The Genus Neisseria

  • Julia S. Bennett
  • Holly B. Bratcher
  • Carina Brehony
  • Odile B. Harrison
  • Martin C. J. Maiden
Reference work entry


The genus Neisseria comprises a number of closely related Gram-negative organisms isolated from humans and animals. Their interrelationships are poorly resolved by phenotypic approaches, and the classification of the species groups by molecular techniques has been confused by a combination of their genetic similarity and extensive shared sequence polymorphism as a consequence of shared ancestry, horizontal genetic exchange, or both. Whole genome sequence analysis, especially of large numbers of draft genome sequences, has enabled the comparison of core genes across the genus, and this has proved to be an effective means of defining species groups within the genus. This redefinition is largely consistent with previous species designations with relatively few adjustments necessary. Most members of the genus are not, or are very rarely, pathogenic, but the genus contains the globally significant pathogens Neisseria meningitidis, the meningococcus, and Neisseria gonorrhoeae, the gonococcus. The meningococcus is an “accidental pathogen”: predominantly existing as a harmless commensal, with very few infections resulting in pathology. Pathology does not appear to play a role in the transmission of this organism, although some genotypes have a greater propensity to cause disease than others. The majority of work on the genus concentrates on the two pathogenic species, with attempts to develop a comprehensive vaccine against the meningococcus a major driver for research. The gonococcus is antigenically highly diverse but genetically quite uniform, and probably emerged from a single clone that changed its niche. Emerging antibiotic resistance of the gonococcus currently represents the most significant global health challenge presented by this genus.


Outer Membrane Protein Pelvic Inflammatory Disease Capsular Polysaccharide Meningococcal Disease Neisseria Meningitidis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anonymous (1991) Validation of the publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst Bacteriol 41(4):580–581, List no. 39CrossRefGoogle Scholar
  2. Anonymous (1994) Validation of the publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst Bacteriol 44:852, List no. 51CrossRefGoogle Scholar
  3. Anonymous (1997) Validation of the publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst Bacteriol 47:915–916, List no. 62CrossRefGoogle Scholar
  4. Ashton FE, Ryan A, Diena B, Jennings HJ (1983) A new serogroup (L) of Neisseria meningitidis. J Clin Microbiol 17(5):722–727PubMedCentralPubMedGoogle Scholar
  5. Baker MG et al (2001) A 10-year serogroup B meningococcal disease epidemic in New Zealand: descriptive epidemiology, 1991-2000. J Paediatr Child Health 37(5):S13–S19PubMedCrossRefGoogle Scholar
  6. Barrett SJ, Sneath PHA (1994) A numerical phenotypic taxonomic study of the genus Neisseria. Microbiology 140:2867–2891PubMedCrossRefGoogle Scholar
  7. Barrett SJ, Schlater LK, Montali RJ, Sneath PHA (1994) A new species of Neisseria from iguanid lizards, Neisseria iguanae sp. nov. Lett Appl Microbiol 18:200–202CrossRefGoogle Scholar
  8. Bennett JS, Jolley KA, Sparling PF, Saunders NJ, Hart CA, Feavers IM, Maiden MC (2007) Species status of Neisseria gonorrhoeae: evolutionary and epidemiological inferences from MLST. BMC Biol 5(1):35PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bennett JS, Bentley SD, Vernikos GS, Quail MA, Cherevach I, White B, Parkhill J, Maiden MCJ (2010) Independent evolution of the core and accessory gene sets in the genus Neisseria: insights gained from the genome of Neisseria lactamica isolate 020–06. BMC Genomics 11:652PubMedCentralPubMedCrossRefGoogle Scholar
  10. Bennett JS, Jolley KA, Earle SG, Corton C, Bentley SD, Parkhill J, Maiden MC (2012) A genomic approach to bacterial taxonomy: an examination and proposed reclassification of species within the genus Neisseria. Microbiology 158(Pt 6):1570–1580PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bentley SD, Vernikos GS, Snyder LA, Churcher C, Arrowsmith C, Chillingworth T, Cronin A, Davis PH, Holroyd NE, Jagels K, Maddison M, Moule S, Rabbinowitsch E, Sharp S, Unwin L, Whitehead S, Quail MA, Achtman M, Barrell B, Saunders NJ, Parkhill J (2007) Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18. PLoS Genet 3(2):e23PubMedCentralPubMedCrossRefGoogle Scholar
  12. Berger U (1960) Neisseria animalis nov. spec. Z Hyg Infektionskr 147(2):158–161CrossRefGoogle Scholar
  13. Berger U (1962) Über das Vorkommen von Neisserien bei einigen Tieren. Z Hyg Infektionskr 148:445–457CrossRefGoogle Scholar
  14. Berger U (1971) Neisseria mucosa var. heidelbergensis. Z Med Mikrobiol Immunol 156(2):154–158PubMedCrossRefGoogle Scholar
  15. Berger U (1985) First isolation of Neisseria polysacchareae species nova in the Federal Republic of Germany. Eur J Clin Microbiol 4(4):431–433PubMedCrossRefGoogle Scholar
  16. Bergey DH, Buchanan RE (1974) Bergey’s manual of systematic bacteriology. Williams and Wilkins, BaltimoreGoogle Scholar
  17. Bernfield L, Fletcher DL, Howell A, Farley JE, Zagursky R, Knauf M, Zlotnick G (2002) Identification of a novel vaccine candidate for group B Neisseria meningitidis. In: Thirteenth international pathogenic conference, OsloGoogle Scholar
  18. Bhattacharjee AK, Jennings HJ, Kenny CP, Martin A, Smith ICP (1975) Structural determination of the sialic acid polysaccharide antigens of Neisseria meningitidis serogroups B and C with carbon 13 nuclear magnetic resonance. J Biol Chem 250(5):1926–1932PubMedGoogle Scholar
  19. Bhattacharjee AK, Jennings HJ, Kenny CP, Martin A, Smith IC (1976) Structural determination of the polysaccharide antigens of Neisseria meningitidis serogroups Y, W-135, and BO1. Can J Biochem 54(1):1–8PubMedCrossRefGoogle Scholar
  20. Bhattacharjee AK, Jennings HJ, Kenny CP (1978) Structural elucidation of 3-deoxy-d-manno-octulosonic acid containing meningococcal 29-E capsular polysaccharide antigen using C-13 nuclear magnetic-resonance. Biochemistry 17(4):645–651PubMedCrossRefGoogle Scholar
  21. Bille E, Zahar JR, Perrin A, Morelle S, Kriz P, Jolley KA, Maiden MC, Dervin C, Nassif X, Tinsley CR (2005) A chromosomally integrated bacteriophage in invasive meningococci. J Exp Med 201(12):1905–1913PubMedCentralPubMedCrossRefGoogle Scholar
  22. Bille E, Ure R, Gray SJ, Kaczmarski EB, McCarthy ND, Nassif X, Maiden MC, Tinsley CR (2008) Association of a bacteriophage with meningococcal disease in young adults. PLoS ONE 3(12):e3885PubMedCentralPubMedCrossRefGoogle Scholar
  23. Bilukha OO, Rosenstein N (2005) Prevention and control of meningococcal disease. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 54(RR-7):1–21PubMedGoogle Scholar
  24. Bjune G, Høiby EA, Grønnesby JK, Arnesen O, Fredriksen JH, Halstensen A, Holten E, Lindbak AK, Nøkleby H, Rosenqvist E, Solberg LK, Closs O, Eng J, Frøholm LO, Lystad A, Bakketeig LS, Hareide B (1991) Effect of outer membrane vesicle vaccine against group B meningococcal disease in Norway. Lancet 338(8775):1093–1096PubMedCrossRefGoogle Scholar
  25. Boisier P, Nicolas P, Djibo S, Taha MK, Jeanne I, Mainassara HB, Tenebray B, Kairo KK, Giorgini D, Chanteau S (2007) Meningococcal meningitis: unprecedented incidence of serogroup X-related cases in 2006 in Niger. Clin Infect Dis 44(5):657–663PubMedCrossRefGoogle Scholar
  26. Bovre K, Holten E (1970) Neisseria elongata sp. nov., a rod-shaped member of the genus Neisseria. Re-evaluation of cell shape as a criterion in classification. J Gen Microbiol 60(1):67–75PubMedCrossRefGoogle Scholar
  27. Brandtzaeg P, van Deuren M (2012) Classification and pathogenesis of meningococcal infections. Methods Mol Biol 799:21–35PubMedCrossRefGoogle Scholar
  28. Branham SE (1930) A new meningococcus-like organism (Neisseria flavescens m.sp.) from epidemic meningitis. Public Health Rep 45:845–849CrossRefGoogle Scholar
  29. Bratcher HB, Bennett JS, Maiden MCJ (2012) Evolutionary and genomic insights into meningococcal biology. Future Microbiol 7(7):873–885PubMedCentralPubMedCrossRefGoogle Scholar
  30. Brehony C, Jolley KA, Maiden MC (2007) Multilocus sequence typing for global surveillance of meningococcal disease. FEMS Microbiol Rev 31(1):15–26PubMedCrossRefGoogle Scholar
  31. Buckee CO, Jolley K, Recker M, Penman B, Kriz P, Gupta S, Maiden MC (2008) Role of selection in the emergence of lineages and the evolution of virulence in Neisseria meningitidis. Proc Natl Acad Sci USA 105(39):15082–15087PubMedCentralPubMedCrossRefGoogle Scholar
  32. Buckee CO, Gupta S, Kriz P, Maiden MCJ, Jolley KA (2010) Long-term evolution of antigen repertoires among carried meningococci. Proc R Soc B Biol Sci 277:1635–1641CrossRefGoogle Scholar
  33. Budroni S, Siena E, Hotopp JCD, Seib KL, Serruto D, Nofroni C, Comanducci M, Riley DR, Daugherty SC, Angiuoli SV, Covacci A, Pizza M, Rappuoli R, Moxon ER, Tettelin H, Medini D (2011) Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination. Proc Natl Acad Sci USA 108(11):4494–4499PubMedCentralPubMedCrossRefGoogle Scholar
  34. Bundle DR, Smith IC, Jennings HJ (1974) Determination of the structure and conformation of bacterial polysaccharides by carbon 13 nuclear magnetic resonance. Studies on the group-specific antigens of Neisseria meningitidis serogroups A and X. J Biol Chem 249(7):2275–2281PubMedGoogle Scholar
  35. Cartwright K, Reilly S, White D, Stuart J (1992) Early treatment with parenteral penicillin in meningococcal disease. Br Med J 305:143–147CrossRefGoogle Scholar
  36. Catlin BW, Cunningham LS (1961) Transforming activities and base contents of deoxyribonucleate preparations from various Neisseriae. J Gen Microbiol 26:303–312PubMedCrossRefGoogle Scholar
  37. Caugant DA (1998) Population genetics and molecular epidemiology of Neisseria meningitidis. APMIS 106(5):505–525PubMedCrossRefGoogle Scholar
  38. Caugant DA, Maiden MC (2009) Meningococcal carriage and disease – population biology and evolution. Vaccine 27(Suppl 2):B64–B70PubMedCentralPubMedCrossRefGoogle Scholar
  39. Caugant DA, Bovre K, Gaustad P, Bryn K, Holten E, Høiby EA, Frøholm LO (1986) Multilocus genotypes determined by enzyme electrophoresis of Neisseria meningitidis isolated from patients with systemic disease and from healthy carriers. J Gen Microbiol 132:641–652PubMedGoogle Scholar
  40. Caugant DA, Mocca LF, Frasch CE, Frøholm LO, Zollinger WD, Selander RK (1987) Genetic structure of Neisseria meningitidis populations in relation to serogroup, serotype, and outer membrane protein pattern. J Bacteriol 169(6):2781–2792PubMedCentralPubMedGoogle Scholar
  41. Claus H, Vogel U, Muhlenhoff M, Gerardy-Schahn R, Frosch M (1997) Molecular divergence of the sia locus in different serogroups of Neisseria meningitidis expressing polysialic acid capsules. Mol Gen Genet 257(1):28–34PubMedGoogle Scholar
  42. Claus H, Friedrich A, Frosch M, Vogel U (2000) Differential distribution of novel restriction-modification systems in clonal lineages of Neisseria meningitidis. J Bacteriol 182(5):1296–1303PubMedCentralPubMedCrossRefGoogle Scholar
  43. Claus H, Maiden MC, Maag R, Frosch M, Vogel U (2002) Many carried meningococci lack the genes required for capsule synthesis and transport. Microbiology 148(Pt 6):1813–1819PubMedCrossRefGoogle Scholar
  44. Claus H, Borrow R, Achtman M, Morelli G, Kantelberg C, Longworth E, Frosch M, Vogel U (2004) Genetics of capsule O-acetylation in serogroup C, W-135 and Y meningococci. Mol Microbiol 51(1):227–239PubMedCrossRefGoogle Scholar
  45. Claus H, Maiden MC, Wilson DJ, McCarthy ND, Jolley KA, Urwin R, Hessler F, Frosch M, Vogel U (2005) Genetic analysis of meningococci carried by children and young adults. J Infect Dis 191(8):1263–1271PubMedCrossRefGoogle Scholar
  46. Danielson L, Mann E (1806) The history of a singular and very mortal disease which lately made its appearance in Medfield. Med Agric Reg 1:65–69Google Scholar
  47. Delrieu I, Yaro S, Tamekloé TAS, Njanpop-Lafourcade B-M, Tall H, Jaillard P, Ouedraogo MS, Badziklou K, Sanou O, Drabo A, Gessner BD, Kambou JL, Mueller JE (2011) Emergence of Epidemic Neisseria meningitidis Serogroup X Meningitis in Togo and Burkina Faso. PLoS ONE 6(5):e19513PubMedCentralPubMedCrossRefGoogle Scholar
  48. Dewhirst FE, Chen CK, Paster BJ, Zambon JJ (1993) Phylogeny of species in the family Neisseriaceae isolated from human dental plaque and description of Kingella orale sp. nov. Int J Syst Bacteriol 43:490–499PubMedCrossRefGoogle Scholar
  49. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG (2010) The human oral microbiome. J Bacteriol 192(19):1422–1431Google Scholar
  50. Ding SQ, Ye RB, Zhang HC (1981) Three new serogroups of Neisseria meningitidis. J Biol Stand 9(3):307–315PubMedCrossRefGoogle Scholar
  51. Dominguez NM, Hackett KT, Dillard JP (2011) XerCD-mediated site-specific recombination leads to loss of the 57-kilobase gonococcal genetic island. J Bacteriol 193(2):377–388PubMedCentralPubMedCrossRefGoogle Scholar
  52. Dubreuil JD, Jacques M, Mittal KR, Gottschalk M (2000) Actinobacillus pleuropneumoniae surface polysaccharides: their role in diagnosis and immunogenicity. Anim Health Res Rev 1(2):73–93PubMedCrossRefGoogle Scholar
  53. Elias J, Harmsen D, Claus H, Hellenbrand W, Frosch M, Vogel U (2006) Spatiotemporal analysis of invasive meningococcal disease, Germany. Emerg Infect Dis 12(11):1689–1695PubMedCentralPubMedCrossRefGoogle Scholar
  54. Evans RW (1999) Iron proteins. In: Bullen JJ, Griffiths E (eds) Iron and infection: molecular, physiological and clinical aspects. Wiley, West Sussex, pp 27–86Google Scholar
  55. Evans NJ, Harrison OB, Clow K, Derrick JP, Feavers IM, Maiden MCJ (2010) Variation and molecular evolution of HmbR, the Neisseria meningitidis haemoglobin receptor. Microbiology 156:1384–1393PubMedCentralPubMedCrossRefGoogle Scholar
  56. Falush D (2009) Toward the use of genomics to study microevolutionary change in bacteria. PLoS Genet 5(10)Google Scholar
  57. Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG (2004) eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186(5):1518–1530PubMedCentralPubMedCrossRefGoogle Scholar
  58. Findlow H, Vogel U, Mueller JE, Curry A, Njanpop-Lafourcade BM, Claus H, Gray SJ, Yaro S, Traore Y, Sangare L, Nicolas P, Gessner BD, Borrow R (2007) Three cases of invasive meningococcal disease caused by a capsule null locus strain circulating among healthy carriers in Burkina Faso. J Infect Dis 195(7):1071–1077PubMedCrossRefGoogle Scholar
  59. Finne J, Leinonen M, Makela PH (1983) Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet 2(8346):355–357PubMedCrossRefGoogle Scholar
  60. Fox KK, Thomas JC, Weiner DH, Davis RH, Sparling PF, Cohen MS (1999) Longitudinal evaluation of serovar-specific immunity to Neisseria gonorrhoeae. Am J Epidemiol 149(4):353–358PubMedCrossRefGoogle Scholar
  61. Frasch CE, Zollinger WD, Poolman JT (1985) Serotype antigens of Neisseria meningitidis and a proposed scheme for designation of serotypes. Rev Infect Dis 7:504–510PubMedCrossRefGoogle Scholar
  62. Frosch M, Muller A (1993) Phospholipid substitution of capsular polysaccharides and mechanisms of capsule formation in Neisseria meningitidis. Mol Microbiol 8(3):483–493PubMedCrossRefGoogle Scholar
  63. Frosch M, Vogel U (2006) Structure and genetics of the meningococcal capsule. In: Frosch M, Maiden MC (eds) Handbook of meningococcal disease. Wiley-VCH, Weinheim, pp 145–162CrossRefGoogle Scholar
  64. Frosch M, Weisgerber C, Meyer TF (1989) Molecular characterization and expression in Escherichia coli of the gene complex encoding the polysaccharide capsule of Neisseria meningitidis group B. Proc Natl Acad Sci USA 86:1669–1673PubMedCentralPubMedCrossRefGoogle Scholar
  65. Frosch M, Edwards U, Bousset K, Krausse B, Weisgerber C (1991) Evidence for a common molecular origin of the capsule gene loci in gram-negative bacteria expressing group II capsular polysaccharides. Mol Microbiol 5:1251–1263PubMedCrossRefGoogle Scholar
  66. Fuchs TM, Deppisch H, Scarlato V, Gross R (1996) A new gene locus of Bordetella pertussis defines a novel family of prokaryotic transcriptional accessory proteins. J Bacteriol 178(15):4445–4452PubMedCentralPubMedGoogle Scholar
  67. Gagneux S, Wirth T, Hodgson A, Ehrhard I, Morelli G, Kriz P, Genton B, Smith T, Binka F, Pluschke G, Achtman M (2002) Clonal groupings in serogroup X Neisseria meningitidis. Emerg Infect Dis 8(5):462–466PubMedCentralPubMedCrossRefGoogle Scholar
  68. Gerbase AC, Rowley JT, Heymann DH, Berkley SF, Piot P (1998) Global prevalence and incidence estimates of selected curable STDs. Sex Transm Infect 74(Suppl 1):S12–S16PubMedGoogle Scholar
  69. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, Van de Peer Y, Vandamme P, Thompson FL, Swings J (2005) Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 3(9):733–739PubMedCrossRefGoogle Scholar
  70. Gotschlich EC, Goldschneider I, Artenstein MS (1969) Human immunity to the meningococcus IV. Immunogenicity of group A and group C meningococcal polysaccharides. J Exp Med 129:1367–1384PubMedCentralPubMedCrossRefGoogle Scholar
  71. Granoff DM (2010) Review of meningococcal group B vaccines. Clin Infect Dis 50(s2):S54–S65PubMedCentralPubMedCrossRefGoogle Scholar
  72. Greenwood B (1999) Manson lecture. Meningococcal meningitis in Africa. Trans R Soc Trop Med Hyg 93(4):341–353PubMedCrossRefGoogle Scholar
  73. Greenwood BM, Wali SS (1980) Control of meningococcal infection in the African meningitis belt by selective vaccination. Lancet 1(8171):729–732PubMedCrossRefGoogle Scholar
  74. Gu A, Zhang Z, Zhang N, Tsark W, Shively JE (2010) Generation of human CEACAM1 transgenic mice and binding of Neisseria Opa protein to their neutrophils. PLoS ONE 5(4):e10067PubMedCentralPubMedCrossRefGoogle Scholar
  75. Gudlavalleti SK, Datta AK, Tzeng YL, Noble C, Carlson RW, Stephens DS (2004) The Neisseria meningitidis serogroup A capsular polysaccharide O-3 and O-4 acetyltransferase. J Biol Chem 279(41):42765–42773PubMedCrossRefGoogle Scholar
  76. Guibourdenche M, Popoff MY, Riou JY (1986) Deoxyribonucleic acid relatedness among Neisseria gonorrhoeae, N. meningitidis, N. lactamica, N. cinerea and “Neisseria polysaccharea”. Ann Inst Pasteur Microbiol 137(2):177–185CrossRefGoogle Scholar
  77. Guibourdenche M et al (1996) Epidemics of serogroup A Neisseria meningitidis of subgroup III in Africa, 1989-94. Epidemiol Infect 116(2):115–120PubMedCentralPubMedCrossRefGoogle Scholar
  78. Gupta S, Maiden MCJ, Feavers IM, Nee S, May RM, Anderson RM (1996) The maintenance of strain structure in populations of recombining infectious agents. Nat Med 2(4):437–442PubMedCrossRefGoogle Scholar
  79. Hammerschmidt S, Hilse R, van Putten JP, Gerardy-Schahn R, Unkmeir A, Frosch M (1996a) Modulation of cell surface sialic acid expression in Neisseria meningitidis via a transposable genetic element. EMBO J 15(1):192–198PubMedCentralPubMedGoogle Scholar
  80. Hammerschmidt S, Muller A, Sillmann H, Muhlenhoff M, Borrow R, Fox A, van Putten J, Zollinger WD, Gerardy-Schahn R, Frosch M (1996b) Capsule phase variation in Neisseria meningitidis serogroup B by slipped-strand mispairing in the polysialyltransferase gene (siaD): correlation with bacterial invasion and the outbreak of meningococcal disease. Mol Microbiol 20(6):1211–1220PubMedCrossRefGoogle Scholar
  81. Han XY, Hong T, Falsen E (2006) Neisseria bacilliformis sp. nov. isolated from human infections. J Clin Microbiol 44(2):474–479PubMedCentralPubMedCrossRefGoogle Scholar
  82. Harmsen D, Singer C, Rothganger J, Tonjum T, de Hoog GS, Shah H, Albert J, Frosch M (2001) Diagnostics of neisseriaceae and moraxellaceae by ribosomal DNA sequencing: ribosomal differentiation of medical microorganisms. J Clin Microbiol 39(3):936–942PubMedCentralPubMedCrossRefGoogle Scholar
  83. Harmsen D, Rothganger J, Frosch M, Albert J (2002) RIDOM: ribosomal differentiation of medical micro-organisms database. Nucleic Acids Res 30(1):416–417PubMedCentralPubMedCrossRefGoogle Scholar
  84. Harrison OB, Claus H, Jiang Y, Bennett JS, Bratcher HB, Jolley KA, Corton C, Care R, Poolman JT, Zollinger WD, Frasch CE, Stephens DS, Feavers I, Frosch M, Parkhill J, Vogel U, Quail MA, Bentley SD, Maiden MC (2013) Description and nomenclature of Neisseria meningitidis capsule locus. Emerg Infect Dis 2013, 19(4):566–573.PubMedCentralPubMedCrossRefGoogle Scholar
  85. Harrison OB, Evans NJ, Blair JM, Grimes HS, Tinsley CR, Nassif X, Kriz P, Ure R, Gray SJ, Derrick JP, Maiden MC, Feavers IM (2009) Epidemiological evidence for the role of the hemoglobin receptor, HmbR, in meningococcal virulence. J Infect Dis 200(1):94–98PubMedCentralPubMedCrossRefGoogle Scholar
  86. Hassan-King MKA, Wall RA, Greenwood BM (1988) Meningococcal carriage, meningococcal disease and vaccination. J Infect 16:55–59PubMedCrossRefGoogle Scholar
  87. Heath PT, McVernon J (2002) The UK Hib vaccine experience. Arch Dis Child 86(6):396–399PubMedCentralPubMedCrossRefGoogle Scholar
  88. Henriksen SD, Holten E (1976) Neisseria elongata subsp. glycolytica subsp. nov. Int J Syst Bacteriol 26:478–481CrossRefGoogle Scholar
  89. Hobb RI, Tzeng YL, Choudhury BP, Carlson RW, Stephens DS (2010) Requirement of NMB0065 for connecting assembly and export of sialic acid capsular polysaccharides in Neisseria meningitidis. Microbes Infect 12(6):476–487PubMedCentralPubMedCrossRefGoogle Scholar
  90. Hollis DG, Wiggins GL, Weaver RE (1969) Neisseria lactamicus sp. n., a lactose-fermenting species resembling Neisseria meningitidis. Appl Microbiol 17(1):71–77PubMedCentralPubMedGoogle Scholar
  91. Holmes B, Costas M, On SL, Vandamme P, Falsen E, Kersters K (1993) Neisseria weaveri sp. nov. (formerly CDC group M-5), from dog bite wounds of humans. Int J Syst Evol Microbiol 43(4):687–693Google Scholar
  92. Hotopp JC, Grifantini R, Kumar N, Tzeng YL, Fouts D, Frigimelica E, Draghi M, Giuliani MM, Rappuoli R, Stephens DS, Grandi G, Tettelin H (2006) Comparative genomics of Neisseria meningitidis: core genome, islands of horizontal transfer and pathogen-specific genes. Microbiology 152(Pt 12):3733–3749CrossRefGoogle Scholar
  93. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23(2):254–267PubMedCrossRefGoogle Scholar
  94. Jennings HJ, Rosell KG, Kenny CP (1979) Structural elucidation of the capsular polysaccharide antigen of Neisseria meningitidis serogroup-Z using C-13 nuclear magnetic-resonance. Can J Chem Rev Can Chim 57(22):2902–2907CrossRefGoogle Scholar
  95. Jodar L, LaForce FM, Ceccarini C, Aguado T, Granoff DM (2003) Meningococcal conjugate vaccine for Africa: a model for development of new vaccines for the poorest countries. Lancet 361(9372):1902–1904PubMedCrossRefGoogle Scholar
  96. Jolley KA, Brehony C, Maiden MC (2007) Molecular typing of meningococci: recommendations for target choice and nomenclature. FEMS Microbiol Rev 31(1):89–96PubMedCrossRefGoogle Scholar
  97. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony CM, Colles FM, Wimalarathna HM, Harrison OB, Sheppard SK, Cody AJ, Maiden MC (2012a) Ribosomal multi-locus sequence typing: universal characterisation of bacteria from domain to strain. Microbiology 158:1005–1015PubMedCentralPubMedCrossRefGoogle Scholar
  98. Jolley KA, Hill DM, Bratcher HB, Harrison OB, Feavers IM, Parkhill J, Maiden MC (2012b) Resolution of a meningococcal disease outbreak from whole genome sequence data with rapid web-based analysis methods. J Clin Microbiol 50(9):3046–3053PubMedCentralPubMedCrossRefGoogle Scholar
  99. Jones DM, Kaczmarski EB (1994) Meningococcal infections in England and Wales: 1993. Commun Dis Rep CDR Rev 4(9):R97–R100PubMedGoogle Scholar
  100. Jordan PW, Snyder LA, Saunders NJ (2005) Strain-specific differences in Neisseria gonorrhoeae associated with the phase variable gene repertoire. BMC Microbiol 5(1):21PubMedCentralPubMedCrossRefGoogle Scholar
  101. Kahler CM, Datta A, Tzeng YL, Carlson RW, Stephens DS (2005) Inner core assembly and structure of the lipooligosaccharide of Neisseria meningitidis: capacity of strain NMB to express all known immunotype epitopes. Glycobiology 15(4):409–419PubMedCrossRefGoogle Scholar
  102. Kiefer F (1896) Zur differential diagnose des erregers der epidemischen cerebrospinalmeningitis und der gonorrhoea. Berl Klin Wochenschr 33:628–630Google Scholar
  103. Knapp JS, Hook EW 3rd (1988) Prevalence and persistence of Neisseria cinerea and other Neisseria spp. in adults. J Clin Microbiol 26(5):896–900PubMedCentralPubMedGoogle Scholar
  104. Kristiansen B-E, Radstrom P, Jenkins A, Ask E, Facinelli B, Sköld O (1990) Cloning and characteriztion of a DNA fragment that confers sulfonamide resistance in a serogroup B, serotype 15 strain of Neisseria meningitidis. Antimicrob Agents Chemother 34:2277–2279PubMedCentralPubMedCrossRefGoogle Scholar
  105. LaForce FM, Konde K, Viviani S, Preziosi MP (2007) The meningitis vaccine project. Vaccine 25(Suppl 1):A97–A100PubMedCrossRefGoogle Scholar
  106. Lau PC, Forghani F, Labbe D, Bergeron H, Brousseau R, Holtke HJ (1994) The NlaIV restriction and modification genes of Neisseria lactamica are flanked by leucine biosynthesis genes. Mol Gen Genet 243(1):24–31 [published erratum appears in Mol Gen Genet 244(2):167, 1994 July 25]PubMedCrossRefGoogle Scholar
  107. Lee MY, Park EG, Choi JY, Cheong HS, Chung DR, Peck KR, Song JH, Ko KS (2010) ‘Neisseria skkuensis’ sp. nov., isolated from the blood of a diabetic patient with a foot ulcer. J Med Microbiol 59(Pt 7):856–859PubMedCrossRefGoogle Scholar
  108. Levay PF, Viljoen M (1995) Lactoferrin: a general review. Haematologica 80(3):252–267PubMedGoogle Scholar
  109. Lewis LA, Gray E, Wang Y-P, Roe BA, Dyer DA (1997) Molecular characterisation of hpuAB, the haemoglobin-haptoglobin-utilization operon of Neisseria meningitidis. Mol Microbiol 23:737–749PubMedCrossRefGoogle Scholar
  110. Lewis LA, Rohde K, Gipson M, Behrens B, Gray E, Toth SI, Roe BA, Dyer DW (1998) Identification and molecular analysis of lbpBA, which encodes the two-component meningococcal lactoferrin receptor. Infect Immun 66(6):3017–3023PubMedCentralPubMedGoogle Scholar
  111. Lewis LA, Gipson M, Hartman K, Ownbey T, Vaughn J, Dyer DW (1999) Phase variation of HpuAB and HmbR, two distinct haemoglobin receptors of Neisseria meningitidis DNM2. Mol Microbiol 32(5):977–989PubMedCrossRefGoogle Scholar
  112. Liu TY, Gotschlich EC, Dunne FT, Jonssen EK (1971a) Studies on the meningococcal polysaccharides. II. Composition and chemical properties of the group B and group C polysaccharide. J Biol Chem 246(15):4703–4712PubMedGoogle Scholar
  113. Liu TY, Gotschlich EC, Jonssen EK, Wysocki JR (1971b) Studies on the meningococcal polysaccharides. I. Composition and chemical properties of the group A polysaccharide. J Bacteriol 246(9):2849–2858Google Scholar
  114. Maiden MC (2006) Multilocus sequence typing of bacteria. Annu Rev Microbiol 60:561–588PubMedCrossRefGoogle Scholar
  115. Maiden MC (2008) Population genomics: diversity and virulence in the Neisseria. Curr Opin Microbiol 11(5):1–5CrossRefGoogle Scholar
  116. Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95(6):3140–3145PubMedCentralPubMedCrossRefGoogle Scholar
  117. Maiden MC, Stuart JM, U. M. C. Group (2002) Carriage of serogroup C meningococci 1 year after meningococcal C conjugate polysaccharide vaccination. Lancet 359(9320):1829–1831PubMedCrossRefGoogle Scholar
  118. Makela PH, Kayhty H, Weckstrom P, Sivonen A, Renkonen OV (1975) Effect of group-A meningococcal vaccine in army recruits in Finland. Lancet 2(7941):883–886PubMedCrossRefGoogle Scholar
  119. Marri PR, Paniscus M, Weyand NJ, Rendon MA, Calton CM, Hernandez DR, Higashi DL, Sodergren E, Weinstock GM, Rounsley SD, So M (2010) Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS One 5(7):e11835PubMedCentralPubMedCrossRefGoogle Scholar
  120. Michon F, Brisson JR, Roy R, Ashton FE, Jennings HJ (1985) Structural determination of the capsular polysaccharide of Neisseria meningitidis group I: a two-dimensional NMR analysis. Biochemistry 24(20):5592–5598PubMedCrossRefGoogle Scholar
  121. Millar JW, Siess EE, Feldman HA, Silverman C, Frank P (1963) In vivo and in vitro resistance to sulfadiazine in strains of Neisseria meningitidis. JAMA 186:139–141PubMedCrossRefGoogle Scholar
  122. Miller E, Salisbury D, Ramsay M (2001) Planning, registration, and implementation of an immunisation campaign against meningococcal serogroup C disease in the UK: a success story. Vaccine 20(Suppl 1):S58–S67PubMedCrossRefGoogle Scholar
  123. Morse SA, Knapp JS (1992) The genus Neisseria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 2495–2559Google Scholar
  124. Murray EGD (1939) In: Bergey DG (ed) Bergey’s manual of determinative bacteriology. Williams & Wilkins, Baltimore, pp 278–288Google Scholar
  125. O’Hallahan J, Lennon D, Oster P, Lane R, Reid S, Mulholland K, Stewart J, Penney L, Percival T, Martin D (2005) From secondary prevention to primary prevention: a unique strategy that gives hope to a country ravaged by meningococcal disease. Vaccine 23(17–18):2197–2201PubMedCrossRefGoogle Scholar
  126. Oppenheim BA (1997) Antibiotic resistance in Neisseria meningitidis. Clin Infect Dis 24(Suppl 1):S98–S101PubMedCrossRefGoogle Scholar
  127. Pace D, Pollard AJ (2012) Meningococcal disease: clinical presentation and sequelae. Vaccine 30(Suppl 2):B3–B9PubMedCrossRefGoogle Scholar
  128. Parkhill J, Achtman M, James KD, Bentley SD, Churcher C, Klee SR, Morelli G, Basham D, Brown D, Chillingworth T, Davies RM, Davis P, Devlin K, Feltwell T, Hamlin N, Holroyd S, Jagels K, Leather S, Moule S, Mungall K, Quail MA, Rajandream MA, Rutherford KM, Simmonds M, Skelton J, Whitehead S, Spratt BG, Barrell BG (2000) Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404(6777):502–506PubMedCrossRefGoogle Scholar
  129. Perez-Trallero E, Garcia Arenzana JM, Ayestaran I, Munoz Baroja I (1989) Comparative activity in vitro of 16 antimicrobial agents against penicillin-susceptible meningococci and meningococci with diminished susceptibility to penicillin. Antimicrob Agents Chemother 33(9):1622–1623PubMedCentralPubMedCrossRefGoogle Scholar
  130. Petering H, Hammerschmidt S, Frosch M, van Putten JP, Ison CA, Robertson BD (1996) Genes associated with meningococcal capsule complex are also found in Neisseria gonorrhoeae. J Bacteriol 178(11):3342–3345PubMedCentralPubMedGoogle Scholar
  131. Pettersson A, Prinz T, Umar A, van der Biezen J, Tommassen J (1998) Molecular characterization of LbpB, the second lactoferrin-binding protein of Neisseria meningitidis. Mol Microbiol 27(3):599–610PubMedCrossRefGoogle Scholar
  132. Pettersson A, van der Biezen J, Joosten V, Hendriksen J, Tommassen J (1999) Sequence variability of the meningococcal lactoferrin-binding protein LbpB. Gene 231:105–110PubMedCrossRefGoogle Scholar
  133. Pizza M, Scarlato V, Masignani V, Giuliani MM, Arico B, Comanducci M, Jennings GT, Baldi L, Bartolini E, Capecchi B, Galeotti CL, Luzzi E, Manetti R, Marchetti E, Mora M, Nuti S, Ratti G, Santini L, Savino S, Scarselli M, Storni E, Zuo P, Broeker M, Hundt E, Knapp B, Blair E, Mason T, Tettelin H, Hood DW, Jeffries AC, Saunders NJ, Granoff DM, Venter JC, Moxon ER, Grandi G, Rappuoli R (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287(5459):1816–1820PubMedCrossRefGoogle Scholar
  134. Price GA, Russell MW, Cornelissen CN (2005) Intranasal administration of recombinant Neisseria gonorrhoeae transferrin binding proteins A and B conjugated to the cholera toxin B subunit induces systemic and vaginal antibodies in mice. Infect Immun 73(7):3945–3953PubMedCentralPubMedCrossRefGoogle Scholar
  135. Ramsay ME, Andrews NJ, Trotter CL, Kaczmarski EB, Miller E (2003) Herd immunity from meningococcal serogroup C conjugate vaccination in England: database analysis. BMJ 326(7385):365–366PubMedCentralPubMedCrossRefGoogle Scholar
  136. Reinhardt M, Elias J, Albert J, Frosch M, Harmsen D, Vogel U (2008) EpiScanGIS: an online geographic surveillance system for meningococcal disease. Int J Health Geogr 7:33PubMedCentralPubMedCrossRefGoogle Scholar
  137. Riou JY, Guibourdenche M (1987) Neisseria polysaccharea sp. nov. Int J Syst Bacteriol 37:163–165CrossRefGoogle Scholar
  138. Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol 50:285–315PubMedCrossRefGoogle Scholar
  139. Rock JD, Mahnane MR, Anjum MF, Shaw JG, Read RC, Moir JW (2005) The pathogen Neisseria meningitidis requires oxygen, but supplements growth by denitrification. Nitrite, nitric oxide and oxygen control respiratory flux at genetic and metabolic levels. Mol Microbiol 58(3):800–809PubMedCrossRefGoogle Scholar
  140. Rodriguez AP, Dickinson F, Baly A, Martinez R (1999) The epidemiological impact of antimeningococcal B vaccination in Cuba. Mem Inst Oswaldo Cruz 94(4):433–440PubMedCrossRefGoogle Scholar
  141. Rokbi B, Maitre-Wilmotte G, Mazarin V, Fourrichon L, Lissolo L, Quentin-Millet MJ (1995) Variable sequences in a mosaic-like domain of meningococcal tbp2 encode immunoreactive epitopes. FEMS Microbiol Lett 132(3):277–283PubMedCrossRefGoogle Scholar
  142. Rokbi B, Mignon M, Caugant DA, Quentin-Millet MJ (1997a) Heterogeneity of tbpB, the transferrin-binding protein B gene, among serogroup B Neisseria meningitidis strains of the ET-5 complex. Clin Diagn Lab Immunol 4(5):522–529PubMedCentralPubMedGoogle Scholar
  143. Rokbi B, Mignon M, Maitre-Wilmotte G, Lissolo L, Danve B, Caugant DA, Quentin-Millet MJ (1997b) Evaluation of recombinant transferrin-binding protein B variants from Neisseria meningitidis for their ability to induce cross-reactive and bactericidal antibodies against a genetically diverse collection of serogroup B strains. Infect Immun 65(1):55–63PubMedCentralPubMedGoogle Scholar
  144. Rosenstein NE, Perkins BA, Stephens DS, Popovic T, Hughes JM (2001) Meningococcal disease. New Engl J Med 344(18):1378–1388PubMedCrossRefGoogle Scholar
  145. Rouppe van der Voort E, Schuller M, Holst J, de Vries P, van der Ley P, van den Dobbelsteen G, Poolman J (2000) Immunogenicity studies with a genetically engineered hexavalent PorA and a wild-type meningococcal group B outer membrane vesicle vaccine in infant cynomolgus monkeys. Vaccine 18(14):1334–1343PubMedCrossRefGoogle Scholar
  146. Russell JE, Urwin R, Gray SJ, Fox AJ, Feavers IM, Maiden MC (2008) Molecular epidemiology of meningococcal disease in England and Wales 1975–1995, before the introduction of serogroup C conjugate vaccines. Microbiology 154(Pt 4):1170–1177PubMedCentralPubMedCrossRefGoogle Scholar
  147. Scarselli M, Arico B, Brunelli B, Savino S, Di Marcello F, Palumbo E, Veggi D, Ciucchi L, Cartocci E, Bottomley MJ, Malito E, Lo Surdo P, Comanducci M, Giuliani MM, Cantini F, Dragonetti S, Colaprico A, Doro F, Giannetti P, Pallaoro M, Brogioni B, Tontini M, Hilleringmann M, Nardi-Dei V, Banci L, Pizza M, Rappuoli R (2011) Rational design of a meningococcal antigen inducing broad protective immunity. Sci Transl Med 3(91)Google Scholar
  148. Schoen C, Blom J, Claus H, Schramm-Gluck A, Brandt P, Muller T, Goesmann A, Joseph B, Konietzny S, Kurzai O, Schmitt C, Friedrich T, Linke B, Vogel U, Frosch M (2008) Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in Neisseria meningitidis. Proc Natl Acad Sci USA 105(9):3473–3478PubMedCentralPubMedCrossRefGoogle Scholar
  149. Scholten RJPM et al (1994) Phenotypic and genotypic changes in a new clone complex of Neisseria meningitidis causing disease in The Netherlands, 1958–1990. J Infect Dis 169:673–676PubMedCrossRefGoogle Scholar
  150. Schwartz B, Moore PS, Broome CV (1989) Global epidemiology of meningococcal disease. Clin Microbiol Rev 2:s118–s124PubMedCentralPubMedGoogle Scholar
  151. Sneath PH, Barrett SJ (1996) A new species of Neisseria from the dental plaque of the domestic cow, Neisseria dentiae sp. nov. Lett Appl Microbiol 23(5):355–358PubMedCrossRefGoogle Scholar
  152. Snyder LA, Saunders NJ (2006) The majority of genes in the pathogenic Neisseria species are present in non-pathogenic Neisseria lactamica, including those designated as ‘virulence genes’. BMC Genomics 7:128PubMedCentralPubMedCrossRefGoogle Scholar
  153. Snyder LA, Jarvis SA, Saunders NJ (2005) Complete and variant forms of the ‘gonococcal genetic island’ in Neisseria meningitidis. Microbiology 151(Pt 12):4005–4013PubMedCrossRefGoogle Scholar
  154. Snyder LA, Cole JA, Pallen MJ (2009) Comparative analysis of two Neisseria gonorrhoeae genome sequences reveals evidence of mobilization of Correia repeat enclosed elements and their role in regulation. BMC Genomics 10:70PubMedCentralPubMedCrossRefGoogle Scholar
  155. Spratt BG, Maiden MCJ (1999) Bacterial population genetics, evolution and epidemiology. Proc R Soc Lond Ser B Biol Sci 354(1384):701–710Google Scholar
  156. Spratt BG, Dowson CG, Zhang Q-Y, Bowler LD, Brannigan JA, Hutchison A (1991) Mosaic genes, hybrid penicillin-binding proteins, and the origins of penicillin resistance in Neisseria meningitidis and Streptococcus pneumoniae. In: Campisi J, Cunningham DD, Inouye M, Riley M (eds)Perspectives on cellular regulation: from bacteria to cancer. Wiley-Liss, New York, pp 73–83Google Scholar
  157. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690PubMedCrossRefGoogle Scholar
  158. Stein DC, Gunn JS, Radlinska M, Piekarowicz A (1995) Restriction and modification systems of Neisseria gonorrhoeae. Gene 157(1–2):19–22PubMedCrossRefGoogle Scholar
  159. Stephens DS (2007) Conquering the meningococcus. FEMS Microbiol Rev 31(1):3–14PubMedCrossRefGoogle Scholar
  160. Stojilijkovic I, Hwa V, de Saint Martin L, O’Gaora P, Nassif X, Heffron F, So M (1995) The Neisseria meningitidis haemoglobin receptor: its role in iron utilisation and virulence. Mol Microbiol 15(3):531–541CrossRefGoogle Scholar
  161. Swartley JS, Liu LJ, Miller YK, Martin LE, Edupuganti S, Stephens DS (1998) Characterization of the gene cassette required for biosynthesis of the (alpha1→6)-linked N-acetyl-d-mannosamine-1-phosphate capsule of serogroup A Neisseria meningitidis. J Bacteriol 180(6):1533–1539PubMedCentralPubMedGoogle Scholar
  162. Tan LKK, Carlone GM, Borrow R (2010) Advances in the development of vaccines against Neisseria meningitidis. New Engl J Med 362(16):1511–1520PubMedCrossRefGoogle Scholar
  163. Tapsall JW, Ndowa F, Lewis DA, Unemo M (2009) Meeting the public health challenge of multidrug- and extensively drug-resistant Neisseria gonorrhoeae. Expert Rev Anti Infect Ther 7(7):821–834PubMedCrossRefGoogle Scholar
  164. Tauseef I, Harrison OB, Wooldridge KG, Feavers IM, Neal KR, Gray SJ, Kriz P, Turner DPJ, Ala’Aldeen DAA, Maiden MCJ, Bayliss CD (2011) Influence of the combination and phase variation status of the haemoglobin receptors HmbR and HpuAB on meningococcal virulence. Microbiology 157:1446–1456PubMedCentralPubMedCrossRefGoogle Scholar
  165. Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, Eisen JA, Ketchum KA, Hood DW, Peden JF, Dodson RJ, Nelson WC, Gwinn ML, DeBoy R, Peterson JD, Hickey EK, Haft DH, Salzberg SL, White O, Fleischmann RD, Dougherty BA, Mason T, Ciecko A, Parksey DS, Blair E, Cittone H, Clark EB, Cotton MD, Utterback TR, Khouri H, Qin H, Vamathevan J, Gill J, Scarlato V, Masignani V, Pizza M, Grandi G, Sun L, Smith HO, Fraser CM, Moxon ER, Rappuoli R, Venter JC (2000) Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287(5459):1809–1815PubMedCrossRefGoogle Scholar
  166. Thayer JD, Martin JE Jr (1966) Improved medium selective for cultivation of N. gonorrhoeae and N. meningitidis. Public Health Rep 81(6):559–562PubMedCentralPubMedCrossRefGoogle Scholar
  167. Thompson EAL, Feavers IM, Maiden MCJ (2003) Antigenic diversity of meningococcal enterobactin receptor FetA, a vaccine component. Microbiology 149(Pt 7):1849–1858PubMedCrossRefGoogle Scholar
  168. Tonjum T (2005) Genus I. Neisseria. In: Garrity GM, Brenner DJ, Krieg NR, Staley JR (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 777–798CrossRefGoogle Scholar
  169. Trevisan V (1885) Caratteri di alcuni nuovi generi di Batteriaceae. Atti Accad Fis Med Stat 3(4):92–106Google Scholar
  170. Tzanakaki G, Blackwell CC, Kremastinou J, Kallergi C, Kouppari G, Weir DM (1992) Antibiotic sensitivities of Neisseria meningitidis isolates from patients and carriers in Greece. Epidemiol Infect 108(3):449–455PubMedCentralPubMedCrossRefGoogle Scholar
  171. Tzeng YL, Noble C, Stephens DS (2003) Genetic basis for biosynthesis of the (alpha 1→4)-linked N-acetyl-d-glucosamine 1-phosphate capsule of Neisseria meningitidis serogroup X. Infect Immun 71(12):6712–6720PubMedCentralPubMedCrossRefGoogle Scholar
  172. Unemo M, Dillon JR (2011) Review and international recommendation of methods for typing Neisseria gonorrhoeae isolates and their implications for improved knowledge of gonococcal epidemiology, treatment, and biology. Clin Microbiol Rev 24(3):447–458PubMedCentralPubMedCrossRefGoogle Scholar
  173. Unemo M, Shafer WM (2011) Antibiotic resistance in Neisseria gonorrhoeae: origin, evolution, and lessons learned for the future. Ann N Y Acad Sci 1230:E19–E28PubMedCentralPubMedCrossRefGoogle Scholar
  174. Urwin R, Russell JE, Thompson EA, Holmes EC, Feavers IM, Maiden MC (2004) Distribution of surface protein variants among hyperinvasive meningococci: implications for vaccine design. Infect Immun 72(10):5955–5962PubMedCentralPubMedCrossRefGoogle Scholar
  175. van der Kaaden A, van Doorn-van Wakeren JI, Kamerling JP, Vliegenthart JF, Tiesjema RH (1984) Structure of the capsular antigen of Neisseria meningitidis serogroup H. Eur J Biochem 141(3):513–519PubMedCrossRefGoogle Scholar
  176. Van der Kaaden A, Gerwig GJ, Kamerling JP, Vliegenthart JF, Tiesjema RH (1985) Structure of the capsular antigen of Neisseria meningitidis serogroup K. Eur J Biochem 152(3):663–668PubMedCrossRefGoogle Scholar
  177. van Duynhoven YTHP (1999) The epidemiology of Neisseria gonorrhoeae in Europe. Microbes Infect 1(6):455–464PubMedCrossRefGoogle Scholar
  178. Vandamme P, Holmes B, Bercovier H, Coenye T (2006) Classification of Centers for Disease Control Group Eugonic Fermenter (EF)-4a and EF-4b as Neisseria animaloris sp. nov. and Neisseria zoodegmatis sp. nov., respectively. Int J Syst Evol Microbiol 56(Pt 8):1801–1805PubMedCrossRefGoogle Scholar
  179. Vedros NA (1987) Development of meningococcal serogroups. In: Vedros NA (ed) Evolution of meningococcal disease II. CRC Press, Boca Raton, pp 33–37Google Scholar
  180. Vedros NA, Hoke C, Chun P (1983) Neisseria macacae sp. nov., a new Neisseria species isolated from the oropharynges of rhesus monkeys (Macaca mulatta). Int J Syst Bacteriol 33:515–520CrossRefGoogle Scholar
  181. Véron M, Thibault P, Second L (1959) Neisseria mucosa (Diplococcus mucosus Lingelsheim). I. Bacteriological description and study of its pathogenicity. Ann Inst Pasteur (Paris) 97:497–510Google Scholar
  182. Vieusseux G (1806) Memoire sur le maladie qui a régné a Genêve au printemps de 1805. J Méd Chir Pharm II:163–165Google Scholar
  183. Wang JF et al (1992) Clonal and antigenic analysis of serogroup A Neisseria meningitidis with particular reference to epidemiological features of epidemic meningitis in China. Infect Immunity 60:5267–5282Google Scholar
  184. Waterhouse R (1911) A case of suprarenal apoplexy. Lancet 1:577–578CrossRefGoogle Scholar
  185. Watkins ER, Maiden MC (2012). Persistence of hyperinvasive meningococcal strain types during global spread as recorded in the PubMLST database. PLoS One 7:e45349PubMedCentralPubMedCrossRefGoogle Scholar
  186. Weichselbaum A (1887) Uber die aetiologie der akuten meningitis cerebrospinalis. Fortschr Med 5:573–575Google Scholar
  187. Weinberg ED (1978) Iron and infection. Microbiol Rev 42:45–66PubMedCentralPubMedGoogle Scholar
  188. Weinberg ED (2009) Iron availability and infection. Biochim Biophys Acta 1790(7):600–605PubMedCrossRefGoogle Scholar
  189. Wolfgang WJ, Carpenter AN, Cole JA, Gronow S, Habura A, Jose S, Nazarian EJ, Kohlerschmidt DJ, Limberger R, Schoonmaker-Bopp D, Sproer C, Musser KA (2011) Neisseria wadsworthii sp. nov. and Neisseria shayeganii sp. nov., isolated from clinical specimens. Int J Syst Evol Microbiol 61(Pt 1):91–98PubMedCrossRefGoogle Scholar
  190. Wolfgang WJ, Passaretti TV, Jose R, Cole J, Coorevits A, Carpenter AN, Jose S, Van Landschoot A, Izard J, Kohlerschmidt DJ, Vandamme P, Dewhirst FE, Fisher MA, Musser KA (2012) Neisseria oralis sp. nov. isolated from healthy gingival plaque and clinical samples. Int J Syst Evol Microbiol 61(1):91–98Google Scholar
  191. Xu Z, Chen X, Li L, Li T, Wang S, Chen H, Zhou R (2010) Comparative genomic characterization of Actinobacillus pleuropneumoniae. J Bacteriol 192(21):5625–5636PubMedCentralPubMedCrossRefGoogle Scholar
  192. Yanhong W, Xiaoquan W, Wenbo L, Yuefei Y, Jie Z, Hui-Jun S, Bin-Bin Z, Tao H, Xiufan L (2011) Characterization of a new species of Neisseria isolated from the liver of the Gaoyou sheldrake. Afr J Microbiol Res 5(28):5102–5106Google Scholar
  193. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glockner FO, Rossello-Mora R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33(6):291–299PubMedCrossRefGoogle Scholar
  194. Yazdankhah SP, Kriz P, Tzanakaki G, Kremastinou J, Kalmusova J, Musilek M, Alvestad T, Jolley KA, Wilson DJ, McCarthy ND, Caugant DA, Maiden MC (2004) Distribution of serogroups and genotypes among disease-associated and carried isolates of Neisseria meningitidis from the Czech Republic, Greece, and Norway. J Clin Microbiol 42(11):5146–5153PubMedCentralPubMedCrossRefGoogle Scholar
  195. Zaura E, Keijser BJ, Huse SM, Crielaard W (2009) Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol 9:259PubMedCentralPubMedCrossRefGoogle Scholar
  196. Zhu W, Thomas CE, Sparling PF (2004) DNA Immunization of mice with a plasmid encoding Neisseria gonorrhea PorB protein by intramuscular injection and epidermal particle bombardment. Vaccine 22(5–6):661–670Google Scholar
  197. Zhu W, Chen C-J, Thomas CE, Anderson JE, Sparling PF, Jerse AE (2011) Vaccines for gonorrhea: can we rise to the challenge? Front Microbiol 2:124PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Julia S. Bennett
    • 1
  • Holly B. Bratcher
    • 1
  • Carina Brehony
    • 1
  • Odile B. Harrison
    • 1
  • Martin C. J. Maiden
    • 1
  1. 1.Department of ZoologyUniversity of OxfordOxfordUK

Personalised recommendations