Abstract
The Methylobacteriaceae comprise a large family of Alphaproteobacteria within the Order Rhizobiales and currently contains three genera, Methylobacterium, Microvirga, and Meganema. The largest genus currently contains 44 validated species of Methylobacterium, most of which are facultative methylotrophs able to grow on methanol and other one-carbon compounds as sources of energy and carbon. Most are pink-pigmented, exhibit common fatty acid profiles, and contain ubiquinone Q-10. The eight species of Microvirga and the single species of Meganema are not methylotrophic. The phylogenetic and phenotypic properties of Meganema indicate that it is wrongly placed in this family. Methylobacterium species are ubiquitous in the natural environment, both as free-living organisms in soil and water, but also on the phylloplane of plants, and in the leaf, stem, and root tissues of plants: Some induce plant leaf and root nodule formation, and can promote plant growth by production of auxins. Some species are opportunistic human pathogens; others have been found in insect tissues. Some are important for their role in the degradation of pollutants, and they may also cause commercial problems such as the fouling of aircraft fuels. Microvirga species occur in diverse habitats as free-living species, and others are colonists in plant root nodules. The filamentous Meganema has only been recovered as an organism involved in the fouling and blocking of water filtration systems. The genomes of several Methylobacterium species have been sequenced, and they show considerable interstrain homology. Significant genome plasticity is indicated by the large number of insertion elements in some genomes, and some methylotrophic functions seem to have been acquired by horizontal gene transfer.
Keywords
- Genomic Island
- Methanol Dehydrogenase
- Close Phylogenetic Relative
- IpdC Gene
- Serine Cycle
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Abanda-Nkpwatt D, Müsch M, Tschiersch J, Boettner M, Schwab W (2006) Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exp Bot 57:4025–4032
Anandham R, Indiragandhi P, Madhaiyan M, Kim K, Yim W, Saravanan VS, Chung J, Sa T (2007) Thiosulfate oxidation and mixotrophic growth of Methylobacterium oryzae. Can J Microbiol 53:869–876
Anandham R, Indiragandhi P, Madhaiyan M, Ryu KY, Jee HJ, Sa T (2008) Chemolithotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (soxB) in rhizobia isolated from crop plants. Res Microbiol 159:579–589
Anandham R, Indiragandhi P, Madhaiyan M, Chung J, Ryu KY, Jee HJ, Sa T (2009) Thiosulfate oxidation and mixotrophic growth of Methylobacterium goesingense and Methylobacterium fujisawaense. J Microbiol Biotechnol 19:17–22
Anderson M, Lambrinos J, Schroll E (2010) The potential value of mosses for stormwater management in urban environments. Urban Ecosyst 13:319–332
Anesti V, Vohra J, Goonetilleka S, McDonald IR, Sträubler B, Stackebrandt E, Kelly DP, Wood AP (2004) Molecular detection and isolation of methylotrophic bacteria, including Methylobacterium podarium sp. nov., from the human foot microflora. Environ Microbiol 6:820–830
Anesti V, McDonald IR, Ramaswamy M, Wade WG, Kelly DP, Wood AP (2005) Isolation and molecular detection of methylotrophic bacteria occurring in the human mouth. Environ Microbiol 7:1227–1238
Anthony C (1982) The biochemistry of methylotrophs. Academic, London
Ardley JK (2011) Symbiotic specificity and nodulation in the southern African legume clade Lotononis s. l. and description of novel rhizobial species within the alphaproteobacterial genus Microvirga. PhD thesis, Murdoch University, Perth. http://researchrepository.murdoch.edu.au/9463/
Ardley JK, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Tiwari RP, Howieson JG (2009) Root nodule bacteria isolated from South African Lotononis baineseii, L. listii and L. soitudinis are species of Methylobacterium that are unable to utilize methanol. Arch Microbiol 191:311–318
Ardley JK, Parker MA, De Meyer S, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Willems A, Howieson JG (2010) Species of Microvirga are novel alpha-proteobacterial root nodule bacteria that specifically nodulate Lotononis angolensis and Lupinus texensis. In: 9th European nitrogen fixation conference, 6–10 September 2010, Geneva. http://researchrepository.murdoch.edu.au/3734/
Ardley JK, Parker MA, De Meyer SE, Trengove RD, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Willems A, Howieson JG (2012) Microvirga lupini sp. nov., Microvirga lotononidis sp. nov., and Microvirga zambiensis sp. nov., are alphaproteobacterial root nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 62:2579–2588
Atlas RM (2010) Handbook of microbiological media, 4th edn. ASM Press, Washington, DC
Barbeau J, Tanguay R, Faucher E, Avezard C, Trudel L, Cote L, Prevost AP (1996) Multiparametric analysis of waterline contamination in dental units. Appl Environ Microbiol 62:3954–3959
Barriere P, Hansmann Y, Wilk A (2008) Postoperative intraorbital haematoma with septicemia due to Methylobacterium mesophilicum: a rare cause. Case report. Rev Stomatol Chir Maxillofac 105:323–325
Bassalik L (1913) Über die Verarbeitung der Oxalsäure durch Bacillus extorquens n. sp. Jahrb Wiss Bot 53:255–302 (in German)
Bassalik C, Janota-Bassilik L, Brisou J (1960) Étude sur Flavobacterium extorquens (ex. Pseudomonas extorquens). Ann Inst Pasteur 98:165–168 (in French)
Batey RT, Cloutier N, Mao H, Williamson JR (1996) Improved large scale culture of Methylophilus methylotrophus for 13C/15N labeling and random fractional deuteration of ribonucleotides. Nucleic Acids Res 24:4836–4837
Bhat JV, Barker HA (1948) Studies on a new oxalate-decomposing bacterium, Vibrio oxaliticus. J Bacteriol 55:359–368
Blackmore MA, Quayle JR (1970) Microbial growth on oxalate by a route not involving glyoxylate carboligase. Biochem J 118:53–59
Blomqvist G, Wesslén L, Påhlson C, Hjelm E, Pettersson B, Nikkila T, Allard U, Svensson O, Uhlén M, Morein B, Friman G (1997) Phylogenetic placement and characterization of a new alpha-2 proteobacterium isolated from a patient with sepsis. J Clin Microbiol 35:1988–1995
Bormann EJ, Leissner M, Beer B (1997) Growth and formation of poly(hydroxybutyric acid) by Methylobacterium rhodesianum at methanol concentrations above 25 g/l. Acta Biotechnol 17:279–289
Borsali E, Rossignol I, Batellier L, Legrand P, Goldschmidt P, Le Boutes A, Mokhtari K, Chaumeil C (2011) Isolement de Methylobacterium podarium au cours d’une inflammation intraoculaire. Méd Mal Infect 41:665–666
Bourque D, Pomerleau Y, Groleau D (1995) High cell-density production of poly-β-hydroxybutyrate (PHB) from methanol by Methylobacterium extorquens: production of high molecular mass PHB. Appl Microbiol Biotechnol 44:367–376
Bousfield IJ, Green PN (1985) Reclassification of bacteria of the genus Protomonas Urakami and Komagata 1984 in the genus Methylobacterium (Patt, Cole, and Hanson) emend. Green and Bousfield 1983. Int J Syst Bacteriol 35:209
Breed RS, Murray EG, Smith NR (1957) Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore
Brenner DJ, Krieg NR, Staley JT, Garrity GM (2005) Bergey’s manual of systematic bacteriology, vol 2, Part C: the alpha-, beta-, delta-, and epsilonproteobacteria. Springer, New York
Brown WJ, Sautter RL, Crist AE Jr (1992) Susceptibility testing of clinical isolates of Methylobacterium species. Antimicrob Agents Chemother 36:1635–1638
Brown MA, Greene JN, Sandin RL, Hiemenz JW, Sinnott JT (1996) Methylobacterium bacteremia after infusion of contaminated autologous bone marrow. Clin Infect Dis 23:1191–1192
Brown LM, McComb JP, Vangsness MD, Bowen LL, Mueller SS, Balster LM, Bleckmann CA (2010) Community dynamics and phylogenetics of bacteria fouling Jet A and JP-8 aviation fuel. Int Biodeter Biodegrad 64:253–261
Cao Y-R, Wang W, Jin R-X, Tang S-K, Jiang Y, He W-X, Lai H-X, Xu L-H, Jiang C-L (2011) Methylobacterium soli sp. nov. a methanol-utilizing bacterium isolated from the forest soil. Antonie Van Leeuwenhoek 99:629–634
Chistoserdov AY, Chistoserdova LV, McIntire WS, Lidstrom ME (1994) Genetic organization of the mau gene cluster in Methylobacterium extorquens AM1: complete nucleotide sequence and generation and characteristics of mau mutants. J Bacteriol 176:4052–4065
Chistoserdova L (2011) Modularity of methylotrophy revisited. Environ Microbiol 13:2603–2622
Chistoserdova LV, Lidstrom ME (1994) Genetics of the serine cycle in Methylobacterium extorquens AM1: identification of sgaA and mtdA and sequences of sgaA, hprA, and mtdA. J Bacteriol 176:1957–1968
Chistoserdova LV, Lidstrom ME (1997) Molecular and mutational analysis of a DNA region separating two methylotrophy gene clusters in Methylobacterium extorquens AM1. Microbiology 143:1729–1736
Chistoserdova L, Chen SW, Lapidus A, Lidstrom ME (2003) Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185:2980–2987
Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63:477–499
Chongcharoen R, Smith TJ, Flint KP, Dalton H (2005) Adaptation and acclimatization to formaldehyde in methylotrophs capable of high-concentration formaldehyde detoxification. Microbiology 151:2615–2622
Corpe WA (1985) A method for detecting methylotrophic bacteria on solid surfaces. J Microbiol Methods 3:215–221
Corpe WA, Basile DV (1982) Methanol-utilizing bacteria associated with green plants. Dev Ind Microbiol 23:483–493
Corpe WA, Rheen S (1989) Ecology of methylotrophic bacteria on living leaf surfaces. FEMS Micobiol Ecol 62:243–250
De Marco P, Pacheco CC, Figueiredo AR, Moradas-Ferreira P (2004) Novel pollutant-resistant methylotrophic bacteria for use in bioremediation. FEMS Microbiol Lett 234:75–80
De Vries JT, Derx HG (1953) On the occurrence of Mycoplana rubra and its identity with Protaminoacter ruber. Ann Bogor 1:53–60
Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, von Mering R, Vorholt JA (2009) Community phytogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA 106:15428–16433
Den Dooren de Jong LE (1927) Über Protaminophage-Bakterien. Zentbl Bakteriol Parasitentkunde (Abt II) 71:193–232
Den Doren de Jong LE (1957) Protaminobacter. In: Breed RS, Murray EGD, Smith NR (eds) Bergey’s manual of determinative bacteriology. Balliere, Tindall & Cox, London, pp 200–201
Desmarteaux D, Quenteville Y, Miguez C (2012) Powerful Methylobacterium-based technology platform for the production of recombinant proteins and other bioproducts (PL-11725). National Research Council Canada, Ottawa. http://www.nrc-cnrc.gc.ca/eng/licensing/bri/methylobacterium-technology.html
Doronina NV, Trotsenko YuA (2002) New evidence for the ability of methylobacteria and methanotrophs to synthesize auxins. Microbiology (Moscow) 71:116–118 (English translation of Mikrobiologiya 71:130–132, 2002)
Doronina NV, Trotsenko YA, Tourova TP, Kuznetsov BB, Leisinger T (2000) Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov. – novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. Syst Appl Microbiol 23:210–218
Dourado MN, Andreate FD, Dini-Andreote F, Conti R, Araújo JM, Araújo WL (2012a) Analysis of 16S rRNA and mxaF genes revealing insights into Methylobacterium niche-specific plant association. Genet Mol Biol 35:142–148
Dourado MN, Ferreira A, Araújo WL, Azevedo JL, Lacava PT (2012b) The diversity of endophytic methylotrophic bacteria in an oil-contaminated and an oil-free mangrove ecosystem and their tolerance to heavy metals. Biotechnol Res Int 8. doi:10.1155/2012/759865. Article ID 759865. http://www.hindawi.com/journals/btri/2012/759865/
Drancourt M, Raoult D (2005) Sequence-based identification of new bacteria: a proposition for creation of an orphan bacterium repository. J Clin Microbiol 43:4311–4315
Engler C, Norton R (2001) Recurrent Methylobacterium mesophilicum sepsis associated with haemodialysis. Pathology 33:536–537
Fall R, Benson AA (1996) Leaf methanol: the simplest natural product from plants. Trends Plant Sci 1:296–301
Fanci R, Corti G, Baetoloni A, Tortoli E, Mariottini A, Pecile P (2010) Unusual Methylobacterium fujisawaense infection in a patient with acute leukemia undergoing haematopoietic stem cell transplantation: first case report. Case Rep Med. doi:10.1155/2010/313514 (3 pp)
Fedorov DN, Doronina NV, Trotsenko YuA (2010) Cloning and characterization of indolepyruvate decarboxylase from Methylobacterium extorquens AM1. Biochemistry (Moscow) 75:1435–1443
Fernandes VC, Albergaria JT, Oliva-Teles T, Delerue-Matos C, De Marco P (2009) Dual augmentation for aerobic bioremediation of MTBE and TCE pollution in heavy metal-contaminated soil. Biodegradation 20:375–382
Fernandez M, Dreyer Z, Hockenberry-Eaton M, Baker CJ (1997) Methylobacterium mesophilica as a cause of persistent bacteremia in a child with lymphoma. Pediatr Infect Dis J 16:1007–1008
Fleischman D, Kramer DM (1998) Photosynthetic rhizobia. Biochim Biophys Acta 1364:17–36
Flournoy DJ, Petrone RL, Voth DW (1992) A pseudo-outbreak of Methylobacterium mesophilica isolated from patients undergoing bronchoscopy. Eur J Clin Microbiol Infect Dis 11:240–243
Fournier D, Halasz A, Spain JC, Fiurasek P, Hawari J (2002) Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22. Appl Environ Microbiol 68:166–172
Fournier D, Trott S, Hawari J, Spain J (2005) Metabolism of the aliphatic nitramine 4-nitro-2,4-diazabutanal by Methylobacterium sp. strain JS178. Appl Environ Microbiol 71:4199–4202
Fujiwara Y, Kinoshita T, Sato H, Kojima I (1984) Biodegradation and bioconcentration of alkyl ethers: Yukagatu. J Jpn Oil Chem Soc 33:111–114
Furuhata K, Kato Y, Goto K, Hara M, Yoshida S, Fukuyama M (2006) Isolation and identification of Methylobacterium species from the tap water in hospitals in Japan and their antibiotic susceptibility. Microbiol Immunol 50:11–17
Gallego V, Garcia MT, Ventosa A (2005a) Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 55:281–287
Gallego V, Garcia MT, Ventosa A (2005b) Methylobacterium variabile sp. nov., a methylotrophic bacterium isolated from an aquatic environment. Int J Syst Evol Microbiol 55:1429–1433
Gallego V, Garcia MT, Ventosa A (2005c) Methylobacterium isbiliense sp. nov., isolated from the drinking water system of Sevilla, Spain. Int J Syst Evol Microbiol 55:2333–2337
Gallego V, Garcia MT, Ventosa A (2006) Methylobacterium adhaesivum sp. nov., a methylotrophic bacterium isolated from drinking water. Int J Syst Evol Microbiol 56:339–342
Gan HM, Chew TH, Hudson AO, Savka MA (2012) Genome sequence of Methylobacterium sp. strain GXF4, a xylem-associated bacterium isolated from Vitis vinifera L. Grapevine. J Bacteriol 194:5157–5158
Garrity GM, Bell JA, Lilburn T (2005) Family IX. Methylobacteriaceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, Part C: the alpha- beta-, delta- and Epsilonproteobacteria. Springer, New York, pp 567–571
Gilardi GL, Faur YC (1984) Pseudomonas mesophilica and an unnamed taxon, clinical isolates of pink-pigmented oxidative bacteria. J Clin Microbiol 20:626–629
Godfrey CA (1972) The carotenoid pigment and deoxyribonucleic acid base ratio of a Rhizobium which nodulates Lotononis bainesii. Baker. J Gen Microbiol 72:299–402
Goodwin PM, Piercy R, Stone S (1988) The increased sensitivity of rifamycin resistant mutants of Methylobacterium AM1 to a variety of antimicrobial agents. Lett Appl Microbiol 7:99–101
Gout E, Aubert S, Bligny R, Rébeillé F, Nonomura AR, Benson AA, Douce R (2000) Metabolism of methanol in plant cells. Carbon-13 nuclear magnetic resonance studies. Plant Physiol 123:287–296
Green PN (1992) Taxonomy of methylotrophic bacteria. In: Dalton H, Murrell JC (eds) Methane and methanol utilizers. Springer, Heidelberg, pp 25–83
Green PN (2005) Genus I. Methylobacterium Patt, Cole and Hanson 1976, 228AL emend Green and Bousfiled 1983, 876. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, Part C: the Alpha- Beta-, Delta- and Epsilonproteobacteria. Springer, New York, pp 567–571
Green PN (2006) Methylobacterium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 5, 3rd edn. Springer, New York, pp 257–265
Green PN, Bousfield IJ (1983) Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov. Int J Syst Bacteriol 33:875–877
Greub G, La Scola B, Raoult D (2004) Amoebae-resisting bacteria isolated from human nasal swabs by amoebal coculture. Emerg Inf Dis 19:470–477
Hanson RS (1998) Ecology of methylotrophic bacteria. In: Burlage RS, Atlas R, Stahl D, Geesey G, Sayler G (eds) Techniques in microbial ecology. Oxford University Press, New York, pp 31–57
Hayashi T, Kohno S, Yamaguchi K, Hirota M, Hara K, Saitou A, Hamamoto A, Tsutsumi T (1990) Clinical and bacteriological studies in four cases of pulmonary infection caused by Protomonas extorquens. Kansenshogaku Zasshi 64:1048–1056 (Article in Japanese)
Hellmuth J, Kutschera U (2008) The effect of growth-promoting methylobacteria on seedling development in Ginkgo biloba L. J Appl Bot 82:26–29
Heumann W (1962) Die Methodik der Kreuzung sternbildender Bakterien. Biol Zentralbl 81:341–354
Heumann W, Rösch A, Springer R, Wagner E, Winkler K-P (1984) In Rhizobiaceae five different species are produced by rearrangement of one genome, induced by DNA-damaging agents. Mol Gen Genet 197:425–436
Hiraishi A, Furuhata K, Matsumoto A, Koike K, Fukuyama M, Tabuchi K (1995) Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments. Appl Environ Microbiol 61:2099–2107
Höfer P, Choi YJ, Osborne MJ, Miguez MB, Vermette P, Groleau D (2010) Production of functionalized polyhydroxyalkanoates by genetically modified Methylobacterium extorquens strains. Microb Cell Fact 9:70, 13pp. http://www.microbialcellfactories.com/content/9/1/70
Höfer P, Vermette P, Groleau D (2011) Introducing a new bioengineered bug: Methylobacterium extorquens tuned as a microbial bioplastic factory. Bioeng Bugs 2:71–79
Holland MA (1997) Methylobacterium and plants. Recent Res Dev Plant Physiol 1:207–213
Holton J, Miller R, Furst V, Malnick H (1990) Isolation of Protomonas extorquens (the “red phantom”) from a patient with AIDS. J Infect 21:87–93
Hoppe T, Peters K, Schmidt F (2011) Methylobacterium bullatum sp. nov., a methylotrophic bacterium isolated from Funaria hygrometrica. Syst Appl Microbiol 34:482–486
Hornei B, Lüneberg E, Schmidt-Rotte H, Maaß M, Weber K, Heits F, Frosch M, Solbach W (1999) Systemic infection of an immunocompromised patient with Methylobacterium zatmanii. J Clin Microbiol 37:248–250
Hornschuh M, Grotha R, Kutschera U (2002) Epiphytic bacteria associated with the bryophyte Funaria hygrometrica: effects of Methylobacterium strains on protonema development. Plant Biol 4:682–687
Hornschuh M, Grotha R, Kutschera U (2006) Moss-associated methylobacteria as phytosymbionts: an experimental study. Naturwissenschaften 93:480–486
Hung W-L, Wade WG, Boden R, Kelly DP, Wood AP (2011) Facultative methylotrophs from the human oral cavity and methylotrophy in strains of Gordonia, Leifsonia and Microbacterium. Arch Microbiol 193:407–413
Hung WL, Wade WG, Chen Y, Kelly DP, Wood AP (2012) Design and evaluation of novel primers for the detection of genes encoding diverse enzymes of methylotrophy and autotrophy. Pol J Microbiol 61:11–22
Idris R, Kuffner M, Bodrossy L, Puschenreiter M, Monchy S, Wenzel WW, Sessitsch A (2006) Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov. Syst Appl Microbiol 29:634–644
Imbert G, Seccia Y, La Scola B (2005) Methylobacterium sp. bacteraemia due to a contaminated endoscope. J Hosp Infect 61:268–270
Irvine IC, Brigham CA, Suding KN, Martiny JBH (2012) The abundance of pink-pigmented facultative methylotrophs in the root zone of plant species in invaded coastal sage scrub habitat. PLoS One 7(2):e31026. doi:10.1371/journal.pone.0031026
Ivanova EG, Doronina NV, Shepelyakovskya AO, Laman AG, Brovko FA, Trotsenko YuA (2000). Facultative and obligate aerobic methylobacteria synthesize cytokinins. Microbiology (Moscow) 69:646–651 (English translation of Mikrobiologiya 69:764–769, 2000, in Russian)
Ivanova EG, Doronina NV, Trotsenko YuA (2001) Aerobic methylobacteria are capable of synthesizing auxins. Microbiology (Moscow) 70:392–397
Jackson EF, Echlin HL, Jackson CR (2006) Changes in the phyllosphere community of the resurrection fern Polypodium polypodioides, associated with rainfall and wetting. FEMS Microbiol Ecol 58:236–246
Jacob DJ, Field BD, Li Q, Blake DR, de Gouw J, Warneke C, Hansel A, Wisthaler A, Singh HB, Guenther A (2005) Global budget of methanol: constraints from atmospheric observations. J Geophys Res 110:1–17
Jaftha JB, Strijdom BW, Steyn PL (2002) Characterization of pigmented methylotrophic bacteria which nodulate Lotononis bainesii. Syst Appl Microbiol 25:440–449
Janota L (1950) Przebieg zuzymania krasu szczawiowego przez Pseudomonas extorquens Bassilik, w zalesnosci od poczatkowej liczby komorek. Med Dosw Mikrobiol 2:131–132 (Progress of oxalic acid use by Pseudomonas extorquens Bassalik in relation to the initial number of cells; in Polish)
Janota L (1956) Powiazanie anabolizmu z katabolizmem u Pseudomonas extorquens Bassalik. Acta Soc Bot Pol 25:73–110 (The relationship between anabolism and katabolism in Pseudomonas extorquens Bassalik; in Polish)
Janota-Bassalik L, Pedyk D (1961) Ability of Flavobacterium extorquens to utilize various sources of carbon with particular reference to glucose. Acta Microbiol Polon 10:225–238
Jensen HS, Arvin E (1990) Solubility and degradability of the gasoline additive MTBE, methyl-tert-butyl-ether, and gasoline compounds, in water. In: Arendt F, Hinsenveld M, van den Brink WJ (eds) Contaminated soil ’90. Kluyver, Dordrecht, pp 445–448
Jiang Y, Chen Y, Zheng X (2009) Efficient polyhydroxyalkanoates production from a waste-activated sludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding and discharge process. Environ Sci Technol 43:7734–7741
Jourand P, Giraud E, Bénal G, Sy A, Willems A, Gillis M, Dreyfus B, de Lajudie P (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273
Jourand P, Ranier A, Rapior S, Miana de Faria S, Prin Y, Galana A, Giraud E, Dreyfus B (2005) Role of methylotrophy during symbiosis between Methylobacterium nodulans and Crotalaria podocarpa. Mol Plant Microbe Interact 18:1061–1068
Jourdain B, Legrand M (2001) Seasonal variations of atmospheric dimethylsulfide, dimethylsulfoxide, sulfur dioxide, methanesulfonate, and non-sea salt sulfate aerosols at Dumont d’Urville (coastal Antarctica) (December 1998 to July 1999). J Geophys Res 106:14291–14408
Juhas J, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33:376–393
Kanso S, Patel BKC (2003) Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 53:401–406
Kato Y, Asahara M, Arai D, Goto K, Yokata A (2005) Reclassification of Methylobacterium chloromethanicum and Methylobacterium dichloromethanicum as later subjective synonyms of Methylobacterium extorquens and of Methylobacterium lusitanum as a later subjective synonym of Methylobacterium rhodesianum. J Gen Appl Microbiol 51:287–299
Kaye KM, Macone A, Kazanjian PH (1992) Catheter infection caused by Methylobacterium in immunocompromised hosts: report of three cases and review of the literature. Clin Infect Dis 14:1010–1014
Kelley ST, Theisen U, Angenent LT, St Amand A, Pace NR (2004) Molecular analysis of shower curtain biofilm microbes. Appl Environ Microbiol 70:4187–4192
Kelly DP, Murrell JC (1999) Microbial metabolism of methanesulfonic acid. Arch Microbiol 172:341–348
Kelly DP, Wood AP (1998) Microbes of the sulfur cycle. In: Burlage RS, Atlas R, Stahl D, Geesey G, Sayler G (eds) Techniques in microbial ecology. Oxford University Press, New York, pp 31–57
Kim SW, Lee HS, Kim JH (1999) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from Methylobacterium organophilum by potassium-limited fed batch culture. Enzyme Microb Technol 24:555–560
Kirikova NN (1970) Properties of two strains of Pseudomonas utilising one carbon compounds. Mikrobiologiya 39:18–23 (Microbiology 39:12–16, English translation of Mikrobiologiya)
Kleinig H, Broughton WJ (1982) Carotenoid pigments in a red strain of Rhizobium from Lotononis bainesii Baker. Arch Microbiol 133:164
Knief C, Frances L, Cantet F, Vorholt JA (2008) Cultivation-independent characterization of Methylobacterium populations in the plant phyllosphere by automated ribosomal intergenic spacer analysis. Appl Environ Microbiol 74:2218–2228
Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt JA (2010a) Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J 4:719–728
Knief C, Frances L, Vorholt JA (2010b) Competitiveness of diverse Methylobacterium strains in the phyllosphere of Arabidopsis thaliana and identification of representative models, including M. extorquens PA1. Microb Ecol 60:440–452
Knief C, Dengler V, Bodelier PLE, Vorholt JA (2012) Characterization of Methylobacterium strains isolated from the phyllosphere and description of Methylobacterium longum sp. nov. Antonie Van Leeuwenhoek 101:169–183
Koenig RL, Morris RO, Polacco JC (2002) tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J Bacteriol 184:1832–1842
Konovalova AM, Shylin SO, Rokytko PV (2006) Isolation and preliminary characterization of carotenoids from pink-pigmented methylotrophs. Ukr Biokhim Zhurnal 78:146–150 (in Ukrainian)
Konovalova AM, Shylin SO, Rokytko PV (2007) Characteristics of carotinoids of methylotrophic bacteria of the Methylobacterium genus. Mikrobiol Z (Kiev) 69:35–41 (in Ukrainian)
Korvick JA, Rihs JD, Gilardi GL, Yu VL (1989) A pink pigmented, oxidative, nonmotile bacterium as a cause of opportunistic infections. Arch Intern Med 149:1449–1451
Kovaleva J, Degener JE, van der Mei HC (2012) Simulation of Methylobacterium biofilm formation in endoscope channels in a novel in vitro biofilm model of endoscope reprocessing. In: 22nd European congress of clinical microbiology and infectious diseases, 3 April 2012, p 2163
Kovaleva J, Peters FT, van der Mei HC, Degener JE (2013) Transmission of infection by flexible gastrointestinal endoscopy and bronchoscopy. Clin Microbiol Rev 26:231–254
Krasil’nikov NA (1949) Guide to the bacteria and actinomycetes. Akademii Nauk S.S.S.R. Moscow (in Russian). Republished (1959) as Diagnostik der Bakterien und Actinomyceten. Gustav Fischer, Jena (in German)
Kutschera U (2007) Plant-associated methylobacteria as co-evolved phytosymbionts. Plant Signal Behav 2:74–78
Kutschera U, Koopmann V (2005) Growth in liverworts of the Marchantiales is promoted by epiphytic methylobacteria. Naturwissenschaften 92:347–349
Kutschera U, Niklas KJ (2009) Evolutionary plant physiology: Charles Darwin’s forgotten synthesis. Naturwissenschaften 96:1339–1354
Kuykendall LD (2005) Order VI. Rhizobiales ord. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, Part C: the alpha-, beta-, delta-, and epsilonproteobacteria. Springer, New York, pp 324–474
Lacava PT, Li WB, Araújo WL, Azevedo JL, Hartung JS (2006) Rapid, specific and quantitative assays for the detection of the endophytic bacterium Methylobacterium mesophilicum in plants. J Microbiol Methods 65:535–541
Lai C-C, Cheng A, Liu W-L, Tan C-K, Huang Y-T, Chung K-P, Lee M-R, Hsueh P-R (2011) Infections cauosed by unusual Methylobacterium species. J Clin Microbiol 49:3329–3331
Lambert WC, Pathan AK, Irnaeda T, Kaminski ZC, Reichman LB (1983) Culture of Vibrio extorquens from severe, chronic skin ulcers in a Puerto Rican woman. J Am Acad Dermatol 9:262–268
Lee C-H, Tang Y-F, Liu J-W (2004) Underdiagnosis of urinary tract infection caused by Methylobacterium species with current standard processing of urine culture and its clinical implications. J Med Microbiol 53:755–759
Lee HS, Madhaiyan M, Kim CW, Choi SJ, Chung KY, Sa TM (2006) Physiological enhancement of early growth of rice seedlings (Oryza sativa L.) by production of phytohormone of N2-fixing methylotrophic isolates. Biol Fertil Soils 42:402–408
Levantesi C, Beinfohr C, Geurkink B, Rossetti S, Thelen K, Krooneman J, Schnaidr J, van der Waarde J, Tandoi V (2004) Filamentous Alphaproteobacteria associated with bulking in industrial wastewater treatment plants. Syst Appl Microbiol 27:716–727
Li J, Gu JD (2007) Complete degradation of dimethyl isophthalate requires the biochemical cooperation between Klebsiella oxytoca Sc and Methylobacterium mesophilicum Sr isolated from wetland sediment. Sci Total Environ 380:181–187
Lidstrom ME (2006) Aerobic methylotrophic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 2, 3rd edn. Springer, New York, pp 618–634
Liu JW, Wu JJ, Chen HM, Huang AH, Ko WC, Chuang YC (1997) Methylobacterium mesophilicum synovitis in an alcoholic. Clin Infect Dis 24:1008–1009
Ludwig W, Strunk O, Westram R, Richter L, Meier H et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371
MacDonald RC, Fall K (1993) Detection of substantial emissions of methanol from plants to the atmosphere. Atmos Environ 27A:1709–1713
Machlin SM, Tan PE, Bastien CA, Hanson RS (1988) Genetic and physical analyses of Methylobacterium organophilum XX genes encoding methanol oxidation. J Bacteriol 170:141–148
Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduce nickel and cadmium toxicity and promote plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228
Madhaiyan M, Poonguzhali S, Senthikumar M, Lee J-S, Lee K-C (2012) Methylobacterium gossipiicola sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the cotton phyllosphere. Int J Syst Evol Microbiol 62:162–167
Marx CJ, Bringel F, Chistoserdova L, Moulin L et al (2012) Complete genome sequences of six strains of the genus Methylobacterium. J Bacteriol 194:4746–4748
McDonald IR, Murrell JC (1997) The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 63:3218–3224
McDonald IR, Doronina NV, Trotsenko YA, McAnulla C, Murrell JC (2001) Hyphomicrobium chloromethanicum sp. nov. and Methylobacterium chloromethanicum sp. nov., chloromethane-utilizing bacteria isolated from a polluted environment. Int J Syst Evol Microbiol 51:119–122
McNamara C, Perry T, Leard R, Bearce K, Dante J, Mitchell K (2005) Corrosion of aluminium alloy 2024 by microorganisms isolated from aircraft fuel tanks. Biofouling 21:257–265
Meena KK, Kumar M, Kalyuzhnaya MG, Yandigen MS, Singh DP, Saxena AK, Arora D (2012) Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Van Leeuwenhoek 101:777–786
Meyer JM, Hoy MA (2008) Molecular survey of endosymbionts in Florida populations of Diaphorina citri (Hemiptera: Psyllidae) and its parasitoids Tamarixia radiata (Hymenoptera: Eulophidae) and Diaphorencyrtus aligarhensis (Hymenoptera: Encyrtidae). Fl Entomol 91:294–304
Miller IM, Scott A, Gardner IC (1983) Leaf nodule development in Psychotria kirkii Hiern (Rubiaceae). Ann Bot 52:791–802
Millerd A, Morton RK, Wells JRE (1963) Oxalic acid synthesis in shoots of Oxalis pes-caprae. Biochem J 86:57–62
Mo K, Lora CO, Wanken AE, Javanmardian M, Yang X, Kulpa CF (1997) Biodegradation of methyl t-butyl ether by pure bacterial cultures. Appl Microbiol Biotechnol 47:69–72
Murrell JC, Kelly DP (eds) (1996) Microbiology of atmospheric trace gases. Sources, sinks and global change processes, NATO Advanced Science Institutes series. Springer, Berlin, vii + 306 pp
Nadalig T, Haque UHM, Roselli S, Schaller H, Bringel F, Vuilleumier S (2011) Detection and isolation of chloromethane-degrading bacteria from the Arabidopsis thaliana phyllosphere, and characterization of chloromethane utilization genes. FEMS Microbiol Ecol 77:438–448
Nemecek-Marshall M, MacDonald RC, Franzen JJ, Wojciechowski CL, Fall R (1995) Methanol emission from leaves: enzymic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol 108:1359–1368
Omer ZS, Tombolini R, Broberg A, Gerhardson B (2004) Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul 43:93–96
Orphan VJ, Taylo LT, Hafenbradl D, DeLong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711
Passman F, McFarland B (1997) Understanding, recognizing, and controlling microbial contamination in fuels and fuel systems—a primer prepared for Chevron USA. FQS Limited, Princeton (Cited by Brown et al. 2010)
Patt TE, Cole GC, Hanson RS (1976) Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 26:226–229
Mattilä AM (née Pirttilä) (2001) Endophytes in the buds of Scots pine (Pinus sylvestris L.). Academic dissertation, Faculty of Science, University of Oulu. Acta Universitatis Ouluensis Scientiae Rerum Naturalium A 369. http://herkules.oulu.fi/isbn9514264444/isbn9514264444.pdf
Pirttilä AM, Laukkanen H, Pospiech H, Myllylä R, Hohtola A (2000) Detection of intracellular bacteria in the buds of Scotch [sic] pine (Pinus sylvestris) by in situ hybridization. Appl Environ Microbiol 66:3073–3077
Poonguzhali S, Madhaiyan M, Kim WJ, Kim KA, Sa TM (2008) Colonization pattern of plant root and leaf surfaces visualized by use of green-fluorescent-marked strain of Methylobacterium suomiense and its persistence in rhizosphere. Appl Microbiol Bikotechnol 78:1033–1043
Radha TK (2007) Studies on methylotrophs and their beneficial effects on soybean (Glycine max L. Merrill). MSc (Agriculture) thesis, University of Agricultural Sciences, Dharwad, India. http://etd.uasd.edu/ft/th9343.pdf
Raja P, Balachandar D, Sundaram SP (2008) Genetic diversity and phylogeny of pink-pigmented facultative methylotrophic bacteria isolated from the phyllosphere of tropical crop plants. Biol Fertil Soils 45:45–53
Rauch M, Graft H, Rozenzhak S, Jones S, Bieckmann C, Kruger R, Naik R, Stone M (2006) Characterization of microbial contamination in United States Air Force aviation fuel tanks. J Ind Microbiol Biotechnol 33:29–35
Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7
Renier A, De Faria SM, Jourand P, Giraud E, Dreyfus B, Rapior S, Prin Y (2011) Nodulation of Crotolaria podocarpa DC by Methylobacterium nodulans displays very unusual features. J Exp Bot 62:3693–3697
Rice EW, Reasoner DJ, Johnson CH, DeMaria IA (2000) Monitoring for methylobacteria in water systems. J Clin Microbiol 38:4296–4297
Romanovskaya VA, Stolyar SM, Malashenko YR (1996) Distribution of bacteria of the genus Methylobacterium in different ecosystems of Ukraine. Mikrobiol Z (Kiev) 58:3–10
Romanovskaya VA, Rokitko PV, Mikheev AN, Gushcha NI, Malashenko YuR, Chernaya NA (2002) The effect of γ-radiation and desiccation on the viability of the soil bacteria isolated from the alienated zone around the Chernobyl nuclear power plant. Microbiology 71:608–613 (translation of Mikrobiologiya 71:705–712)
Romanovskaya VA, Tashyrev OB, Rokitko PV, Shilin SO, Chernaya NA, Tashyreva AO (2009a) Microbial diversity in terrestrial Antarctic biotypes. Український Антарктичний Журнал (Ukr Antarct J) 8:364–369 (in English)
Romanovskaya VA, Rokitko PV, Shilin SO, Chernaya NA, Tashyrev AB (2009b) Distribution of bacteria of Methylobacterium genus in the terrestrial biotopes of the Antarctic region. Mikrobiol Z (Kiev) 71:3–9 (in Russian)
Romanovskaya VA, Sokolov IG, Malashenko YuR, Rokitko PV (1998) Mutability of epiphytic and soil bacteria of the genus Methylobacterium and their resistance to ultraviolet and ionizing radiation. Microbiology (Moscow) 67:89–97 (translation of Mikrobiologiya 67:106–115)
Rutherford PC, Narkowicz JE, Wood CJ, Peel MM (1988) Peritonitis caused by Pseudomonas mesophilica in a patient under continuous ambulatory peritoneal dialysis. J Clin Microbiol 26:2441–2443
Şahín N (2011) Significance of absorption spectra for the chemotaxonomic characterization of pigmented bacteria. Turk J Biol 35:167–175
Şahín N, Kato Y, Yilmaz F (2008) Taxonomy of oxalotrophic Methylobacterium strains. Naturwissenschaften 95:931–938
Sanders JW, Martin JW, Hooke M, Hooke J (2000) Methylobacterium mesophilicum infection: case report and literature review of an unusual opportunistic pathogen. Clin Infect Dis 30:936–938
Schauer S, Kutschera U (2008) Methylotrophic bacteria on the surfaces of field-grown sunflower plants: a biogeographic perspective. Theory Biosci 127:23–29
Schauer S, Kutschera U (2011) A novel growth-promoting microbe, Methylobacterium funariae sp. nov., isolated from the leaf surface of a common moss. Plant Signal Behav 6:510–515
Schauer S, Kämpfer P, Wellner S, Sproer C, Kutschera U (2011) Methylobacterium marchantiae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the thallus of a liverwort. Int J Syst Evol Microbiol 61:870–876
Schink B, Zeikus JG (1980) Microbial methanol metabolism: a major end product of pectin metabolism. Curr Microbiol 4:387–389
Schneider K, Skovran E, Vorholt JA (2012) Oxalyl-CoA reduction to glyoxylate is the preferred route of oxalate assimilation in Methylobacterium extorquens AM1. J Bacteriol 194:3144–3155
Schrader J, Schilling M, Holtmann D, Sell D, Villela Filho M, Marx A, Vorholt JA (2009) Methanol based industrial biotechnology: current status and future perspectives of methylotrophic bacteria. Trends Biotechnol 27:106–115
Skovran E, Palmer AD, Rountree AM, Good NM, Lidstrom ME (2011) XoxF is required for expression of methanol dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 193:6032–6038
Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kämpfer P, Maiden MCJ, Nesme X, Rossella-Mora R, Swings J, Trüper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047
Stocks PK, McCleskey CS (1964) Identity of the pink-pigmented methanol-oxidizing bacteria as Vibrio extorquens. J Bacteriol 88:1065–1070
Strazzi SR, Baccard M, Puppin D Jr, Plancke L, Morel P, Kiredjian M (1992) Pseudomonas mesophilica cutaneous infection in an immunocompetent patient. Arch Dermatol 128:273–274
Sy A, Giraud E, Samba R, de Lajudie P, Gillis M, Dreyfus B (2001a) Certaines légumineuses du genre Crotalaria sont spécifiquement nodulées par une nouvelle espèce de Methylobacterium. Can J Microbiol 47:503
Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M (2001b) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220
Sy A, Antonius CJ, Knief C, Vorholt JA (2006) Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol 71:7245–7252
Takeda M, Suzuki I, Koizumi JI (2004) Balneimonas flocculans gen. nov., sp. nov., a new cellulose-producing member of the α-2 subclass of the Proteobacteria. Syst Appl Microbiol 27:139–145
Tani A, Akita M, Murase H, Kimbara K (2011) Culturable bacteria in hydroponic cultures of moss Racomitrium japonicum and their potential as biofertilizers for moss production. J Biosci Bioeng 112:32–39
Tani A, Sahin N, Kimbala K (2012a) Methylobacterium oxalidis sp. nov., isolated from leaves of Oxalis corniculum. Int J Syst Evol Microbiol 62:1647–1652
Tani A, Sahin N, Kimbara K (2012b) Methylobacterium gnaphalii sp. nov., isolated from leaves of Gnaphalium spicatum. Int J Syst Evol Microbiol 62:2602–2607
Tani A, Takai Y, Suzukawa I, Akita M, Murase H, Kimbara K (2012c) Practical application of methanol-mediated mutualistic symbiosis between Methylobacterium species and a roof greening moss, Racomitrium japonicum. PLoS One 7(3):e33800. doi:10.1371/journal.pone.0033800
Tani A, Sahin N, Matsuyama Y, Enomoto T, Nishimura N, Yokota A, Kimbara K (2012d) High-throughput identification and screening of novel Methylobacterium species using whole-cell MALDI-TOF/MS analysis. PLoS One 7(7):e40784. doi:10.1371/journal.pone.0040784
Thomas V, Herrera-Rimann K, Blanc DS, Greub G (2006) Biodiversity of amoebae and amoeba-resistant bacteria in a hospital water network. Appl Environ Microbiol 72:2428–2438
Thomsen TR, Blackall LL, de Muro MA, Nielsen JL, Nielsen PH (2006) Meganema perideroedes gen., nov., a filamentous alphaproteobacterium from activated sludge. Int J Syst Evol Microbiol 56:1865–1868
Trotsenko YuA, Ivanova EG, Doronina NV (2001) Aerobic methylotrophic bacteria as phytosymbionts. Microbiology 7:623–632 (English translation of Mikrobiologiya 70:725–736, 2001)
Truant AL, Gulati R, Giger O, Satishchandran V, Caya JG (1998) Methylobacterium species: an increasingly important opportunistic pathogen. Lab Med 29:704–710
Urakami T, Komagata K (1984) Protomonas, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 34:188–201
USDA (1984) Oxalic acid content of selected vegetables. Nutrient Data Laboratory. http://www.nal.usda.gov/fnic/foodcomp/Data/Other/oxalic.html. Accessed 25 June 2012
Van Aken B, Schoon JM, Schnoor JL (2004) Biodegradation of nitro substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides x nigra DN34). Environ Microbiol 70:508–517
Van Aken B, Tehrani R, Schnoor JL (2011) Endophyte-assisted phytoremediation of explosives in poplar trees by Methylobacterium populi BJ001T. Endophytes For Trees For Sci 80:217–234
Van Borm S, Buschinger A, Boomsma JJ, Billen J (2002) Tetraponera ants have gut symbionts related to nitrogen-fixing root-nodule bacteria. Proc R Soc Lond B 269:2023–2027
Van Dien SJ, Marx CJ, O’Brien BN, Lidstrom ME (2003) Genetic characterization of the carotenoid biosynthetic pathway in Methylobacterium extorquens AM1 and isolation of a colorless mutant. Appl Environ Microbiol 69:7563–7566
Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289
Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840
Vuilleumier S, Chistoserdova L, Lee M-C, Bringel F, Lajus A et al (2009) Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS ONE 4(5):e5584. doi:10.1371/journal.pone.0005584
Wang X, Sahr F, Xiu T, Sun B (2007) Methylobacterium salsuginis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 57:1699–1703
Wellner S, Lodders N, Kämpfer P (2012) Methylobacterium cerastii sp. nov., isolated from the leaf surface of Cerastium holosteoides. Int J Syst Evol Microbiol 62:917–924
Weon H-Y, Kwon S-W, Son J-A, Jo E-H, Kim S-J, Kim Y-S, Kim B-Y, Ka J-O (2010) Description of Microvirga aerophila sp. nov., and Microvirga aerilata sp. nov., isolated from air, reclassification of Balneimonas flocculans Takeda et al. 2004 as Microvirga flocculans comb. nov., and emended description of the genus Microvirga. Int J Syst Evol Microbiol 60:2596–2600
Westlake R (1986) Large-scale continuous production of single cell protein. Chem Ing Tech 58:929–1002
Wolfrum T, Gruner G, Stolp H (1986) Nucleic acid hybridization of pink-pigmented faculatative methylotrophs and pseudomonads. Int Syst J Bacteriol 36:24–28
Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886
Wood AP, Kelly DP, McDonald IR, Jordan SL, Morgan TD, Khan S, Murrell JC, Borodina E (1998) A novel pink pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. Arch Microbiol 169:148–158
Yang Y, Xianfeng YI (2006) Emission and utilization of methanol in higher plants. Ecol Environ 15:1258–1263
Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rossello-Mora R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299
Yates RJ, Howieson JG, Reeve WG, Nandasena KG, Law IJ, Brau L, Ardley JK, Nistelberger HM, Real D, O’Hara GW (2007) Lotononis angolensis forms nitrogen fixing, lupinoid nodules with phylogenetically unique, fast-growing, pink-pigmented bacteria, which do not nodulate L. bainesii or L. listii. Soil Biol Biochem 39:1680–1688
Yezza A, Fournier D, Halasz A, Hawari J (2006) Prduction of polyhydroxyalkanoates from methanol by a new methylotrophic bacterium Methylobacterium sp. GW2. Appl Microbiol Biotechnol 73:211–218
Zaharatos GJ, Daniel A, Miller MA (2001) Discordant carbapenem susceptibility in Methylobacterium species and its application as a method of phenotypic identification. J Clin Microbiol 39:2037–2038
Zeikus JG, Hegge PW, Anderson MA (1979) Thermoanaerobium brockii gen. nov., sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 122:41–48
Zhang J, Song F, Xin YH, Zhang J, Fang C (2009) Microvirga guangxiensis sp. nov., a novel alphaproteobacterium from soil, and emended description of the genus Microvirga. Int J Syst Evol Microbiol 59:1997–2001
Acknowledgments
We are grateful to Tae-Young Ahn (Dankook University, Korea), Julie Ardley (Murdoch University, Western Australia), Jean Euzéby (École Nationale Vétérinaire, France), Peter Green (National Collection of Industrial, Marine, and Food Bacteria, Scotland), Thomas Hoppe (Universität Siegen, Germany), Yi Jiang (Yunnan University, People’s Republic of China), Dipti Nayak and Chris Marx (Harvard University, USA), Angela Sessitsch (Austrian Institute of Technology, Tulln), Stefan Schauer (Universität Kassel, Germany), Julia Vorholt (Eidgenössische Technische Hochschule Zürich, Switzerland), and Stéphane Vuilleumier (Université de Strasbourg, France) for very helpful advice and information and for sharing unpublished data.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this entry
Cite this entry
Kelly, D.P., McDonald, I.R., Wood, A.P. (2014). The Family Methylobacteriaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_256
Download citation
DOI: https://doi.org/10.1007/978-3-642-30197-1_256
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30196-4
Online ISBN: 978-3-642-30197-1
eBook Packages: Biomedical and Life SciencesReference Module Biomedical and Life Sciences