88(6):645–647PubMedGoogle Scholar
  38. Chaykul P, Panich V, Silpapojakul K (1988) Scrub typhus pneumonitis: an entity which is frequently missed. Q J Med 68(256):595–602Google Scholar
  39. Clark KL, Oliver JH, McKechnie DB et al (1998) Distribution, abundance, and seasonal activities of ticks collected from rodents and vegetation in South Carolina. J Vector Ecol 23:89–105PubMedGoogle Scholar
  40. Claverie JM, Ogata H (2003) The insertion of palindromic repeats in the evolution of proteins. Trends Biochem Sci 28:75–80PubMedCrossRefGoogle Scholar
  41. Clifton DR, Goss RA, Sahni S et al (1998) NF-kappa B-dependent inhibition of apoptosis is essential for host cell survival during Rickettsia rickettsii infection. Proc Natl Acad Sci U S A 95:4646–4651PubMedCentralPubMedCrossRefGoogle Scholar
  42. Cory J, Yunker CE, Ormsbee RA, Peacok M, Meibos H, Tallent G (1974) Plaque assay of rickettsiae in a mammalian cell line. Appl Microbiol 27:1157–1161PubMedCentralPubMedGoogle Scholar
  43. Cox HR (1941) Cultivation of rickettsiae of the Rocky Mountain spotted fever, Typhus and Q fever groups in the embryonic tissues of developing chicks. Science 94:399–403PubMedCrossRefGoogle Scholar
  44. Crocquet-Valdes PA, AZ-Montero CM, Feng HM, Li H, Barrett AD, Walker DH (2001) Immunization with a portion of rickettsial outer membrane protein A stimulates protective immunity against spotted fever rickettsiosis. Vaccine 20:979–988PubMedCrossRefGoogle Scholar
  45. Dalton MJ, Clarke MJ, Holman RC et al (1995) National surveillance for Rocky Mountain spotted fever, 1981–1992: epidemiologic summary and evaluation of risk factors for fatal outcome. Am J Trop Med Hyg 52:405–413PubMedGoogle Scholar
  46. de Lemos ER, Machado RD, Coura JR et al (1997) Epidemiological aspects of the Brazilian spotted fever: seasonal activity of ticks collected in an endemic area in Sao Paulo, Brazil. Rev Soc Bras Med Trop 30:181–185PubMedGoogle Scholar
  47. De Sousa R, Nobrega SD, Bacellar F, Torgal J (2003) Mediterranean spotted fever in Portugal—risk factors for fatal outcome in 105 hospitalized patients. Rickettsiology 990:285–294Google Scholar
  48. Demma LJ, Traeger MS, Nicholson WL et al (2005) Rocky Mountain spotted fever from an unexpected tick vector in Arizona. N Engl J Med 353:587–594PubMedCrossRefGoogle Scholar
  49. Devamanoharan PS, Santucci LA, Hong JE et al (1994) Infection of human endothelial cells by Rickettsia rickettsii causes a significant reduction in the levels of key enzymes involved in protection against oxidative injury. Infect Immun 62:2619–2621PubMedCentralPubMedGoogle Scholar
  50. Drancourt M, Mainardi JL, Brouqui P et al (1995) Bartonella (Rochalimaea) quintana endocarditis in three homeless men. N Engl J Med 332(7):419–423PubMedCrossRefGoogle Scholar
  51. Duffy PE, Le Buillouzic H, Gass RF et al (1990) Murine typhus identified as a major cause of febrile illness in a camp for displaced Khmers in Thailand. Am J Trop Med Hyg 43:520–526PubMedGoogle Scholar
  52. Dumler J, Walker D (2005) Order II. Rickettsiales. In: Boone DR, Garrity GM, Castenholz RW (eds) Bergey manual of systematic bacteriology, 2nd part C. Springer, East Lansing, pp 96–145Google Scholar
  53. Dumler JS, Barbet AF, Bekker CPJ, Dasch GA, Palmer GH, Ray SC, Rikihisa Y, Rurangirwa FR (2001) Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: Unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 51:2145–2165PubMedCrossRefGoogle Scholar
  54. Eads RB, Smith GC (1983) Seasonal activity and Colorado tick fever virus infection rates in Rocky Mountain wood ticks, Dermacentor andersoni (Acari: Ixodidae), in north-central Colorado, USA. J Med Entomol 20:49–55PubMedCrossRefGoogle Scholar
  55. Eremeeva M, Yu X, Raoult D (1994) Differentiation among spotted fever group Rickettsiae species by analysis of restriction fragment length polymorphism of PCR-amplified DNA. J Clin Microbiol 32:803–810PubMedCentralPubMedGoogle Scholar
  56. Eremeeva ME, Bosserman E, Zambrano M, Demma L, Dasch GA (2006) Molecular typing of novel Rickettsia rickettsii isolates from Arizona. Ann N Y Acad Sci 1078:573–577PubMedCrossRefGoogle Scholar
  57. Espejo-Arenas E, Font-Creus B, Bella-Cueto F, Segura-Porta F (1986) Climatic factors in resurgence of Mediterranean spotted fever [letter]. Lancet 1:1333PubMedCrossRefGoogle Scholar
  58. Fan MY, Walker DH, Yu SR et al (1987) Epidemiology and ecology of rickettsial diseases in the People’s Republic of China. Rev Infect Dis 9:823–840PubMedCrossRefGoogle Scholar
  59. Fournier PE, Raoult D (2007) Bacteriology, taxonomy, and phylogeny of Rickettsia. In: Raoult D, Parola P (eds) Rickettsial diseases. Informa Healthcare, London, pp 1–13CrossRefGoogle Scholar
  60. Fournier PE, Roux V, Caumes E, Donzel M, Raoult D (1998a) Outbreak of Rickettsia africae infections in participants of an adventure race in South Africa. Clin Infect Dis 27(2):316–323PubMedCrossRefGoogle Scholar
  61. Fournier PE, Roux V, Raoult D (1998b) Phylogenetic analysis of spotted fever group rickettsiae by study of the outer surface protein rOmpA. Int J Syst Bacteriol 48:839–849PubMedCrossRefGoogle Scholar
  62. Fournier PE, Zhu Y, Ogata H, Raoult D (2004) Use of highly variable intergenic spacer sequences for multispacer typing of Rickettsia conorii strains. J Clin Microbiol 42:757–5766Google Scholar
  63. Fournier PE, Belghazi L, Robert C, El Karkouri K, Richards AL, Greub G, Collyn F, Ogawa M, Portillo A, Oteo JA, Psaroulaki A, Bitam I, Raoult D (2008) Variations of plasmid content in Rickettsia felis. PLoS ONE 3:e2289Google Scholar
  64. Fournier PE, El Karkouri K, Leroy Q et al (2009) Analysis of the Rickettsia africae genome reveals that virulence acquisition in Rickettsia species may be explained by genome reduction. BMC Genomics 10:166–181PubMedCentralPubMedCrossRefGoogle Scholar
  65. Friedhoff KT (1990) Interaction between parasite and tick vector. Int J Parasitol 20:525–535PubMedCrossRefGoogle Scholar
  66. Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732PubMedCrossRefGoogle Scholar
  67. Georgiades K, Raoult D (2011) Genomes of the most dangerous epidemic bacteria have a virulent repertoire characterized by fewer genes but more toxin–antitoxin modules. PLoS One 6:e17962PubMedCentralPubMedCrossRefGoogle Scholar
  68. Georgiades K, Merhej V, Pontarotti P, Raoult D (2011) Gene gain and loss events in Rickettsia and Orientia species. Biol Direct 6:6PubMedCentralPubMedCrossRefGoogle Scholar
  69. Gillespie JJ, Beier MS, Rahman MS, Ammerman NC, Shallom JM, Purkayastha A, Sobral BS, Azad AF (2007) Plasmids and rickettsial evolution: insight from Rickettsia felis. PLoS One 3:1–17Google Scholar
  70. Gillespie JJ, Williams K, Shukla M, Snyder EE, Nordberg EK, Ceraul SM, Dharmanolla C, Rainey D, Soneja J, Shallom JM, Vishnubhat ND, Wattam R, Purkayastha A, Czar M, Crasta O, Setubal JC, Azad A, Sobral BS (2008) Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLoS One 3:2018CrossRefGoogle Scholar
  71. Gilmore RD Jr (1993) Comparison of the rompA gene repeat regions of rickettsiae reveals species-specific arrangements of individual repeating units. Gene 125:97–102PubMedCrossRefGoogle Scholar
  72. Giménez DF (1964) Staining rickettsiae in yolk-sac cultures. Stain Technol 39:135–140PubMedGoogle Scholar
  73. Goldberg MB, Theriot JA (1995) Shigella flexneri surface protein Icsa is sufficient to direct actin-based motility. Proc Natl Acad Sci U S A 92:6572–6576PubMedCentralPubMedCrossRefGoogle Scholar
  74. Gordon JC, Gordon SW, Peterson E et al (1984) Epidemiology of Rocky Mountain spotted fever in Ohio, 1981: serologic evaluation of canines and rickettsial isolation from ticks associated with human case exposure sites. Am J Trop Med Hyg 33:1026–1031PubMedGoogle Scholar
  75. Görtz HD, Schmidt HJ (2005) Genus Holospora. In: Garrity (ed) Bergey’s manual of systematic of bacteriology, vol 2, part C, 2nd edn. Springer, New York, pp 149–151CrossRefGoogle Scholar
  76. Gouin E, Gantelet H, Egile C, Lasa I, Ohayon H, Villiers V, Gounon P, Sansonett PJ, Cossart P (1999) A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. J Cell Sci 112:1697–1708PubMedGoogle Scholar
  77. Green CR, Fishbein D, Gleiberman I (1990) Brill-Zinsser: still with us. J Am Med Assoc 264(14):1811–1812CrossRefGoogle Scholar
  78. Guedes E, Leite RC, Prata MC et al (2005) Detection of Rickettsia rickettsii in the tick Amblyomma cajennense in a new Brazilian spotted fever-endemic area in the state of Minas Gerais. Mem Inst Oswaldo Cruz 100:841–845PubMedCrossRefGoogle Scholar
  79. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679PubMedCrossRefGoogle Scholar
  80. Harrell GT (1949) Rocky Mountain spotted fever. Medicine (Baltimore) 28:333–370CrossRefGoogle Scholar
  81. Hazard GW, Ganz RN, Nevin RW et al (1969) Rocky Mountain spotted fever in the eastern United States: thirteen cases from the Cape Cod area of Massachusetts. N Engl J Med 280:57–62PubMedCrossRefGoogle Scholar
  82. Heinzen RA, Hayes SF, Peacock MG, Hackstad T (1993) Directional actin polymerization associated with spotted fever group rickettsia infection of Vero cells. Infect Immun 61:1926–1935PubMedCentralPubMedGoogle Scholar
  83. Heinzen RA, Grieshaber SS, Van Kirk LS, Devin CJ (1999) Dynamics of actin-based movement by Rickettsia rickettsia in Vero cells. Infect Immun 67:4201–4207PubMedCentralPubMedGoogle Scholar
  84. Helmick CG, Bernard KW, D’Angelo LJ (1984) Rocky Mountain spotted fever: clinical, laboratory, and epidemiological features of 262 cases. J Infect Dis 150:480–488PubMedCrossRefGoogle Scholar
  85. Higgins JA, Radulovic S, Schriefer ME, Azad AF (1996) Rickettsia felis: a new species of pathogenic rickettsia isolated from cat fleas. J Clin Microbiol 34:671–674PubMedCentralPubMedGoogle Scholar
  86. Hong JE, Santucci LA, Tian X et al (1998) Superoxide dismutase-dependent, catalase-sensitive peroxides in human endothelial cells infected by Rickettsia rickettsii. Infect Immun 66:1293–1298PubMedCentralPubMedGoogle Scholar
  87. Hoogstraal H (1967) Ticks in relation to human diseases caused by Rickettsia species. Annu Rev Entomol 12:377–420PubMedCrossRefGoogle Scholar
  88. Houhamdi L, Fournier PE, Fang R, Lepidi H, Raoult D (2002) An experimental model of human body louse infection with Rickettsia prowazekii. J Infect Dis 186(11):1639–1646PubMedCrossRefGoogle Scholar
  89. Jackson LA, Spach DH (1996) Emergence of Bartonella quintana infection among homeless persons. Emerg Infect Dis 2(2):141–144PubMedCentralPubMedCrossRefGoogle Scholar
  90. Jensenius M, Fournier PE, Vene S et al (2003a) African tick bite fever in travelers to rural sub-Equatorial Africa. Clin Infect Dis 36(11):1411–1417PubMedCrossRefGoogle Scholar
  91. Jensenius M, Ueland T, Fournier PE et al (2003b) Systemic inflammatory responses in African tick-bite fever. J Infect Dis 187(8):1332–1336PubMedCrossRefGoogle Scholar
  92. Jensenius M, Fournier PE, Raoult D (2004) Rickettsioses and the international traveler. Clin Infect Dis 39(10):1493–1499PubMedCrossRefGoogle Scholar
  93. Jonhson JW, Pedersen CE (1978) Plaque formation by strains of spotted fever rickettsiae in monolayer cultures of various cell types. J Clin Microbiol 7:389–391Google Scholar
  94. Joshi SG, Francis CW, Silverman DJ et al (2003) Nuclear factor kappa B protects against host cell apoptosis during Rickettsia rickettsii infection by inhibiting activation of apical and effector caspases and maintaining mitochondrial integrity. Infect Immun 71:4127–4136PubMedCentralPubMedCrossRefGoogle Scholar
  95. Joshi SG, Francis CW, Silverman DJ et al (2004) NF-kappaB activation suppresses host cell apoptosis during Rickettsia rickettsii infection via regulatory effects on intracellular localization or levels of apoptogenic and anti-apoptotic proteins. FEMS Microbiol Lett 234:333–341PubMedGoogle Scholar
  96. Jensenius M, Hoel T, Raoult D, Fournier EP, Kjelshus H, Bruu, AL, Myvang B (2002) Seroepidemiology of Rickettsia africae infection in Norwegian travellers to rural Africa. Scand J Infect Dis 34:93–96Google Scholar
  97. Kaplowitz LG, Fischer JJ, Sparling PF (1981) Rocky Mountain spotted fever: a clinical dilemma. In: Remington JS, Swartz MN (eds) Current clinical topics in infectious diseases. McGraw-Hill, New York, pp 89–107Google Scholar
  98. Kelly PJ, Mason PR (1991) Transmission of a spotted fever group rickettsia by Amblyomma hebraeum (Acari: Ixodidae). J Med Entomol 28(5):598–600PubMedCrossRefGoogle Scholar
  99. Kelly PJ, Raoult D, Mason PR (1991) Isolation of spotted fever group rickettsias from triturated ticks using a modification of the centrifugation-shell vial technique. Trans R Soc Trop Med Hyg 85:397–398PubMedCrossRefGoogle Scholar
  100. Kelly PJ, Beati L, Matthewman LA, Mason PR, Dasch GA, Raoult D (1994) A new pathogenic spotted fever group rickettsia from Africa. J Trop Med Hyg 97(3):129–137PubMedGoogle Scholar
  101. Kirkland KB, Wilkinson WE, Sexton DJ (1995) Therapeutic delay and mortality in cases of Rocky Mountain spotted fever. Clin Infect Dis 20:1118–1121PubMedCrossRefGoogle Scholar
  102. Koehler JE, Quinn FD, Berger TG, Leboit PE, Tappero JW (1992) Isolation of Rochalimaea species from cutaneous and osseous lesions of bacillary angiomatosis. N Engl J Med 327(23):1625–1631PubMedCrossRefGoogle Scholar
  103. Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36:6688–6719PubMedCentralPubMedCrossRefGoogle Scholar
  104. La Scola B, Raoult D (1997) Laboratory diagnosis of rickettsiosis: current approaches to diagnosis of old and new rickettsial diseases. J Clin Microbiol 35:2715–2727PubMedCentralPubMedGoogle Scholar
  105. Lee JH, Park HS, Jang WJ, Koh SE, Kim JM, Shim SK, Park MY, Kim YW, Kim BJ, Kook YH, Park KH, Lee SH (2003) Differentiation of rickettsiae by groEL gene analysis. J Clin Microbiol 41:2952–2960. doi:10.1128/JCM.41.7.2952-2960.2003PubMedCentralPubMedCrossRefGoogle Scholar
  106. Lepidi H, Fournier PE, Raoult D (2006) Histologic features and immunodetection of African tick-bite fever eschar. Emerg Infect Dis 12(9):1332–1337PubMedCentralPubMedCrossRefGoogle Scholar
  107. Li H, Walker DH (1998) rOmpA is a critical protein for the adhesion of Rickettsia rickettsii to host cells. Microb Pathog 24:289–298PubMedCrossRefGoogle Scholar
  108. Lorandos N (1934) Cases of endemic typhus (Brill’s disease) in Athens. Med Athens 42:639–641Google Scholar
  109. Martin Farfan A, Juarez Fernandez C, Calbo-Torrecillas F, Porras Ballesteros J, Diaz Recio M, Bermundez Recio F (1985) Clinico-epidemiological study of 164 cases of boutonneuse fever. Rev Clin Esp 176:333–339PubMedGoogle Scholar
  110. Maurelli AT, Fernandez RE, Bloch CA, Rode CK, Fasano A (1998) “Black holes” and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc Natl Acad Sci U S A 95:3943–3948PubMedCentralPubMedCrossRefGoogle Scholar
  111. McCalla LP (1908) Direct transmission from man to man of the Rocky Mountain spotted (tick) fever. Med Sentinel 16:87–88Google Scholar
  112. McDade JE, Newhouse VF (1986) Natural history of Rickettsia rickettsii. Annu Rev Microbiol 40:287–309PubMedCrossRefGoogle Scholar
  113. McLeod MP, Qin X, Karpathy SE et al (2004) Complete genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae. J Bacteriol 186(17):5842–5855PubMedCentralPubMedCrossRefGoogle Scholar
  114. Miyamura S, Ohta T, Tamura A (1989) Comparison of in vitro susceptibilities of Rickettsia prowazekii, R. rickettsii, R. sibirica and R. tsutsugamushi to antimicrobial agents. Nihon Saikingaku Zasshi 44:717–721PubMedCrossRefGoogle Scholar
  115. Moliner C, Fournier PE, Raoult D (2010) Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. FEMS Microbiol Rev 34:281–294PubMedCrossRefGoogle Scholar
  116. Montagna M, Sassera D, Epis S, Bazzocchi C, Vannini C, Lo N, Sacchi L, Fukatsu T, Petroni G, Bandi C (2013) Candidatus Midichloriaceae” fam. Nov. (Rickettsiales), an ecologically widespread clade of intracellular Alphaproteobacteria. Appl Environ Microbiol 79:3241–3248PubMedCentralPubMedCrossRefGoogle Scholar
  117. Moran NA (1996) Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Nat Acad Sci U.S.A.93: 2873–2878Google Scholar
  118. Moron CG, Popov VL, Feng HM et al (2001) Identification of the target cells of Orientia tsutsugamushi in human cases of scrub typhus. Mod Pathol 14(8):752–759PubMedCrossRefGoogle Scholar
  119. Norval RAI (1983) Ticks of Zimbabwe. VII. The genus Amblyomma. Zimb Vet J 14:3–18Google Scholar
  120. Ogata H, Audic S, Barbe V, Artiguenave F, Fournier PE, Raoult D, Claverie JM (2000) Selfish DNA in protein-coding genes of Rickettsia. Science 290:347–350PubMedCrossRefGoogle Scholar
  121. Ogata H, Audic S, Renesto-Audiffren P, Fournier PE, Barbe V, Samson D, Roux V, Cossart P, Weissenbach J, Claverie JM, Raoult D (2001) Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science 293:2093–2098PubMedCrossRefGoogle Scholar
  122. Ogata H, Audic S, Abergel C, Fournier PE, Claverie JM (2002) Protein coding palindromes are a unique but recurrent feature in Rickettsia. Genome Res 12:808–816PubMedCentralPubMedCrossRefGoogle Scholar
  123. Ogata H, Renesto P, Audic S, Robert C, Blanc G, Fournier PE, Parinello H, Claverie JM, Raoult D (2005) The genome sequence of Rickettsia felis identifies the first putative conjugative plasmid in an obligate intracellular parasite. PLoS Biol 3:248CrossRefGoogle Scholar
  124. Ogata H, La Scola B, Audic S, Renesto P, Blanc G, Robert C, Fournier PE, Claverie JM, Raoult D (2006) Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens. PLoS Genet 2:76CrossRefGoogle Scholar
  125. Ong HA, Raffeto JF (1940) Rocky Mountain spotted fever: an analysis of eighteen cases in children. J Pediatr 40:647–653CrossRefGoogle Scholar
  126. Paddock CD, Sumner JW, Comer JA et al (2004) Rickettsia parkeri: a newly recognized cause of spotted fever rickettsiosis in the United States. Clin Infect Dis 38:805–811PubMedCrossRefGoogle Scholar
  127. Paddock CD, Fournier P-E, Sumner JW, Goddard J, Elshenawy Y, Metcalfe MG, Loftis AD, Varela-Stokes A (2010) Isolation of Rickettsia parkeri and Identification of a Novel Spotted Fever Group Rickettsia sp. from Gulf Coast Ticks (Amblyomma maculatum) in the United States. Appl Environ Microbiol 76:2689–2696PubMedCentralPubMedCrossRefGoogle Scholar
  128. Park JH, Hart MS (1946) The pathology of scrub typhus. Am J Clin Pathol 16:139–149PubMedGoogle Scholar
  129. Parker RR (1933) Certain phases of the problem of Rocky Mountain spotted fever: a summary. Arch Pathol 15:398–429Google Scholar
  130. Parola P, Raoult D (2001) Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis 32(6):897–928PubMedCrossRefGoogle Scholar
  131. Parola P, Inokuma H, Camicas JL, Brouqui P, Raoult D (2001) Detection and identification of spotted fever group Rickettsiae and Ehrlichiae in African Ticks. Emerg Infect Dis 7(6):1014–1017PubMedCentralPubMedCrossRefGoogle Scholar
  132. Parola P, Paddock CD, Raoult D (2005) Tick-Bourne Rickettsioses around the World: emerging diseases challenging old Concepts. Clin Microbiol Rev 18:719–756PubMedCentralPubMedCrossRefGoogle Scholar
  133. Patterson KD (1993) Typhus and its control in Russia, 1870–1940. Med Hist 37(4):361–381PubMedCentralPubMedCrossRefGoogle Scholar
  134. Paya CV, Wold AD, Smith TF (1987) Detection of cytomegalovirus infections in specimens other than urine by the shell vial assay and conventional tube cell cultures. J Clin Microbiol 25:755–757PubMedCentralPubMedGoogle Scholar
  135. Price WH (1954) The epidemiology of Rocky Mountain spotted fever. II. Studies on the biological survival mechanism of Rickettsia rickettsii. Am J Hyg 60:292–319PubMedGoogle Scholar
  136. Quinn PJ, Markey BK, Leonard FC, Hartigan P, Fanning S, Fitz Patrick ES (2011) Veterinary Microbiology and Microbial Disease, 2nd edn. Wiley-Blackwell, Oxford, pp 115–122, 928p. Section II. Introductory bacteriologyGoogle Scholar
  137. Raoult D, Parola P (2007) Rickettsial diseases. Informa Healthcare, New York/London, Pierre-Edouard Fournier and Didier Raoult, Section I: RICKETTSIA AND HUMAN RICKETTSIOSES. Bacteriology, Taxonomy, and Phylogeny of Rickettsia, P: 1-13. 2007. 399pCrossRefGoogle Scholar
  138. Raoult D, Roux V (1997) Rickettsioses as paradigms of new or emerging infectious diseases. Clin Microbiol Rev 10(4):694–719PubMedCentralPubMedGoogle Scholar
  139. Raoult D, Weiller PJ, Chagnon A, Chaudet H, Gallais H, Casanova P (1986) Mediterranean spotted fever: clinical, laboratory and epidemiological features of 199 cases. Am J Trop Med Hyg 35(4):845–850PubMedGoogle Scholar
  140. Raoult D, Tissot-Dupont H, Caraco P, Brouqui P, Drancourt M, Charrel C (1992) Mediterranean spotted fever in Marseille: descriptive epidemiology and the influence climatic factors. Eur J Epidemiol 8:192–197PubMedCrossRefGoogle Scholar
  141. Raoult D, Fournier PE, Fenollar F et al (2001) Rickettsia africae, a tick-borne pathogen in travelers to sub- Saharan Africa. N Engl J Med 344(20):1504–1510PubMedCrossRefGoogle Scholar
  142. Regnery RL, Spruill CL, Plikaytis BD (1991) Genotypic identification of Rickettsiae and estimation of intraspecies sequence divergence for portions of two Rickettsial genes. J Bacteriol 173:1576–1589PubMedCentralPubMedGoogle Scholar
  143. Reif KE (2009) Arthropod and vertebrate determinants for horizontal transmission of Rickettsia felis. 152p. Tesis. Doctor of Philosophy. Faculty of the Louisiana State University and Agricultural and Mechanical College. Rep 1983; 32:131–132Google Scholar
  144. Rogozin IB, Makarova KS, Natale DA, Spiridonov AN, Tatusov RL, Wolf YI, Yin J, Koonin EV (2002) Congruent evolution of different classes of non-coding DNA in prokaryotic genomes. Nucleic Acids Res 30:4264–4271PubMedCentralPubMedCrossRefGoogle Scholar
  145. Rolain JM, Maurin M, Vestris G, Raoult D (1998) In vitro susceptibilities of 27 rickettsiae to 13 antimicrobials. Antimicrob Agents Chemother 42(7):1537–1541PubMedCentralPubMedGoogle Scholar
  146. Rolain JM, Maurin M, Bryskier A, Raoult D (2000) In vitro activities of telithromycin (HMR 3647) against Rickettsia rickettsii, Rickettsia conorii, Rickettsia africae, Rickettsia typhi, Rickettsia prowazekii, Coxiella burnetii, Bartonella henselae, Bartonella quintana, Bartonella bacilliformis, and Ehrlichia chaffeensis. Antimicrob Agents Chemother 44(5):1391–1393PubMedCentralPubMedCrossRefGoogle Scholar
  147. Rolain JM, Jensenius M, Raoult D (2004) Rickettsial infections—a threat to travellers? Curr Opin Infect Dis 17(5):433–437PubMedCrossRefGoogle Scholar
  148. Roux V, Raoult D (2000) Phylogenetic analysis of members of the genus Rickettsia using the gene encoding the outer-membrane protein rOmpB (ompB). Int J Syst Evol Microbiol 50:1449–1455PubMedCrossRefGoogle Scholar
  149. Rydkina EB, Roux V, Gagua EM, Predtechenski AB, Tarasevich IV, Raoult D (1999) Bartonella quintana in body lice collected from homeless persons in Russia. Emerg Infect Dis 5(1):176–178PubMedCentralPubMedCrossRefGoogle Scholar
  150. Sayen JJ, Pond HS, Forrester JS et al (1946) Scrub typhus in Assam and Burma. Medicine (Baltimore) 25:155–214CrossRefGoogle Scholar
  151. Schmiela DH, Millera VL (1999) Bacterial phospholipases and pathogenesis. Microbes Infect 1:1103–1112CrossRefGoogle Scholar
  152. Schriefer ME, Azad AF (1994) Changing ecology of Rocky Mountain spotted fever. In: Sonenshine DE, Mather TN (eds) Ecological dynamics of tick-borne zoonoses. Oxford University Press, New York, pp 314–326Google Scholar
  153. Segura-Porta F, Font-Creus B, Espejo-Arenas E, Bella-Cueto F (1989) New trends in Mediterranean spotted fever. Eur J Epidemiol 5:438–443PubMedCrossRefGoogle Scholar
  154. Sekeyova Z, Roux V, Raoult D (2001) Phylogeny of Rickettsia spp. inferred by comparing sequences of ‘gene D’, which encodes an intracytoplasmic protein. Int J Syst Evol Microbiol 51:1353–1360PubMedCrossRefGoogle Scholar
  155. Settle EB, Pinkerton H, Corbett AJ (1945) A pathologic study of tsutsugamushi disease (scrub typhus) with notes on clinicopathologic correlation. J Lab Clin Med 30:639–661Google Scholar
  156. Sexton DJ (2005) In: Rose BD (ed) Murine typhus, WalthamGoogle Scholar
  157. Shaked Y, Samra Y, Maier MK, Rubinstein E (1989) Relapse of rickettsial Mediterranean spotted fever and murine typhus after treatment with chloramphenicol. J Infect 18:35–37PubMedCrossRefGoogle Scholar
  158. Smadel JE, Traub R, Frick LP et al (1950) Chloramphenicol (chloromycetin) in the chemoprophylaxis of scrub typhus (tsutsugamushi disease). III. Suppression of overt disease by prophylactic regimens of four-week duration. Am J Hyg 51(2):216–228Google Scholar
  159. Smoak BL, McClain JB, Brundage JF et al (1996) An outbreak of spotted fever rickettsiosis in U.S. Army troops deployed to Botswana. Emerg Infect Dis 2(3):217–221PubMedCentralPubMedCrossRefGoogle Scholar
  160. Sonenshine DE (1993) The biology of ticks. Oxford University Press, OxfordGoogle Scholar
  161. Spencer RR, Parker RR (1930) Infection by means other than tick bites. Hyg Lab Bull 154:60–63Google Scholar
  162. Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690Google Scholar
  163. Stothard DR, Clark JB, Fuerst PA (1994) Ancestral divergence of Rickettsia bellii from the spotted fever and typhus groups of rickettsia and antiquity of the genus Rickettsia. Int J Syst Bacteriol 44:798–804PubMedCrossRefGoogle Scholar
  164. Sun YC, Hinnebusch BJ, Darby C (2008) Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene. Proc Natl Acad Sci U S A 105:8097–8101PubMedCentralPubMedCrossRefGoogle Scholar
  165. Tamura A, Ohashi N, Urakami H, Miyamura S (1995) Classication of Rickettsia tsutsugamushi in a new genus, Orientia gen. nov., as Orientia tsutsugamushi comb. nov. Int J Syst Bacteriol 45:589–591PubMedCrossRefGoogle Scholar
  166. Teysseire N, Chiche-Portiche C, Raoult D (1992) Intracellular movements of Rickettsia conorii and R. typhi based on actin polymerization. Res Microbiol 143:821–829PubMedCrossRefGoogle Scholar
  167. Thrash JC, Boyd A, Huggett MJ, Grote J, Carini P, Yoder RJ, Robbertse B, Spatafora JW, Rappé MS, Giovannoni SJ (2011) Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Nature 13:1–9Google Scholar
  168. Timoney JF, Gillespie JA, Scott FW, Barlough JE. Hagan and Bruner’s microbiology and infectious diseases of domestic animals. Cornell University Press. 912p. 8th edition 1992. Section V: The Rickettsias. Cap 31. The Rickettsiaceae. 319–321Google Scholar
  169. Toutous-Trellu L, Peter O, Chavaz P, Saurat JH (2003) African tick bite fever: not a spotless rickettsiosis! J Am Acad Dermatol 48(Suppl 2):S18–S19PubMedCrossRefGoogle Scholar
  170. Treadwell TA, Holman RC, Clarke MJ et al (2000) Rocky Mountain spotted fever in the United States during 1993 through 1996. Am J Trop Med Hyg 63:21–26PubMedGoogle Scholar
  171. Tsay RW, Chang FY (2002) Acute respiratory distress syndrome in scrub typhus [letter]. Q J Med 95(2):126–128CrossRefGoogle Scholar
  172. Tzianabos T, Anderson BE, McDade JE (1989) Detection of Rickettsia rickettsia DNA in clinical specimens by using polymerase chain reaction technology. J Clin Microbiol 27:2866–2868PubMedCentralPubMedGoogle Scholar
  173. Van Belkum A, Scherer S, van Alphen L, Verbrugh H (1998) Shortsequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 62:275–293PubMedCentralPubMedGoogle Scholar
  174. Van Der Laan JR, Smit RB (1996) Back again: the clothes louse (Pediculus humanus var. corporis). Ned Tijdschr Geneeskd 140(38):1912–1915PubMedGoogle Scholar
  175. Vannini C, Petroni G, Verni F, Rosati G (2005) A bacterium belonging to the Rickettsiaceae family inhabits the cytoplasm of the marine ciliate Diophrys appendiculata (Ciliophora, Hypotrichia). Microb Ecol 49:434–442PubMedCrossRefGoogle Scholar
  176. Vitorino L, Chelo IM, Bacellar F, Zé-Zé L (2007) Rickettsiae phylogeny: a multigenic approach. Microbiology 153:160–168PubMedCrossRefGoogle Scholar
  177. Walker DH (2007) Rickettsiae and rickettsial infections: the current state of knowledge. Clin Infect Dis 45:39–44CrossRefGoogle Scholar
  178. Walsh DS, Myint KS, Kantipong P et al (2001) Orientia tsutsugamushi in peripheral white blood cells of patients with acute scrub typhus. Am J Trop Med Hyg 65(6):899–901PubMedGoogle Scholar
  179. Watt G, Chouriyagune C, Ruangweerayud R et al (1996) Scrub typhus infections poorly responsive to antibiotics in Northern Thailand. Lancet 348(9020):86–89PubMedCrossRefGoogle Scholar
  180. Weigl R (1924) Further studies on Rickettsia rochalimae. J Trop Med Hyg 27:14–15Google Scholar
  181. Weiss E, Moulder JW (1984) The rickettsias and chlamydias. In: Kreig NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 687–739Google Scholar
  182. Wells GM, Woodward TE, Fiset P et al (1978) Rocky Mountain spotted fever caused by blood transfusion. J Am Med Assoc 239:2763–2765CrossRefGoogle Scholar
  183. Wolbach SB (1916) The etiology of Rocky Mountain spotted fever: a preliminary report. J Med Res 34:121–128PubMedCentralPubMedGoogle Scholar
  184. Woodruff PW, Morrill JC, Burans JP et al (1988) A study of viral and rickettsial exposure and causes of fever in Juba, southern Sudan. Trans R Soc Trop Med Hyg 82:761–766PubMedCrossRefGoogle Scholar
  185. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Móra R. (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299Google Scholar
  186. Zavala-Castro JE, Small M, Keng C, Bouyer DH, Zavala-Velazquez J, Walker DH (2005) Transcription of the Rickettsia felis ompA gene in naturally infected fleas. Am J Trop Med Hyg 73:662–666PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Huarrisson Azevedo Santos
    • 1
  • Carlos Luiz Massard
    • 2
  1. 1.Departmento de Epidemiologia e Saúde Pública, Universidade Federal Rural do Rio de Janeiro (UFRRJ)SeropédicaBrazil
  2. 2.Departmento de Parasitologia, Universidade Federal Rural do Rio de Janeiro (UFRRJ)SeropédicaBrazil

Personalised recommendations