Skip to main content

The Family Hyphomicrobiaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

The family Hyphomicrobiaceae, first proposed in 1950, is affiliated with the Alphaproteobacteria. Currently (June 2012) it encompasses 18 genera: Hyphomicrobium [type genus], Ancalomicrobium, Angulomicrobium, Aquabacter, Blastochloris, Cucumibacter, Devosia, Dichotomicrobium, Filomicrobium, Maritalea, Methylorhabdus, Pedomicrobium, Pelagibacterium, Prosthecomicrobium, Rhodomicrobium, Rhodoplanes, Seliberia, and Vasilyevaea, with a total of 54 species. Morphologically and physiologically the family is highly diverse. Many representatives are characterized by the presence of prosthecae, and many species divide by budding. Many prosthecate species are oligocarbophilic, thriving only in the presence of low concentrations of suitable carbon sources and unable to grow in rich media. Most are aerobic chemoheterotrophs. A few representatives can grow anaerobically by denitrification or mixed-acid fermentation. Blastochloris, Rhodomicrobium, and Rhodoplanes are genera of facultative photoheterotrophs. Facultative chemolithotrophy with hydrogen and/or reduced sulfur compounds is also encountered. Representatives of the family can be found worldwide in soils, freshwater lakes and streams, and also in the marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Argall ME, Smith GD (1993) The use of trehalose-stabilized lyophilized methanol dehydrogenase from Hyphomicrobium X for the detection of methanol. Biochem Mol Biol Int 30:491–497

    CAS  PubMed  Google Scholar 

  • Aristovskaya TV (1961) Accumulation of iron by decomposing organo-mineral complexes of humid matter by microorganisms. Dokl Akad Nauk SSSR 136:954–957 (in Russian)

    CAS  Google Scholar 

  • Aristovskaya TV, Parinkina OM (1963) New soil microorganism Seliberia stellata nov. gen. n. sp. Bull Acad Sci USSR (Ser Biol) 218:49–56 (in Russian)

    Google Scholar 

  • Attwood MM, Harder W (1972) A rapid and specific enrichment procedure for Hyphomicrobium spp. Antonie van Leeuwenhoek 38:369–377

    Article  CAS  PubMed  Google Scholar 

  • Babudieri B (1950) Natura delle cosidette “S-formen” delle leptospire. Loro identificazione con Hyphomicrobium vulgare Stutzer e Hartleb. Studio di quest. Ultimo germe. R.C. 1st Supplement Sanita Roma 13:580–591

    CAS  Google Scholar 

  • Bauld J, Bigford R, Staley JT (1983) Prosthecomicrobium litoralum, a new species from marine habitats. Int J Syst Bacteriol 33:613–617

    Article  Google Scholar 

  • Bautista VV, Monsalud RG, Yokota A (2010) Devosia yakushimensis sp. nov., isolated from root nodules of Pueraria lobata (Willd.) Ohwi. Int J Syst Evol Microbiol 60:627–632

    Article  CAS  PubMed  Google Scholar 

  • Bianchi M (1989) Unusual bloom of star-like prosthecate bacteria and filaments as a consequence of grazing pressure. Microb Ecol 17:137–141

    Article  CAS  PubMed  Google Scholar 

  • Borodina E, Kelly DP, Rainey FA, Ward-Rainey NL, Wood AP (2000) Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter. Arch Microbiol 173:425–437

    Article  CAS  PubMed  Google Scholar 

  • Borodina E, Kelly DP, Schumann P, Rainey FA, Ward-Rainey NL, Wood AP (2002) Enzymes of dimethylsulfone metabolism and the phylogenetic characterization of the facultative methylotrophs Arthrobacter sulfonivorans sp. nov., Arthrobacter methylotrophus sp. nov., and Hyphomicrobium sulfonivorans sp. nov. Arch Microbiol 177:173–183

    Article  CAS  PubMed  Google Scholar 

  • Braun B, Richert I, Szewzyk U (2009) Detection of iron-depositing Pedomicrobium species in native biofilms from the Odertal National Park by a new, specific FISH probe. J Microbiol Meth 79:37–43

    Article  CAS  Google Scholar 

  • Brown PJB, Kysela DT, Buechlein A, Hemmerich C, Brun YV (2011) Genome sequences of eight morphologically diverse alphaproteobacteria. J Bacteriol 193:4567–4568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chakravarthy KS, Ramaprasad EVV, Shobba E, Sasikala C, Ramana CV (2010) Rhodoplanes piscinae sp. nov. isolated from pond waters. Int J Syst Evol Microbiol 62:2828–2834

    Google Scholar 

  • Cox TL, Sly LI (1997) Phylogenetic relationships and uncertain taxonomy of Pedomicrobium species. Int J Syst Bacteriol 47:377–380

    Article  CAS  PubMed  Google Scholar 

  • Diks RMM, Ottengraf SPP, van den Oever AHC (1994) The influence of NaCl on the degradation rate of dichloromethane by Hyphomicrobium sp. Biodegradation 5:129–141

    Article  CAS  Google Scholar 

  • Doronina NV, Trotsenko YA (2005) Genus XIII. Methylorhabdus Doronina, Braus-Stromeyer, Leisinger and Trotsenko 1996a, 362VP (Effective publication: Doronina, Braus-Stromeyer, Leisinger and Trotsenko 1995, 97). In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn., vol 2. The Proteobacteria, Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 525–527

    Chapter  Google Scholar 

  • Doronina NV, Trotsenko YA (2006) Metabolism of methanol and glucose in Angulomicrobium tetraedrale. Microbiology (Russia) 75:362–364

    CAS  Google Scholar 

  • Doronina NV, Braus-Stromeyer SA, Leisinger T, Trotsenko YA (1995) Isolation and characterization of a new facultatively methylotrophic bacterium: description of Methylorhabdus multivorans, gen. nov., sp. nov. Syst Appl Microbiol 18:92–98

    Article  CAS  Google Scholar 

  • Douglas HC (1957) Order III. Hyphomicrobiales Douglas, ordo nov. In: Breed RS, Murray EGD, Smith NR (eds) Bergey’s manual of determinative bacteriology, 7th edn. The Williams & Wilkins, Baltimore, p 276

    Google Scholar 

  • Drews G, Giesbrecht P (1966) Rhodopseudomonas viridis, nov. spec., ein neu isoliertes, obligat phototrophes Bakterium. Arch Mikrobiol 53:255–262

    Article  CAS  PubMed  Google Scholar 

  • Duchow E, Douglas HC (1949) Rhodomicrobium vannielii, a new photoheterotrophic bacterium. J Bacteriol 58:409–416

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fedorova YV, Volova TG (1988) Energetics of growth of the carboxydobacterium Seliberia carboxyhydrogena on hydrogen. Microbiology (Russia) 57:451–455

    Google Scholar 

  • Foster JW (1944) Micrological aspects of riboflavin. I. Introduction. II. Bacterial oxidation of riboflavin to lumichrome. J Bacteriol 47:27–41

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fritz I, Strömpl C, Abraham W-R (2004) Phylogenetic relationships of the genera Stella, Labrys and Angulomicrobium within the ‘Alphaproteobacteria’ and description of Anglomicrobium amanitiforme sp. nov. Int J Syst Evol Microbiol 54:651–657

    Article  CAS  PubMed  Google Scholar 

  • Fukui Y, Abe M, Kobayashi M, Ishihara K, Oikawa H, Yano Y, Satomi M (2012) Maritalea porphyrae sp. nov., isolated from a red alga (Porphyra yezoensis), and transfer of Zhangella mobilis to Maritalea mobilis comb. nov. Int J Syst Evol Microbiol 62:43–48

    Article  CAS  PubMed  Google Scholar 

  • Gälli P, Leisinger T (1985) Specialized bacterial strains for the removal of dichloromethane from industrial waste. Conserv Recycl 8:91–100

    Article  Google Scholar 

  • Garrity GM, Bell JA, Lilburn T (2005) Family VIII. Hyphomicrobiaceae Babudieri 1950, 589. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn., vol 2. The Proteobacteria, Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, p 476

    Google Scholar 

  • Gebers R (1981) Enrichment, isolation, and emended description of Pedomicrobium ferrugineum Aristovskaya and Pedomicrobium manganicum Aristovskaya. Int J Syst Bacteriol 31:302–316

    Article  Google Scholar 

  • Gebers R, Beese M (1988) Pedomicrobium americanum sp. nov. and Pedomicrobium australicum sp. nov. from aquatic habitats, Pedomicrobium gen. emend., and Pedomicrobium ferrugineum sp. emend. Int J Syst Bacteriol 38:303–315

    Article  Google Scholar 

  • Ghiorse WC, Hirsch P (1979) An ultrastructural study of iron and manganese deposition associated with extracellular polymers of Pedomicrobium-like budding bacteria. Arch Microbiol 123:213–226

    Article  CAS  Google Scholar 

  • Gliesche CG, Holm NC, Beese M, Neumann M, Völker H, Gebers R, Hirsch P (1988) New bacteriophages active on strains of Hyphomicrobium. J Gen Microbiol 134:1339–1353

    CAS  PubMed  Google Scholar 

  • Gliesche C, Fesefeldt A, Hirsch P (2005) Genus I. Hyphomicrobium Stutzer and Hartleb 1898, 76AL. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 476–494

    Chapter  Google Scholar 

  • Heising S, Schink B (1998) Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain. Microbiology UK 144:2263–2269

    Article  CAS  Google Scholar 

  • Hilbrig F, Jérôme V, Salzig M, Freitag R (2009) Strategy for the isolation of native dehydrogenases with potential for biosensor development from the organism Hyphomicrobium zavarzinii ZV580. J Chromatogr A 1216:3518–3525

    Article  CAS  PubMed  Google Scholar 

  • Hiraishi A (1997) Transfer of the bacteriochlorophyll b-containing phototrophic bacteria Rhodopseudomonas viridis and Rhodopseudomonas sulfoviridis to the genus Blastochloris gen. nov. Int J Syst Bacteriol 47:217–219

    Article  CAS  PubMed  Google Scholar 

  • Hiraishi A, Imhoff JF (2005) Genus XVII. Rhodoplanes Hiraishi and Ueda 1994b, 671VP. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 545–549

    Chapter  Google Scholar 

  • Hiraishi A, Ueda Y (1994) Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonas rosea as Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov. Int J Syst Bacteriol 44:665–673

    Article  Google Scholar 

  • Hirsch P (2005) Genus IX. Dichotomicrobium Hirsch and Hoffmann 1989b, 495VP (Effective publication: Hirsch and Hoffmann 1989a, 300). In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 513–518

    Chapter  Google Scholar 

  • Hirsch P, Conti SF (1964) Biology of budding bacteria. I. Enrichment, isolation and morphology of Hyphomicrobium spp. Arch Mikrobiol 48:339–357

    Article  CAS  PubMed  Google Scholar 

  • Hirsch P, Gebers R (2005) Genus XIV. Pedomicrobium Aristovskaya 1961, 957AL emend. Gebers and Beese 1988, 305. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 527–538

    Chapter  Google Scholar 

  • Hirsch P, Hoffmann B (1989) Dichotomicrobium thermohalophilum, gen. nov., spec. nov., budding prosthecate bacteria from the Solar Lake (Sinai) and some related strains. Syst Appl Microbiol 11:291–301

    Article  Google Scholar 

  • Holm NC, Gliesche CG, Hirsch P (1996) Diversity and structure of Hyphomicrobium populations in a sewage treatment plant and its adjacent receiving lake. Appl Environ Microbiol 62:522–528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huo Y-Y, Cheng H, Han X-F, Jiang X-W, Sun C, Zhang X-Q, Zhu X-F, Liu Y-F, Li P-F, Ni P-X, Wu M (2012) Complete genome sequence of Pelagibacterium halotolerans B2T. J Bacteriol 194:197–198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hwang CY, Cho BC (2008) Cucumibacter marinus gen. nov., sp. nov., a marine bacterium in the family Hyphomicrobiaceae. Int J Syst Evol Microbiol 58:1591–1597

    Article  CAS  PubMed  Google Scholar 

  • Hwang CY, Cho KD, Yih W, Cho BC (2009) Maritalea myrionectae gen. nov., sp. nov., isolated from a culture of the marine ciliate Myrionecta rubra. Int J Syst Evol Microbiol 59:609–614

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF (2005a) Genus VII. Blastochloris Hiraishi 1997, 218VP. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 506–509

    Chapter  Google Scholar 

  • Imhoff JF (2005b) Genus XVI. Rhodomicrobium Duchow and Douglas 1949, 415AL emend. Imhoff, Trüper and Pfennig 1984, 314. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 543–545

    Chapter  Google Scholar 

  • Imhoff JF, Trüper HG, Pfennig N (1984) Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria”. Int J Syst Bacteriol 34:340–343

    Article  Google Scholar 

  • Irgens RL, Kersters K, Segers P, Gillis M, Staley JT (1991) Aquabacter spiritensis, gen. nov., sp. nov. an aerobic, gas-vacuolate aquatic bacterium. Arch Microbiol 155:137–142

    Article  Google Scholar 

  • Ivanova EP, Flavier S, Christen R (2004) Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 54:1773–1788

    Article  CAS  PubMed  Google Scholar 

  • Izumi Y, Takizawa M, Tani Y, Yamada H (1982) An obligate methylotrophic Hyphomicrobium strain, identification, growth characteristics and cell composition. J Ferment Technol 60:371–375

    CAS  Google Scholar 

  • Izumi Y, Yoshida T, Miyazaki SS, Mitsunaga T, Ohshiro T, Shimao M, Miyata A, Tanabe T (1993) L-Serine production by a methylotroph and its related enzymes. Appl Microbiol Biotechnol 39:427–432

    Article  CAS  PubMed  Google Scholar 

  • Janssen PH, Harfoot CG (1991) Rhodopseudomonas rosea sp. nov., a new purple nonsulfur bacterium. Int J Syst Bacteriol 41:26–30

    Article  Google Scholar 

  • Jenkins C, Rainey FA, Ward NL, Staley JT (2005a) Genus XV. Prosthecomicrobium Staley 1968, 1940AL emend. Staley 1984, 304. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 538–543

    Chapter  Google Scholar 

  • Jenkins C, Stanley PM, Staley JT (2005b) Genus II. Ancalomicrobium Staley 1968, 1940AL. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 494–497

    Chapter  Google Scholar 

  • Jérôme V, Hermann M, Hilbrig F, Freitag R (2007) Development of a fed-batch process for the production of a dye-linked formaldehyde dehydrogenase in Hyphomicrobium zavarzinii ZV 580. Appl Microbiol Biotechnol 77:779–788

    Article  PubMed  CAS  Google Scholar 

  • Johnson RM, Weisrock WP (1969) Hyphomicrobium indicum sp. nov. (Hyphomicrobiaceae Douglas). Int J Syst Bacteriol 19:295–307

    Article  Google Scholar 

  • Kaplan RL, Yelton DB, Gerencser VF (1976) Biochemical and biophysical properties of Hyphomicrobium bacteriophage HyΦ30. J Virol 19:899–902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keppen OI, Gorlenko VM (1975) Characteristic of a new species of purple budding bacteria containing bacteriochlorophyll b. Mikrobiologiya 44:258–264 (in Russian)

    CAS  Google Scholar 

  • Kizaki N, Yasohara Y, Nagashima N, Hasegawa J (2008) Characterization of novel alcohol dehydrogenase of Devosia riboflavina involved in stereoselective reduction of 3-pyrrolidinone derivatives. J Mol Catal B Enzym 51:73–80

    Article  CAS  Google Scholar 

  • Kohler-Staub D, Frank S, Leisinger T (1995) Dichloromethane as the sole carbon source for Hyphomicrobium sp. strain DM2 under denitrification conditions. Biodegradation 6:229–235

    Article  CAS  Google Scholar 

  • Kölbel-Boelke J, Gemers R, Hirsch P (1985) Genome size determinations for 33 strains of budding bacteria. Int J Syst Bacteriol 35:270–273

    Article  Google Scholar 

  • Kompantseva EI, Panteleeva EE, Lysenko AM, Imhoff JF, Thiemann B, Mityushina LL (1998) Taxonomic analysis of a group of strains of bacteriochlorophyll b-containing purple bacteria of the genus Blastochloris. Microbiology (Russia) 67:323–329

    CAS  Google Scholar 

  • Kompantseva EI, Imhoff JF, Thiemann B, Panteleeva EE, Akimov VN (2007) Comparative study of the fatty acid composition of some groups of purple nonsulfur bacteria. Microbiology (Russia) 76:541–551

    CAS  Google Scholar 

  • Kryukov VR, Chernykh NA, Lysenko AM (1990) Seliberia hydrogenophila sp. nov., a new species of aerobic hydrogen bacteria isolated from sea water samples. Microbiology (Russia) 59:309–313

    Google Scholar 

  • Kumar M, Verma M, Lal R (2008) Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. Int J Syst Evol Microbiol 58:861–865

    Article  CAS  PubMed  Google Scholar 

  • Kuykendall LD (2005) Order VI. Rhizobiales ord. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, p 324

    Google Scholar 

  • Lakshmi KVNS, Sasikala C, Ramana CV (2009) Rhodoplanes pokkaliisoli sp. nov., a phototrophic alphaproteobacterium isolated from a waterlogged brackish paddy soil. Int J Syst Evol Microbiol 59:2153–2157

    Article  CAS  PubMed  Google Scholar 

  • Large PJ, McDougall H (1975) An enzymic method for the microestimation of trimethylamine. Anal Biochem 64:304–310

    Article  CAS  PubMed  Google Scholar 

  • Larsen EI, Sly LI, McEwan AG (1999) Manganese(II) adsorption and oxidation by whole cells and a membrane fraction of Pedomicrobium sp. ACM 3067. Arch Microbiol 171:257–264

    Article  CAS  Google Scholar 

  • Lee SD (2007) Devosia subaequoris sp. nov., isolated from beach sediment. Int J Syst Evol Microbiol 57:2212–2215

    Article  CAS  PubMed  Google Scholar 

  • Lee K-B, Liu C-T, Anzai Y, Kim H, Aono T, Oyaizu H (2005) The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythtobacteraceae fam. nov. Int J Syst Evol Microbiol 55:1907–1919

    Article  CAS  PubMed  Google Scholar 

  • Leifson E (1964) Hyphomicrobium neptunium sp. n. Antonie van Leeuwenhoek 30:249–256

    Article  CAS  PubMed  Google Scholar 

  • Liessens J, Germonpré R, Kersters I, Beernaert S, Verstraete W (1993) Removing nitrate with a methylotrophic fluidized bed: microbial water quality. J Am Water Works Assoc 85:155–161

    CAS  Google Scholar 

  • McAnnula C, Woodall CA, McDonald IR, Studer A, Vuilleumier S, Leisinger T, Murrell JC (2001) Chloromethane utilization gene cluster from Hyphomicrobium chloromethanicum strain CM2T and development of functional gene probes to detect halomethane-degrading bacteria. Appl Environ Microbiol 67:307–316

    Article  Google Scholar 

  • McDonald IR, Doronina NV, Trotsenko YA, McAnulla C, Murrell JC (2001) Hyphomicrobium chloromethanicum sp. nov. and Methylobacterium chloromethanicum sp. nov., chloromethane-utilizing bacteria isolated from a polluted environment. Int J Syst Evol Microbiol 51:119–122

    Article  CAS  PubMed  Google Scholar 

  • Moore RL, Weiner RM, Gebers R (1984) Genus Hyphomonas Pongratz 1957 nom. rev. emend., Hyphomonas polymorpha Pongratz 1957 nom. rev. emend., and Hyphomonas neptunium (Leifson 1964) comb. nov. emend. (Hyphomicrobium neptunium). Int J Syst Bacteriol 34:71–73

    Article  Google Scholar 

  • Murakami-Nitta T, Kirimura K, Kino K (2003) Degradation of dimethyl sulfoxide by the immobilized cells of Hyphomicrobium denitrificans WU-K217. Biochem Eng J 15:199–204

    Article  CAS  Google Scholar 

  • Nakagawa Y, Sakane T, Yokota A (1996) Transfer of “Pseudomonas riboflavina” (Foster 1944), a gram-negative, motile rod with long-chain 3-hydroxy fatty acids, to Devosia riboflavina gen. nov., sp. nov., nom. rev. Int J Syst Bacteriol 46:16–22

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa Y, Sakane T, Yokota A (2005) Genus VIII. Devosia Nakagawa, Sakane and Yokota 1996, 20VP. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 509–512

    Chapter  Google Scholar 

  • Oertli GE, Jenkins C, Ward N, Rainey F, Stackebrandt E, Staley JT (2006) The genera Prosthecomicrobium and Ancalomicrobium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 5. Springer, New York, pp 65–71

    Google Scholar 

  • Okamura K, Hisada T, Hiraishi A (2007) Characterization of the thermotolerant purple nonsulfur bacteria isolated from hot-spring Chloroflexus mats and the reclassification of “Rhodopseudomonas cryptolactis” Stadtwald-Demchick et al. 1990 as Rhodopslanes cryptolactis nom. rev., comb. nov. J Gen Appl Microbiol 53:357–361

    Article  CAS  PubMed  Google Scholar 

  • Okamura K, Kanbe T, Hiraishi A (2009) Rhodoplanes serenus sp. nov., a purple non-sulfur bacterium isolated from pond water. Int J Syst Evol Microbiol 59:531–535

    Article  CAS  PubMed  Google Scholar 

  • Poindexter JS (2006) Dimorphic prosthecate bacteria: the genera Caulobacter, Asticcacaulis, Hyphomicrobium, Pedomicrobium, Hyphomonas and Thiodendron. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 5. Springer, New York, pp 72–90

    Google Scholar 

  • Pol A, Op den Camp HJM, Mees SGM, Kersten MASH, van der Drift C (1994) Isolation of a dimethylsulfide-utilizing Hyphomicrobium species and its application in biofiltration of polluted air. Biodegradation 5:105–112

    Article  CAS  PubMed  Google Scholar 

  • Potts LE, Dow CS, Avery RJ (1980) The genome of Rhodomicrobium vannielii, a polymorphic prosthecate bacterium. J Gen Microbiol 117:501–507

    CAS  Google Scholar 

  • Preissner WC, Maier S, Völker H, Hirsch P (1988) Isolation and partial characterization of a bacteriophage active on Hyphomicrobium sp. WI-926. Can J Microbiol 34:101–106

    Article  CAS  PubMed  Google Scholar 

  • Rainey FA, Wiegel J (1996) 16S ribosomal DNA sequence analysis confirms the close relationship between the genera Xanthobacter, Azorhizobium, and Aquabacter and reveals a lack of phylogenetic coherence between Xanthobacter species. Int J Syst Bacteriol 46:607–610

    Article  CAS  Google Scholar 

  • Rainey FA, Ward-Rainey N, Gliesche CG, Stackebrandt E (1998) Phylogenetic analysis and intrageneric structure of the genus Hyphomicrobium and the related genus Filomicrobium. Int J Syst Bacteriol 48:635–639

    Article  PubMed  Google Scholar 

  • Ramana VV, Kapoor S, Shobha E, Ramprasad EVV, Sasikala C, Ramana CV (2011) Blastochloris gulmargensis sp. nov., isolated from an epilithic phototrophic biofilm. Int J Syst Evol Microbiol 61:1811–1816

    Article  CAS  PubMed  Google Scholar 

  • Rivas R, Velázquez E, Willems A, Vizcaíno N, Subba-Rao NS, Mateos PF, Gillis M, Dazzo FB, Martínez-Molina E (2002) A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) Druce. Appl Environ Microbiol 68:5217–5222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rivas R, Willems A, Subba-Rao NS, Mateos PF, Dazzo FB, Kroppenstedt RM, Martínez-Molina E, Gillis M, Velázquez E (2003) Description of Devosia neptuniae sp. nov. that nodulates and fxes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26:47–53

    Article  CAS  PubMed  Google Scholar 

  • Ryu SH, Chung BS, Le NT, Jang HH, Yun P-Y, Park W, Jeon CO (2008) Devosia geojensis sp. nov., isolated from diesel-contaminated soil in Korea. Int J Syst Evol Microbiol 58:633–636

    Article  CAS  PubMed  Google Scholar 

  • Schär H-P, Ghisalba O (1985) Hyphomicrobium bacterial electrode for determination of monomethyl sulfate. Biotechnol Bioeng 27:897–901

    Article  PubMed  Google Scholar 

  • Schlesner H (1987) Filomicrobium fusiforme gen. nov., sp. nov., a slender budding, hyphal bacterium from brackish water. Syst Appl Microbiol 10:63–67

    Article  Google Scholar 

  • Schlesner H (2005) Filomicrobium Schlesner 1988, 220VP (Effective publication: Schlesner 1987, 65). In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 518–520

    Chapter  Google Scholar 

  • Schlesner H, Kath T, Fischer A, Stackebrandt E (1989) Studies on the phylogenetic position of Prosthecomicrobium pneumaticum, Prosthecomicrobium enhydrum, Ancalomicrobium adetum, and various Prosthecomicrobium-like bacteria. Syst Appl Microbiol 12:150–155

    Article  CAS  Google Scholar 

  • Schmidt J, Kelly SV (2005) Genus XVIII. Seliberia Aristovskaya and Parinkina 1963, 56AL. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 549–554

    Chapter  Google Scholar 

  • Schmidt JM, Swafford JR (2006) The genus Seliberia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 5. Springer, New York, pp 585–589

    Google Scholar 

  • Semenov A, Staley JT (1992) Ecology of polyprosthecate bacteria. In: Marshall, KC (ed) Advances in microbial ecology, vol 12. Plenum Publishing Company, New York, pp 339–382

    Google Scholar 

  • Sittig M, Hirsch P (1992) Chemotaxonomic investigation of budding and/or hyphal bacteria. Syst Appl Microbiol 15:209–222

    Article  CAS  Google Scholar 

  • Sittig M, Schlessner H (1993) Chemotaxonomic investigation of various prosthecate and/or budding bacteria. Syst Appl Microbiol 16:92–103

    Article  CAS  Google Scholar 

  • Sly LI, Arunpairojana V (1987) Isolation of manganese-oxidizing Pedomicrobium cultures from water by micromanipulation. J Microbiol Meth 6:177–182

    Article  Google Scholar 

  • Stadtwald-Demchick R, Turner FR, Gest H (1990) Rhodopseudomonas cryptolactis sp. nov., a new thermotolerant species of budding phototrophic bacteria. FEMS Microbiol Lett 71:117–122

    Article  CAS  Google Scholar 

  • Staley JT (1968) Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 95:1921–1942

    CAS  PubMed Central  PubMed  Google Scholar 

  • Staley JT (1984) Prosthecomicrobium hirschii, a new species in a redefined genus. Int J Syst Bacteriol 34:304–308

    Article  Google Scholar 

  • Staley JT (2005) Genus V. Aquabacter Irgens, Kersters, Segers, Gillis and Staley 1993, 864VP (Effective publication: Irgens, Kersters, Segers, Gillis and Staley 1991, 141). In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 504–505

    Chapter  Google Scholar 

  • Stanley PM, Ordal EJ, Staley JT (1979) High numbers of prosthecate bacteria in pulp-mill waste aeration lagoons. Appl Environ Microbiol 37:1007–1011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stutzer A, Hartleb R (1899) Untersuchungen über die bei der Bildung von Salpeter beobachteten Mikroorganismen. Mitteilungen des Landwirtschaftlichen Institutes der Kaiserlichen Universität Breslau 1:75–100

    Google Scholar 

  • Suylen GMH, Kuenen JG (1986) Chemostat enrichment and isolation of Hyphomicrobium EG, a dimethyl-sulphide oxidizing methylotroph and reevaluation of Thiobacillus MS1. Antonie van Leeuwenhoek 52:281–293

    Article  CAS  PubMed  Google Scholar 

  • Takada N (1975) A new species of Hyphomicrobium. In: Terui G (ed) Proceedings of the International Symposium on Microbial Growth on C1 Compounds, The Society of Fermentation Technology. Suita, Japan, pp 29–33

    Google Scholar 

  • Uebayasi M, Tomizuka N, Kamibayashi A, Tonomura K (1981) Autotrophic growth of a Hyphomicrobium sp. and its hydrogenase activity. Agric Biol Chem 45:1783–1790

    Article  CAS  Google Scholar 

  • Urakami T, Komagata K (1986) Occurrence of isoprenoid compounds in Gram-negative methanol-, methane-, and methylamine-utilizing bacteria. J Gen Appl Microbiol 32:317–341

    Article  CAS  Google Scholar 

  • Urakami T, Sasaki J, Suzuki K-I, Komagata K (1995) Characterization and description of Hyphomicrobium denitrificans sp. nov. Int J Syst Bacteriol 45:528–532

    Article  Google Scholar 

  • Vannini C, Rosati G, Verni F, Petroni G (2004) Identification of the bacterial endosymbionts of the marine ciliate Euplotes magnicirratus (Ciliophora, Hypotrichia) and proposal of ‘Candidatus Devosia euplotis’. Int J Syst Evol Microbiol 54:1151–1156

    Article  CAS  PubMed  Google Scholar 

  • Vanparys B, Heylen K, Lebbe L, De Vos P (2005) Devosia limi sp. nov., isolated from a nitrifying inoculum. Int J Syst Evol Microbiol 55:1997–2000

    Article  CAS  PubMed  Google Scholar 

  • Vasil’eva LV, Lafitskaya TN, Namsaraev BB (1979) Angulomicrobium tetraedrale, a new genus of budding bacteria with radial cell symmetry. Microbiology (Russia) 48:843–849

    Google Scholar 

  • Vasil’eva LV, Semenov AM, Giniyatullina AI (1991) A new species of soil bacteria of the genus Prosthecomicrobium. Microbiology (Russia) 60:243–250

    Google Scholar 

  • Vasilyeva LV (2005) Genus IV. Angulomicrobium Vasilyeva, Lafitskaya and Namsaraev 1986, 354VP (Effective publication: Vasilyeva, Lafitskaya and Namsaraev 1979, 1037). In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 501–504

    Chapter  Google Scholar 

  • Verkhovtseva NV, Glebova IN, Morozov VV (1988) Accumulation of iron by Seliberia stellata under various culture conditions. Microbiology (Russia) 57:20–24

    Google Scholar 

  • Verma M, Kumar M, Dadhwal M, Kaur J, Lal R (2009) Devosia albogilva sp. nov. and Devosia crocina sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 59:795–799

    Article  CAS  PubMed  Google Scholar 

  • Voelz H, Gerencser VF, Kaplan R (1971) Bacteriophage replication in Hyphomicrobium. Virology 44:622–630

    Article  CAS  PubMed  Google Scholar 

  • Vuilleumier S, Nadalig T, Farhan Ul Haque M, Magdelenat G, Lajus A, Roselli S, Muller EEL, Gruffaz C, Barbe V, Médigue C, Bringel F (2011) Complete genome sequence of the chloromethane-degrading Hyphomicrobium sp. strain MC1. J Bacteriol 193:5035–5036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang L, Wen Y, Guo X, Wang G, Li S, Jiang J (2010) Degradation of methamidophos by Hyphomicrobium species MAP-1 and the biochemical degradation pathway. Biodegradation 21:513–523

    Article  CAS  PubMed  Google Scholar 

  • Whittenbury R, Dow CS (1977) Morphogenesis and differentiation in Rhodomicrobium vannielii and other budding and prosthecate bacteria. Bacteriol Rev 41:754–808

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wong K, Gill TA (1987) Enzymatic determination of trimethylamine and its relationship to fish quality. J Food Sci 52:1–3

    Article  CAS  Google Scholar 

  • Wright GE, Madigan MT (1991) Photocatabolism of aromatic compounds by the phototrophic purple bacterium Rhodomicrobium vannielii. Appl Environ Microbiol 57:2069–2073

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu X-L, Yu S-L, Gu J, Zhao G-F, Chi C-Q (2009) Filomicrobium insigne sp. nov., isolated from an oil-polluted saline soil. Int J Syst Evol Microbiol 59:300–305

    Article  CAS  PubMed  Google Scholar 

  • Xie C-H, Yokota A (2004) Transfer of Hyphomicrobium indicum to the genus Photobacterium as Photobacterium indicum comb. nov. Int J Syst Evol Microbiol 54:2113–2116

    Article  CAS  PubMed  Google Scholar 

  • Xu H-Y, Chen L-P, Fu S-Z, Fan H-X, Zhou Y-G, Liu S-J, Liu Z-P (2009) Zhangella mobilis gen. nov., sp. nov., a new member of the family Hyphomicrobiaceae isolated from coastal seawater. Int J Syst Evol Microbiol 59:2297–2301

    Article  CAS  PubMed  Google Scholar 

  • Xu X-W, Huo Y-Y, Wang C-S, Oren A, Cui H-L, Vedler E, Wu M (2011) Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae. Int J Syst Evol Microbiol 61:1817–1822

    Article  CAS  PubMed  Google Scholar 

  • Yamada H, Miyazaki SS, Izumi Y (1987) L-Serine production by a glycine-resistant mutant of methylotrophic Hyphomicrobium methylovorum. Agric Biol Chem 50:17–21

    Article  Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequences. Syst Appl Microbiol 33:291–299

    Article  CAS  PubMed  Google Scholar 

  • Yee B, Oertli GE, Fuerst JA, Staley JT (2010) Reclassification of the polyphyletic genus Prosthecomicrobium to form two novel genera, Vasilyevaea gen. nov. and Bauldia gen. nov. with four new combinations: Vasilyevaea enhydra comb. nov., Vasilyevaea mishustinii comb. nov., Bauldia consociata comb. nov. and Bauldia litoralis comb. nov. Int J Syst Evol Microbiol 60:2960–2966

    Article  PubMed Central  PubMed  Google Scholar 

  • Yelton DB, Gerencser VF, Voelz HG (1979) Isolation and preliminary characterization of three bacteriophages which adsorb specifically to the developing daughter cells of Hyphomicrobium. J Gen Virol 43:29–38

    Article  CAS  Google Scholar 

  • Yoo S-H, Weon H-Y, Kim B-Y, Hong S-B, Kwon S-W, Cho Y-H, Go S-J, Stackebrandt E (2006) Devosia soli sp. nov., isolated from greenhouse soil in Korea. Int J Syst Evol Microbiol 56:2689–2692

    Article  CAS  PubMed  Google Scholar 

  • Yoon J-H, Kang S-J, Park S, Oh T-K (2007) Devosia insulae sp. nov., isolated from soil, and emended description of the genus Devosia. Int J Syst Evol Microbiol 57:1310–1314

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Mitsunaga T, Yamada H, Izumi Y (1993) Enzymatic assay for L-serine and glyoxylate involving the enzymes in the serine pathway of a methylotroph. Anal Biochem 208:296–299

    Article  CAS  PubMed  Google Scholar 

  • Zengler K, Heider J, Rosselló-Mora R, Widdel F (1999) Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Arch Microbiol 172:204–212

    Article  CAS  PubMed  Google Scholar 

  • Zhang LJ, Wang GQ, Yu HL, Wang J, Wang SW, Jia Y, Yu YY, Xu JG (2011) First report of human infection by Rhodoplanes sp., Alphaproteobacteria in China. Asian Pac J Trop Med 4:248–250

    Article  CAS  PubMed  Google Scholar 

  • Zhang D-C, Redzic M, Liu H-C, Zhou Y-G, Schinner F, Margesin R (2012) Devosia psychrophila sp. nov. and Devosia glacialis sp. nov., from alpine glacier cryoconite, and an emended description of the genus Devosia. Int J Syst Evol Microbiol 62:710–715

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Oren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Oren, A., Xu, XW. (2014). The Family Hyphomicrobiaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_257

Download citation

Publish with us

Policies and ethics