Morphological and Physiological Diversity

  • Stephen H. Zinder
  • Martin Dworkin
Reference work entry

Abstract

Over 5,000 species and nearly 1,000 genera of isolated prokaryotes were tabulated as of 1999 (Garrity and Holt 2000). Moreover, studies examining 16S ribosomal DNA in natural populations have provided convincing evidence that these cultured organisms are just the “tip of the iceberg” with several entire phyla/divisions having no or few cultured representatives (Hugenholtz et al. 1998). Prokaryotic diversity is an immensely valuable resource—not only as a source of an almost infinite variety of metabolic capabilities, enzymes, and genes, but also as a veritable cornucopia of strategies for dealing with the world. If what we wish to understand is not only how an organism operates but also how what it does enables it to deal with an extremely variable and occasionally hostile environment, then the study of microbial diversity truly holds the answers.

Keywords

Electron Acceptor Fruiting Body Photosynthetic Bacterium Calvin Cycle Purple Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams MWW (1993) Enzymes and proteins from organisms that grow near and above 100 degrees C. Annu Rev Microbiol 47:627–648PubMedGoogle Scholar
  2. Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211:132–138PubMedGoogle Scholar
  3. Allen JR, Clark DD, Krum JG, Ensign SA (1999) A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation. Proc Natl Acad Sci USA 96:8432–8437PubMedGoogle Scholar
  4. Angert ER, Clements KD, Pace NR (1993) The largest bacterium. Nature 362:239–241PubMedGoogle Scholar
  5. Bak F, Pfennig N (1987) Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147:184–189Google Scholar
  6. Balkwill DL, Maratea D, Blakemore RP (1980) Ultrastructure of a magnetotactic spirillum. J Bacteriol 141:1399–1408PubMedGoogle Scholar
  7. Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906PubMedGoogle Scholar
  8. Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319PubMedGoogle Scholar
  9. Berg HC (1976) How spirochaetes may move. J Theor Biol 56:269–273PubMedGoogle Scholar
  10. Berger DK, Narberhaus F, Kustu S (1994) The isolated catalytic domain of NIFA, bacterial enhancer-binding protein, activates transcription in vitro: activation is inhibited by NIFL. Proc Natl Acad Sci USA 91:103–107PubMedGoogle Scholar
  11. Beveridge TJ (1995) The periplasmic space and periplasm in gram-positive and Gram-negative bacteria. ASM News 61:125–130Google Scholar
  12. Bishop PE, Premakumar R (1992) Alternative nitrogen fixation systems. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 736–762Google Scholar
  13. Blochl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1:14–21PubMedGoogle Scholar
  14. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626PubMedGoogle Scholar
  15. Brun YV, Shimkets LJ (2000) In: Brun YV, Shimkets LJ (eds) Prokaryotic development. ASM Press, Washington, DC, pp 1–500Google Scholar
  16. Burchard RP (1984) Gliding motility and taxes. In: Rosenberg E (ed) Myxobacteria: development and cell interactions. Springer, New York, pp 139–161Google Scholar
  17. Canale-Parola E (1978) Motility and chemotaxis in spirochaetes. Annu Rev Microbiol 32:69–99PubMedGoogle Scholar
  18. Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1997) Trichodesmium, a globally significant marine cyanobacterium. Science 276:1221–1229Google Scholar
  19. Carr NG (1979) Differentiation in filamentous cyanobacteria. In: Parish JH (ed) Developmental biology of prokaryotes. University of California Press, Berkeley, pp 167–201Google Scholar
  20. Chater KE, Hopwood DA (1973) Differentiation in actinomycetes. In: Ashworth JM, Smith JE (eds) Microbial differentiation. Cambridge University Press, London, pp 143–160Google Scholar
  21. Chistoserdova L, Vorholt JA, Thauer RK, Lidstrom ME (1998) C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. Science 281:99–102PubMedGoogle Scholar
  22. Clements KD, Bullivant S (1991) An unusual symbiont from the gut of surgeonfishes may be the largest known prokaryote. J Bacteriol 173:5359–5362PubMedGoogle Scholar
  23. Coates JD, Michaelidou U, Bruce RA, O’Connor SM, Crespi JN, Achenbach LA (1999) Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl Environ Microbiol 65:5234–5241PubMedGoogle Scholar
  24. Cogdell RJ, Isaacs NW, Howard TD, McLuskey K, Fraser NJ, Prince SM (1999) How photosynthetic bacteria harvest solar energy. J Bacteriol 181:3869–3879PubMedGoogle Scholar
  25. Cohn F (1875) Untersuchungen über Bacterien. Beiträge zur Biologie der Pflanzen 1:127–222Google Scholar
  26. Conway T (1992) The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol Rev 9:1–27PubMedGoogle Scholar
  27. Cook KE, Colvin JR (1980) Evidence for a beneficial influence of cellulose production on growth of Acetobacter xylinum in liquid medium. Curr Microbiol 3:203–205Google Scholar
  28. Cord-Ruwisch R, Steitz H-J, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol 149:350–357Google Scholar
  29. Costerton JW, Nickel JC, Ladd TI (1986) Suitable methods for the comparative study of free-living and surface-associated bacterial populations. In: Poindexter JS, Leadbetter EL (eds) Bacteria in nature, vol 2. Plenum Press, New York, pp 49–84Google Scholar
  30. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322PubMedGoogle Scholar
  31. Cross T (1981) The monosporic actinomycetes. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 2102–2091, www.prokaryotes.com
  32. De Gier JW, Lubben M, Reijnders WN, Tipker CA, Slotboom DJ, van Spanning RJ, Stouthamer AH, van der Oost J (1994) The terminal oxidases of Paracoccus denitrificans. Mol Microbiol 13:183–196PubMedGoogle Scholar
  33. Dean DR, Bolin JT, Zheng LM (1993) Nitrogenase metalloclusters—structures, organization, and synthesis. J Bacteriol 175:6737–6744PubMedGoogle Scholar
  34. Delwiche CF, Palmer JD (1996) Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol Biol Evol 13:873–882PubMedGoogle Scholar
  35. DeWeerd KA, Mandelco L, Tanner RS, Woese CR, Suflita JM (1990) Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic dehalogenating, sulfate-reducing bacterium. Arch Microbiol 154:23–30Google Scholar
  36. Dilworth MJ, Appleby CA (1979) Leghemogiobin and Rhizohium hemoproteins. In: Hardy RWF, Bottomly F, Burns RC (eds) A treatise on dinitrogen fixation. Sec I, II. Wiley, New York, pp 691–764Google Scholar
  37. DiMarco AA, Bobik TA, Wolfe RS (1990) Unusual coenzymes of methanogenesis. Annu Rev Biochem 59:355–394PubMedGoogle Scholar
  38. Dimroth P, Schink B (1998) Energy conservation in the decarboxylation of dicarboxylic acids by fermenting bacteria. Arch Microbiol 170:69–77PubMedGoogle Scholar
  39. Distel DL, Cavanaugh CM (1994) Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves. J Bacteriol 176:1932–1938PubMedGoogle Scholar
  40. Dow CS, Whittenbury R (1979) Prosthecate bacteria. In: Parish JH (ed) Developmental biology of prokaryotes. University of California Press, BerkeleyGoogle Scholar
  41. Dunny CM, Brown BL, Clewell DB (1978) Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex hormone. Proc Nat Acad Sci USA 75:3479–3483PubMedGoogle Scholar
  42. Dworkin M (1973) Cell-cell interactions in the myxobacteria. In: Ashworth JM, Smith JE (eds) Microbial differentiation. Cambridge University Press, London, pp 125–142Google Scholar
  43. Dworkin M, Foster JW (1956) Studies on Pseudomonas methanica (Sohngen) nov. comb. J Bacteriol 72:646–659PubMedGoogle Scholar
  44. Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799PubMedGoogle Scholar
  45. Eichler B, Pfennig N (1986) Characterization of a new platelet-forming purple sulfur bacterium. Amoebobacter pedioformis sp. nov. Arch Microbiol 146:295–300Google Scholar
  46. Emerson D, Moyer C (1997) Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol 63:4784–4792PubMedGoogle Scholar
  47. Fosnaugh K, Greenberg EP (1988) Motility and chemotaxis of Spirochaeta aurantia: computer-assisted motion analysis. J Bacteriol 170:1768–1774PubMedGoogle Scholar
  48. Fossing H, Gallardo VA, Jorgensen BB, Huttel M, Nielsen LP, Schulz H, Canfield DE, Forster S, Glud RN, Gundersen JK, Kuver J, Ramsing NB, Teske A, Thamdrup B, Ulloa O (1995) Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature 374:713–715Google Scholar
  49. Foster JW (1964) Speculative discourse on where and how microbiological science as such may advance with application. In: Starr MP (ed) Global impacts of applied microbiology. Wiley, New York, pp 61–73Google Scholar
  50. Fujita Y, Bauer CE (2000) Reconstitution of light-independent protochlorophyllide reductase from purified bchl and BchN-BchB subunits: in vitro confirmation of nitrogenase-like features of a bacteriochlorophyll biosynthesis enzyme. J Biol Chem 275:23583–23588PubMedGoogle Scholar
  51. Garrity GM, Holt JG (2001) A road map to the manual. In: Garrity GA, Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 119–166, http://www.cme.msu.edu//bergeysGoogle Scholar
  52. Giovannoni SJ, Schabatach E, Castenholz R (1987) Isosphaera pallida, gen. and comb. nov., a gliding, budding eubacterium from hot springs. Arch Microbiol 147:276–284Google Scholar
  53. Gottschalk G (1986) Bacterial metabolism. Springer, New York, pp 1–380Google Scholar
  54. Gottschalk G, Andreeson JR, Hippe H (1981) The genus Clostridium (non-medical aspects). In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 1176–1803, http://www.prokaryotes.com
  55. Gould SJ (1996) The power of the modal bacter, or why the tail can’t wag the dog. Full House Three Rivers Press, New York, pp 167–216Google Scholar
  56. Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481PubMedGoogle Scholar
  57. Grimm AC, Harwood CS (1997) Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl Environ Microbiol 63:4111–4115PubMedGoogle Scholar
  58. Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491PubMedGoogle Scholar
  59. Haugland RA, Schlemm DJ, Lyons RP, Sferra PR, Chakrabarty AM (1990) Degradation of the chlorinated phenoxyacetate herbicides 2,4-dichlorophenoxyacetic acid and 2,4,5, thrichlorophenoxyacetic acid in pure and mixed bacterial cultures. Appl Environ Microbiol 56:1357–1362PubMedGoogle Scholar
  60. Henrichsen J (1983) Twitching motility. Annu Rev Microbiol 37:81–93PubMedGoogle Scholar
  61. Hoeniger JFM (1965) Development of flagella by Proteus mirabilis. J Gen Microbiol 40:29–42Google Scholar
  62. Holliger C, Wohlfarth G, Diekert G (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398Google Scholar
  63. Holt SC, Canale-Parola E (1967) Fine structure of Sarcina maxima and Sarcina ventriculi. J Bacteriol 93:399–410PubMedGoogle Scholar
  64. Huebner A, Danganan CE, Xun L, Chakrabarty AM (1998) Genes for 2,4,5-trichlorophenoxyacetic acid metabolism in Burkholderia cepacia AC1100: characterization of the tftC and tftD genes and locations of the tft operons on multiple replicons. Appl Environ Microbiol 64:2086–2093Google Scholar
  65. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774PubMedGoogle Scholar
  66. Ingraham JL, Maaløe O, Neidhardt FC (1983) Growth of the bacterial cell. Sinauer Associates, SunderlandGoogle Scholar
  67. Jarrell KF, Bayley DP, Kostyukova AS (1996) The archaeal flagellum: a unique motility structure. J Bacteriol 178:5057–5064PubMedGoogle Scholar
  68. Johnson CH, Golden SS (1999) Circadian programs in cyanobacteria: adaptiveness and mechanism. Annu Rev Microbiol 53:389–409PubMedGoogle Scholar
  69. Judson HF (1979) Afterward: always the same impasse. In: The eighth day of creation. Simon and Schuster, New York, pp 605–616Google Scholar
  70. Kandler O (1994) Cell wall biochemistry and three-domain concept of life. Syst Appl Microbiol 16:501–509Google Scholar
  71. Kandler O, Weiss N (1986) Regular, non-sporing Gram-positive rods. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1208–1260, http://www.cme.msu.edu//bergeysGoogle Scholar
  72. Katz J, Weihs D (1979) Large amplitude on steady motion of a flexible slender propulsor. J Fluid Mech 90:713–723Google Scholar
  73. Keller KH, Grady M, Dworkin M (1983) Surface tension gradients: feasible model for gliding motility of Myxococcus xanthus. J Bacteriol 155:1358–1366PubMedGoogle Scholar
  74. Kengen SWM, Stams AJM, de Vos WM (1996) Sugar metabolism in hyperthermophiles. FEMS Microbiol Rev 18:119–137Google Scholar
  75. Kennedy C, Toukdarian A (1987) Genetics of azotobacters: applications to nitrogen fixation and related aspects of metabolism. Annu Rev Microbiol 41:227–258PubMedGoogle Scholar
  76. Kreig N (1984) Aerobic, microaerophilic, motile, helical/vibroid Gram-negative bacteria. In: Krieg NR, Holt JG (eds) Bergey’s manual of determinative bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 71–124, http://www.cme.msu.edu//bergeysGoogle Scholar
  77. Kutzner HJ (1981) The family Streptomycetaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 2028–2090Google Scholar
  78. Lacy J (1971) Thermoactinomyces sacchari sp. nov., a thermophilic actinomycete causing bagassosis. J Gen Microbiol 66:327–338Google Scholar
  79. Lapidus IR, Berg HC (1982) Gliding motility of Cytophaga strain U67. J Bacteriol 151:384–398PubMedGoogle Scholar
  80. Lechevalier H, Holbert PE (1965) Electron microscopic observations of the sporangial structure of a strain of Actinoplanes. J Bacteriol 89:217–222PubMedGoogle Scholar
  81. Lobo AL, Zinder SH (1992) Nitrogen fixation by methanogenic bacteria. In: Evans H, Stacey G, Burris R (eds) Biological nitrogen fixation. Routledge, Chapman and Hall, New York, pp 191–211Google Scholar
  82. Lovley DR, Coates JD (2000) Novel forms of anaerobic respiration of environmental relevance. Curr Opin Microbiol 3:252–256PubMedGoogle Scholar
  83. Lovley DR, Phillips EJ (1992) Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58:850–856PubMedGoogle Scholar
  84. Ludden PW, Roberts EA (1988) Regulation of nitrogenase activity by reversible ADP-ribosylation of dinitrogenase reductase. In: Boethe H, de Bruijn FJ, Newton WE (eds) Nitrogen fixation: hundred years after. Gustav Fischer Verlag, Stuttgart, pp 157–162Google Scholar
  85. Lünsdorf H, Reichenbach H (1989) Ultrastructural details of the apparatus of gliding motility of Myxococcus fulvus (Myxobacterales). J Gen Microbiol 135:1633–1641Google Scholar
  86. Macnab RM (1999) The bacterial flagellum: reversible rotary propellor and type III export apparatus. J Bacteriol 181:7149–7153PubMedGoogle Scholar
  87. Maeda N, Kitano K, Fukui T, Ezaki S, Atomi H, Miki K, Imanaka T (1999) Ribulose bisphosphate carboxylase/oxygenase from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 is composed solely of large subunits and forms a pentagonal structure. J Mol Biol 293:57–66PubMedGoogle Scholar
  88. Mägli A, Wendt M, Leisinger T (1996) Isolation and characterization of Dehlobacterium formicoaceticum gen. nov. sp. nov., a strictly anaerobic bacterium utilizing dichloromethane as a source of carbon and energy. Arch Microbiol 166:101–108Google Scholar
  89. Malmquist A, Welander T, Moore E, Ternstrom A, Molin G, Stentrom IM (1994) Edeonella dechloratans, gen. nov., sp. nov., a new bacterium capable of growing anaerobically with chlorate as an electron acceptor. Syst Appl Microbiol 17:58–64Google Scholar
  90. Matsuyama T, Takagi Y, Nakagawa Y, Itoh H, Wakita J, Matsushita M (2000) Dynamic aspects of the structured cell population in a swarming colony of Proteus mirabilis. J Bacteriol 182:385–393PubMedGoogle Scholar
  91. Maymó-Gatell X, Chien YT, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571PubMedGoogle Scholar
  92. Mayr E (1998) Two empires or three? Proc Natl Acad Sci USA 95:9720–9723PubMedGoogle Scholar
  93. Menendez C, Bauer Z, Huber H, Gad’on N, Stetter KO, Fuchs G (1999) Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation. J Bacteriol 181:1088–1098PubMedGoogle Scholar
  94. Merz AJ, So M, Sheetz MP (2000) Pilus retraction powers bacterial twitching motility. Nature 407:98–102PubMedGoogle Scholar
  95. Messmer M, Wohlfarth G, Diekert G (1993) Methyl chloride metabolism of the strictly anaerobic, methyl chloride-utilizing homoacetogen strain MC. Arch Microbiol 160:383–387Google Scholar
  96. Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56:482–507PubMedGoogle Scholar
  97. Moran NA, Baumann P (2000) Bacterial endosymbionts in animals. Curr Opin Microbiol 3:270–275PubMedGoogle Scholar
  98. Moreira D, Le Guyader H, Phillippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405:69–72PubMedGoogle Scholar
  99. Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167PubMedGoogle Scholar
  100. Moshiri F, Kim JW, Fu C, Maier RJ (1994) The FeSII protein of Azotobacter vinelandii is not essential for aerobic nitrogen fixation, but confers significant protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo. Mol Microbiol 14:101–114PubMedGoogle Scholar
  101. Nichols JM, Adams DG (1982) Akinetes. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. University of California Press, Berkeley, pp 387–412Google Scholar
  102. Palleroni NJ (1984) Gram-negative aerobic rods and cocci. In: Krieg NR, Holt JG (eds) Bergey’s manual of determinative bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 140–406, http://www.cme.msu.edu//bergeysGoogle Scholar
  103. Pangborn J, Kuhn DA, Woods JR (1977) Dorsal-ventral differentiation in Simonsiella and other aspects of its morphology and ultrastructure. Arch Microbiol 113:197–204PubMedGoogle Scholar
  104. Pate JL, Chang LYE (1979) Evidence that gliding motility in prokaryotic cells is driven by rotary assemblies in the cell envelope. Curr Microbiol 2:257–262Google Scholar
  105. Pate JL, Ordal EJ (1965) The fine structure of two unusual stalked bacteria. J Cell Biol 27:133–150PubMedGoogle Scholar
  106. Peekhaus N, Conway T (1998) What’s for dinner?: Entner-Doudoroff metabolism in escherichia coli. J Bacteriol 180:3495–3502PubMedGoogle Scholar
  107. Perazzona B, Spudich JL (1999) Identification of methylation sites and effects of phototaxis stimuli on transducer methylation in Halobacterium salinarum. J Bacteriol 181:5676–5683PubMedGoogle Scholar
  108. Poindexter JS (1964) Biological properties and classification of the Caulobacter group. Bacteriol Rev 28:231–295PubMedGoogle Scholar
  109. Ragsdale SW (1997) The eastern and western branches of the Wood/Ljungdahl pathway: how the east and west were won. Biofactors 6:3–11PubMedGoogle Scholar
  110. Reeve JN, Sandman K, Daniels CJ (1997) Archaeal histones, nucleosomes, and transcription initiation. Cell 89:999–1002PubMedGoogle Scholar
  111. Reichenbach H (1984) Myxobacteria: a most peculiar group of social prokaryotes. In: Rosenberg E (ed) Myxobacteria: development and cell interactions. Springer, Berlin, pp 1–50Google Scholar
  112. Reichenbach H, Dworkin M (1981a) Introduction to the gliding bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 316–327, http://www.prokaryotes.com
  113. Reichenbach H, Dworkin M (1981b) The order myxobacterales. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 328–355, http://www.prokaryotes.com
  114. Ribbe M, Gadkari D, Meyer O (1997) N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase. J Biol Chem 272:26627–26633PubMedGoogle Scholar
  115. Robinson JJ, Stein JL, Cavanaugh CM (1998) Cloning and sequencing of a form II ribulose-1,5-biphosphate carboxylase/oxygenase from the bacterial symbiont of the hydrothermal vent tubeworm Riftia pachyptila. J Bacteriol 180:1596–1599PubMedGoogle Scholar
  116. Rosenberg E, Keller KH, Dworkin M (1977) Cell density-dependent growth of Myxococcus xanthus on casein. J Bacteriol 129:770–779PubMedGoogle Scholar
  117. Rudolph J, Oesterhelt D (1996) Deletion analysis of the che operon in the archaeon Halobacterium salinarium. J Mol Biol 258:548–554PubMedGoogle Scholar
  118. Sadoff HL (1976) Encystment and germination in Azotobacter vinelandii. Bacteriol Rev 39:516–539Google Scholar
  119. Saraste M (1999) Oxidative phosphorylation at the fin de siecle. Science 283:1488–1493PubMedGoogle Scholar
  120. Schäfer G, Purschke W, Schmidt CL (1996) On the origin of respiration: electron transport proteins from archaea to man. FEMS Microbiol Rev 18:173–188PubMedGoogle Scholar
  121. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Rev 61:262–280Google Scholar
  122. Schleifer KH (1986) Gram-positive cocci. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 999–1002, http://www.cme.msu.edu//bergeysGoogle Scholar
  123. Schulz HN, Brinkhoff T, Ferdelman TG, Marine MH, Teske A, Jorgensen BB (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495PubMedGoogle Scholar
  124. Selig M, Xavier KB, Santos H, Schonheit P (1997) Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Arch Microbiol 167:217–232PubMedGoogle Scholar
  125. Singleton R (2000) Historical roots. ASM News 66:510–511Google Scholar
  126. Sleytr UB, Messner P, Pum D, Sara M (1993) Crystalline bacterial cell surface layers. Mol Microbiol 10:911–916PubMedGoogle Scholar
  127. Sneath PHA (1986) Endospore forming Gram-positive rods and cocci. In: Krieg NR, Holt JG, Krieg NR, Holt JG (eds) Bergey’s manual of determinative bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1104–1207, http://www.cme.msu.edu//bergeysGoogle Scholar
  128. Sogin ML, Silberman JD (1998) Evolution of the protists and protistan parasites from the perspective of molecular systematics. Int J Parasitol 28:11–20PubMedGoogle Scholar
  129. Sowers KR, Boone JE, Gunsalus RP (1993) Disaggregation of Methanosarcina spp. and growth as single cells at elevated osmolarity. Appl Environ Microbiol 59:3832–3839PubMedGoogle Scholar
  130. Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288PubMedGoogle Scholar
  131. Spormann AM (1999) Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbiol Mol Biol Rev 63:621–641PubMedGoogle Scholar
  132. Spudich JL (1993) Color sensing in the archaea—a eukaryotic-like receptor coupled to a prokaryotic transducer. J Bacteriol 175:7755–7761PubMedGoogle Scholar
  133. Stackebrandt E, Ludwig W, Weizenegger M, Dorn S, McGill TJ, Fox GE, Woese CW, Schubert W, Schleifer KH (1987) Comparative 16S rRNA oligonucleotide analyses and murein types of round-spore-forming bacilli and non-spore-forming relatives. J Gen Microbiol 133:2523–2529PubMedGoogle Scholar
  134. Stackebrandt E, Rainey FA, Ward-Rainey N (1996) Anoxygenic phototrophy across the phylogenetic spectrum: current understanding and future perspectives. Arch Microbiol 166:211–223PubMedGoogle Scholar
  135. Stal LJ, Krumbein WE (1985) Nitrogenase activity in the non-heterocystous cyanobacterium Oscillatoria sp. grown under alternating light–dark cycles. Arch Microbiol 143:67–71Google Scholar
  136. Staley JT (1968) Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 95:1921–1942PubMedGoogle Scholar
  137. Stanier RY, van Niel CB (1962) The concept of a bacterium. Arch Mikrobiol 42:17–35PubMedGoogle Scholar
  138. Stanier RY, Adelberg EA, Ingraham JL, Wheelis ML (1979) Microbial metabolism: the generation of ATP Introduction to the microbial World. Prentice-Hall, New York, pp 154–186Google Scholar
  139. Stanier RY, Pfennig N, Trüper HG (1981) Introduction to the phototrophic prokaryotes. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 197–211, http://www.prokaryotes.com
  140. Stephenson M (1949) Bacterial metabolism, 3rd edn. Longmans, Green, LondonGoogle Scholar
  141. Stewart V (1994) Regulation of nitrate and nitrite reductase synthesis in enterobacteria. Antonie van Leeuwenhoek 66:37–45PubMedGoogle Scholar
  142. Stokes J (1954) Studies on the filamentous sheathed iron bacterium Sphaerotilus natans. J Bacteriol 67:278–291PubMedGoogle Scholar
  143. Strauss G, Fuchs G (1993) Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. Eur J Biochem 215:633–643PubMedGoogle Scholar
  144. Strous M, Fuerst JA, Kramer EH, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MS (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449PubMedGoogle Scholar
  145. Sudo SZ, Dworkin M (1973) Comparative biology of prokaryotic resting cells. Adv Microbiol Physiol 9:153–224Google Scholar
  146. Suflita JM, Horowitz A, Shelton DR, Tiedje JM (1982) Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds. Science 218:1115–1117PubMedGoogle Scholar
  147. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180PubMedGoogle Scholar
  148. Tomitani A, Okada K, Miyashita H, Matthijs HC, Ohno T, Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400:159–162PubMedGoogle Scholar
  149. van Niel CB (1949) The comparative biochemistry of photosynthesis. In: Franck J, Loomis WE (eds) Photosynthesis in plants, vol 400. Iowa State College Press, Ames, pp 437–495Google Scholar
  150. Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67PubMedGoogle Scholar
  151. Walsby AE (1980) A square bacterium. Nature 283:69–71Google Scholar
  152. Watson GM, Yu JP, Tabita FR (1999) Unusual ribulose 1,5-bisphosphate carboxylase/oxygenase of anoxic Archaea. J Bacteriol 181:1569–1575PubMedGoogle Scholar
  153. Weiner JH, MacIsaac DP, Bishop RE, Bilous PT (1988) Purification and properties of Escherichia coli dimethyl sulfoxide reductase, an iron-sulfur molybdoenzyme with broad substrate specificity. J Bacteriol 170:1505–1510PubMedGoogle Scholar
  154. Weisburg WG, Hatch TP, Woese CR (1986) Eubacterial origin of chlamydiae. J Bacteriol 167:570–574PubMedGoogle Scholar
  155. White D (1984) Structure and function of myxobacteria cells and fruiting bodies. In: Rosenberg E (ed) Myxobacteria: development and cell interactions. Springer, Berlin, pp 51–67Google Scholar
  156. Whittenbury R, Dow CS (1977) Morphogenesis and differentiation in Rhodomicrobium vannielii and other budding and prosthecatebacteria. Bacteriol Rev 41:754–808PubMedGoogle Scholar
  157. Whittenbury R, Davies SL, Davy JF (1970) Exospores and cysts formed by methane-utilizing bacteria. J Gen Microbiol 61:219–226PubMedGoogle Scholar
  158. Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phtotrophic bacteria. Nature 362:834–836Google Scholar
  159. Williams FD (1978) Nature of the swarming phenomenon in Proteus. Annu Rev Microbiol 32:101–122PubMedGoogle Scholar
  160. Wilson EO (1995) Naturalist. Warner Books, New York, pp 101–122Google Scholar
  161. Woese CR (1998) Default taxonomy: Ernst Mayr’s view of the microbial world. Proc Natl Acad Sci USA 95:11043–11046PubMedGoogle Scholar
  162. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579PubMedGoogle Scholar
  163. Wolin MJ, Miller TL (1982) Interspecies hydrogen transfer: 15 years later. ASM News 48:561–565Google Scholar
  164. Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730PubMedGoogle Scholar
  165. Yoon HS, Golden JW (1998) Heterocyst pattern formation controlled by a diffusible peptide. Science 282:935–938PubMedGoogle Scholar
  166. Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269PubMedGoogle Scholar
  167. Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stephen H. Zinder
    • 1
  • Martin Dworkin
    • 2
  1. 1.Department of MicrobiologyCornell UniversityIthacaUSA
  2. 2.Department of MicrobiologyUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations