The Family Methylophilaceae

  • Nina Doronina
  • Elena Kaparullina
  • Yuri Trotsenko
Reference work entry


Methylophilaceae, a family within the order Methylophilales, embraces the genera Methylophilus (type genus), Methylobacillus, Methylovorus, and Methylotenera. Betaproteobacterial obligate and restricted facultative methylotrophs capable of utilizing methanol or methylamine as a sole source of carbon and energy. Do not use methane (methylobacteria). Gram-negative rods, multiply by binary fission. Assimilate C1 compounds via the ribulose monophosphate (Quayle) cycle. Major fatty acids are C16:1ω7c and C16:0. However, obligate methylobacteria possess similar morphology and metabolic organization. Thus, the main criteria used to clarify obligate methylobacteria into separate genera and species are their genomic and phylogenetic characteristics. On the other hand, members of the family are defined by some chemotaxonomic and biochemical properties, such as specific phospholipids and enzymes which are used for the delineation of genera. Members of the family are mainly found in activated sludge, mud, river, lake and pond waters, and plants.


Activate Sludge Nalidixic Acid Basal Salt Medium Binary Fission Major Cellular Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anthony C, Williams P (2003) The structure and mechanism of methanol dehydrogenase. Biochim Biophys Acta 1647:18–23PubMedCrossRefGoogle Scholar
  2. Chistoserdova L, Chen S-W, Lapidus A, Lidstrom ME (2003) Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185:2980–2987PubMedCentralPubMedCrossRefGoogle Scholar
  3. Chistoserdova L, Lapidus A, Han C, Goodwin L, Saunders L, Brettin T, Tapia R, Gilna P, Lucas S, Richardson PM, Lidstrom ME (2007) Genome of Methylobacillus flagellatus, molecular basis for obligate methylotrophy, and polyphyletic origin of methylotrophy. J Bacteriol 189:4020–4027PubMedCentralPubMedCrossRefGoogle Scholar
  4. Chistoserdova L, Kalyuzhnaya MG, Lidstrom ML (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63:477–499PubMedCentralPubMedCrossRefGoogle Scholar
  5. Chistoserdova L (2011) Modularity of methylotrophy, revisited. Environ Microbiol 13:2603–2622PubMedCrossRefGoogle Scholar
  6. Doronina NV, Trotsenko YA (1986) Composition of the biomass of methanol-utilizing bacteria. Appl Biochem Microbiol 22:557–561Google Scholar
  7. Doronina NV, Trotsenko YA (1994) Methylophilus leisingerii sp. nov., a new species of restricted facultatively methylotrophic bacteria. Microbiol Engl Transl Mikrobiologiya 63:529–536Google Scholar
  8. Doronina NV, Kudinova LV, Trotsenko YA (2000) Methylovorus mays sp. nov.: a new species of aerobic, obligately methylotrophic bacteria associated with plants. Microbiol Engl Transl Mikrobiologiya 69:599–603Google Scholar
  9. Doronina NV, Ivanova EG, Trotsenko YA (2002) New evidence for the ability of methylobacteria and methanotrophs to synthesize auxins. Microbiol Engl Transl Mikrobiologiya 71:116–118Google Scholar
  10. Doronina NV, Trotsenko YA, Kolganova TV, Tourova TP, Salkinoja-Salonen MS (2004) Methylobacillus pratensis sp. nov., a novel non-pigmented, aerobic, obligately methylotrophic bacterium isolated from meadow grass. Int J Syst Evol Microbiol 54:1453–1457PubMedCrossRefGoogle Scholar
  11. Doronina NV, Ivanova EG, Trotsenko YA (2005a) Phylogenetic position and emended description of the genus Methylovorus. Int J Syst Evol Microbiol 55:903–906PubMedCrossRefGoogle Scholar
  12. Doronina N, Ivanova E, Trotsenko Y, Pshenichnikova A, Kalinina E, Shvets V (2005b) Methylophilus quaylei sp. nov., a new aerobic obligately methylotrophic bacterium. Syst Appl Microbiol 28:303–309PubMedCrossRefGoogle Scholar
  13. Doronina NV, Fedorov DN, Trotsenko YA, Smolyanina SO, Berkovich YA (2009) Obligate methylotrophic bacteria stimulate morphogenesis and antifungal resistance of Chinese cabbage Brassica chinensis L. Biotechnol Russ 6:57–61Google Scholar
  14. Doronina NV, Kaparullina EN, Trotsenko YA (2011) Methylovorus menthalis, a novel species of aerobic obligate methylobacteria associated with plants. Microbiol Engl Transl Mikrobiologiya 80:700–706Google Scholar
  15. Doronina NV, Gogleva AA, Trotsenko YA (2012) Methylophilus glucosoxydans sp. nov., a restricted facultative methylotroph from rice rhizosphere. Int J Syst Evol Microbiol 62:196–201PubMedCrossRefGoogle Scholar
  16. Fedorov DN, Doronina NV, Trotsenko YA (2011) Phytosymbiosis of aerobic methylobacteria: new facts and views. Microbiol Engl Transl Mikrobiologiya 80:435–446Google Scholar
  17. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  18. Galbally IE, Kirstine W (2002) The production of methanol by flowering plants and the global cycle of methanol. J Atmosph Chem 43:195–229CrossRefGoogle Scholar
  19. Gaelli R, Leisinger T (1985) Specialized bacterial strains for the removal of dichloromethane from industrial waste. Conserv Recycl 8:91–100CrossRefGoogle Scholar
  20. Garrity GM, Bell JA, Lilburn T (2005) Order III. Methylophilales ord. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn, (The Proteobacteria), part C (the alpha-, beta-, delta-, and Epsilonproteobacteria). Springer, New York, p 770Google Scholar
  21. Giovannoni SJ, Hayakawa DH, Tripp HJ, Stingl U, Givan SA, Cho J-C, Oh H-M, Kitner JB, Vergin KL, Rappé MS (2008) The small genome of an abundant coastal ocean methylotroph. Environ Microbiol 10:1771–1782PubMedCrossRefGoogle Scholar
  22. Gogleva AA, Kaparullina EN, Doronina NV, Trotsenko YA (2010) Methylophilus flavus sp. nov., and Methylophilus luteus sp. nov., aerobic, methylotrophic bacteria associated with plants. Int J Syst Evol Microbiol 60:2623–2628PubMedCrossRefGoogle Scholar
  23. Gogleva AA, Kaparullina EN, Doronina NV, Trotsenko YA (2011) Methylobacillus arboreus sp. nov., and Methylobacillus gramineus sp. nov., novel non-pigmented obligately methylotrophic bacteria associated with plants. Syst Appl Microbiol 34:477–481PubMedCrossRefGoogle Scholar
  24. Govorukhina NI, Kletsova LV, Tsygankov YD, Trotsenko YA, Netrusov AI (1987) Characteristics of a new obligate methylotroph. Microbiol Engl Transl Mikrobiologiya 56:849–854Google Scholar
  25. Govorukhina NI, Trotsenko YA (1991) Methylovorus, a new genus of restricted facultatively methylotrophic bacteria. Int J Syst Bacteriol 41:158–162CrossRefGoogle Scholar
  26. Harder W, Attwood M, Quayele JR (1973) Methanol assimilation by Hyphomicrobium spp. J Gen Microbiol 78:155–163CrossRefGoogle Scholar
  27. Hendrickson EL, Beck DAC, Wang T, Lidstrom ME, Hackett M, Chistoserdova L (2010) Expressed genome of Methylobacillus flagellatus as defined through comprehensive proteomics and new insights into methylotrophy. J Bacteriol 192:4859–4867PubMedCentralPubMedCrossRefGoogle Scholar
  28. Ivanova EG, Doronina NV, Shepelyakovskaya AO, Laman AG, Brovko FA, Trotsenko YA (2000) Facultative and obligate aerobic methylobacteria synthesize cytokinins. Microbiol Engl Transl Mikrobiologiya 69:646–651Google Scholar
  29. Jenkins O, Byrom D, Jones D (1987) Methylophilus: a new genus of methanol-utilizing bacteria. Int J Syst Bacteriol 37:446–448CrossRefGoogle Scholar
  30. Kalyaeva MA, Zakharchenko NS, Doronina NV, Rukavtsova EB, Ivanova EG, Alekseeva VV, Trotsenko YA, Bur’yanov YI (2001) Plant growth and morphogenesis in vitro is promoted by associative methylotrophic bacteria. Rus J Plant Physiol Engl Transl Fiziol Rast 48:514–517CrossRefGoogle Scholar
  31. Kalyuzhnaya MG, Bowerman S, Lara JC, Lidstrom ME, Chistoserdova L (2006) Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Int J Syst Evol Microbiol 56:2819–2823PubMedCrossRefGoogle Scholar
  32. Kalyuzhnaya MG, Beck DAC, Vorob’ev A, Smalley N, Kunkel DD, Lidstrom ME, Chistoserdova L (2012) Novel methylotrophic isolates from lake sediment, description of Methylotenera versatilis sp. nov. and emended description of the genus Methylotenera. Int J Syst Evol Microbiol 62:106–111PubMedCrossRefGoogle Scholar
  33. Kane SR, Chakicherla AY, Chain PSG, Schmidt R, Shin MW, Legler TC, Scow KM, Larimer FW, Lucas SM, Richardson PM, Hristova KR (2007) Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J Bacteriol 189:1931–1945PubMedCentralPubMedCrossRefGoogle Scholar
  34. Lapidus A, Clum A, Labutti K, Kaluzhnaya MG, Lim S, Beck DAC, Glavina Del Rio T, Nolan M, Mavromatis K, Huntemann M, Lucas S, Lidstrom ME, Ivanova N, Chistoserdova L (2011) Genomes of three methylotrophs from a single niche reveal the genetic and metabolic divergence of the Methylophilaceae. J Bacteriol 193:3757–3764PubMedCentralPubMedCrossRefGoogle Scholar
  35. Large PJ, Bamforth WC (1988) Methylotrophy and biotechnology. Wiley, New York, p 303Google Scholar
  36. MacLennan DG, Ousby JC, Owen TR, Steer DC (1974) Microbiological production of protein. UK patent no. GB1370892Google Scholar
  37. Madhaiyan M, Poonguzhali S, Kwon S-W, Sa T-M (2009) Methylophilus rhizosphaerae sp. nov., a restricted facultative methylotroph isolated from rice rhizosphere soil. Int J Syst Evol Microbiol 59:2904–2908PubMedCrossRefGoogle Scholar
  38. Nemecek-Marshall M, MacDonald RC, Franzen JJ, Wojciechowski CL, Fall R (1995) Methanol emission from leaves: enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol 108:1359–1368PubMedCentralPubMedGoogle Scholar
  39. Seo SA, Kim YM (1993) Isolation and characterization of a restricted facultatively methylotrophic bacterium Methylovorus sp. strain SS1. Kor J Microbiol 31:179–183Google Scholar
  40. Sokolov AP, Luchin SV, Trotsenko YA (1980) Purification and properties of glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Methylobaillus sp. Biochemistry (Moscow) 45:1371–1378Google Scholar
  41. Sokolov AP, Trotsenko YA (1987) Purification and properties of NADP-dependent glutamate dehydrogenase from the obligate methylotrophic bacterium Methylophilus rnethanolovorus. Biochemistry (Moscow) 52:1417–1421Google Scholar
  42. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  43. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  44. Trotsenko YA, Doronina NV, Khmelenina VN (2005) Biotechnological potential of aerobic methylotrophic bacteria: current state and future prospects. Appl Biochem Microbiol 41:433–441CrossRefGoogle Scholar
  45. Trotsenko YA, Ivanova EG, Doronina NV (2001) Aerobic methylotrophic bacteria as phytosymbionts. Microbiol Engl Transl Mikrobiologiya 70:623–632Google Scholar
  46. Urakami T, Komagata K (1986) Emendation of Methylobacillus Yordy and Weaver 1977, a genus of methanol-utilizing bacteria. Int J Syst Bacteriol 36:502–511CrossRefGoogle Scholar
  47. Ward N, Larsen O, Sakwa J, Bruseth L, Khouri H, Durkin AS, Dimitrov G, Jiang L, Scanlan D, Kang KH, Lewis M, Nelson KE, Methe B, Wu M, Heidelberg JF, Paulsen IT, Fouts D, Ravel J, Tettelin H, Ren Q, Read T, DeBoy RT, Seshadri R, Salzberg SL, Jensen HB, Birkeland NK, Nelson WC, Dodson RJ, Grindhaug SH, Holt I, Eidhammer I, Jonasen I, Vanaken S, Utterback T, Feldblyum TV, Fraser CM, Lillehaug JR, Eisen JA (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (bath). PLoS Biol 2:E303PubMedCentralPubMedCrossRefGoogle Scholar
  48. Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218PubMedCrossRefGoogle Scholar
  49. Yordy JR, Weawer TL (1977) Methylobacillus: a new genus of obligately methylotrophic bacteria. Int J Syst Bact 27:247–255CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nina Doronina
    • 1
  • Elena Kaparullina
    • 1
  • Yuri Trotsenko
    • 1
  1. 1.G.K. Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchinoRussia

Personalised recommendations