Skip to main content

Morphological and Physiological Diversity

  • Reference work entry
  • 5504 Accesses

Abstract

Over 5,000 species and nearly 1,000 genera of isolated prokaryotes were tabulated as of 1999 (Garrity and Holt 2000). Moreover, studies examining 16S ribosomal DNA in natural populations have provided convincing evidence that these cultured organisms are just the “tip of the iceberg” with several entire phyla/divisions having no or few cultured representatives (Hugenholtz et al. 1998). Prokaryotic diversity is an immensely valuable resource—not only as a source of an almost infinite variety of metabolic capabilities, enzymes, and genes, but also as a veritable cornucopia of strategies for dealing with the world. If what we wish to understand is not only how an organism operates but also how what it does enables it to deal with an extremely variable and occasionally hostile environment, then the study of microbial diversity truly holds the answers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams MWW (1993) Enzymes and proteins from organisms that grow near and above 100 degrees C. Annu Rev Microbiol 47:627–648

    PubMed  CAS  Google Scholar 

  • Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211:132–138

    PubMed  CAS  Google Scholar 

  • Allen JR, Clark DD, Krum JG, Ensign SA (1999) A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation. Proc Natl Acad Sci USA 96:8432–8437

    PubMed  CAS  Google Scholar 

  • Angert ER, Clements KD, Pace NR (1993) The largest bacterium. Nature 362:239–241

    PubMed  CAS  Google Scholar 

  • Bak F, Pfennig N (1987) Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147:184–189

    CAS  Google Scholar 

  • Balkwill DL, Maratea D, Blakemore RP (1980) Ultrastructure of a magnetotactic spirillum. J Bacteriol 141:1399–1408

    PubMed  CAS  Google Scholar 

  • Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    PubMed  CAS  Google Scholar 

  • Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319

    PubMed  CAS  Google Scholar 

  • Berg HC (1976) How spirochaetes may move. J Theor Biol 56:269–273

    PubMed  CAS  Google Scholar 

  • Berger DK, Narberhaus F, Kustu S (1994) The isolated catalytic domain of NIFA, bacterial enhancer-binding protein, activates transcription in vitro: activation is inhibited by NIFL. Proc Natl Acad Sci USA 91:103–107

    PubMed  CAS  Google Scholar 

  • Beveridge TJ (1995) The periplasmic space and periplasm in gram-positive and Gram-negative bacteria. ASM News 61:125–130

    Google Scholar 

  • Bishop PE, Premakumar R (1992) Alternative nitrogen fixation systems. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 736–762

    Google Scholar 

  • Blochl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1:14–21

    PubMed  CAS  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    PubMed  CAS  Google Scholar 

  • Brun YV, Shimkets LJ (2000) In: Brun YV, Shimkets LJ (eds) Prokaryotic development. ASM Press, Washington, DC, pp 1–500

    Google Scholar 

  • Burchard RP (1984) Gliding motility and taxes. In: Rosenberg E (ed) Myxobacteria: development and cell interactions. Springer, New York, pp 139–161

    Google Scholar 

  • Canale-Parola E (1978) Motility and chemotaxis in spirochaetes. Annu Rev Microbiol 32:69–99

    PubMed  CAS  Google Scholar 

  • Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1997) Trichodesmium, a globally significant marine cyanobacterium. Science 276:1221–1229

    CAS  Google Scholar 

  • Carr NG (1979) Differentiation in filamentous cyanobacteria. In: Parish JH (ed) Developmental biology of prokaryotes. University of California Press, Berkeley, pp 167–201

    Google Scholar 

  • Chater KE, Hopwood DA (1973) Differentiation in actinomycetes. In: Ashworth JM, Smith JE (eds) Microbial differentiation. Cambridge University Press, London, pp 143–160

    Google Scholar 

  • Chistoserdova L, Vorholt JA, Thauer RK, Lidstrom ME (1998) C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. Science 281:99–102

    PubMed  CAS  Google Scholar 

  • Clements KD, Bullivant S (1991) An unusual symbiont from the gut of surgeonfishes may be the largest known prokaryote. J Bacteriol 173:5359–5362

    PubMed  CAS  Google Scholar 

  • Coates JD, Michaelidou U, Bruce RA, O’Connor SM, Crespi JN, Achenbach LA (1999) Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl Environ Microbiol 65:5234–5241

    PubMed  CAS  Google Scholar 

  • Cogdell RJ, Isaacs NW, Howard TD, McLuskey K, Fraser NJ, Prince SM (1999) How photosynthetic bacteria harvest solar energy. J Bacteriol 181:3869–3879

    PubMed  CAS  Google Scholar 

  • Cohn F (1875) Untersuchungen über Bacterien. Beiträge zur Biologie der Pflanzen 1:127–222

    Google Scholar 

  • Conway T (1992) The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol Rev 9:1–27

    PubMed  CAS  Google Scholar 

  • Cook KE, Colvin JR (1980) Evidence for a beneficial influence of cellulose production on growth of Acetobacter xylinum in liquid medium. Curr Microbiol 3:203–205

    CAS  Google Scholar 

  • Cord-Ruwisch R, Steitz H-J, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol 149:350–357

    CAS  Google Scholar 

  • Costerton JW, Nickel JC, Ladd TI (1986) Suitable methods for the comparative study of free-living and surface-associated bacterial populations. In: Poindexter JS, Leadbetter EL (eds) Bacteria in nature, vol 2. Plenum Press, New York, pp 49–84

    Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    PubMed  CAS  Google Scholar 

  • Cross T (1981) The monosporic actinomycetes. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 2102–2091, www.prokaryotes.com

  • De Gier JW, Lubben M, Reijnders WN, Tipker CA, Slotboom DJ, van Spanning RJ, Stouthamer AH, van der Oost J (1994) The terminal oxidases of Paracoccus denitrificans. Mol Microbiol 13:183–196

    PubMed  Google Scholar 

  • Dean DR, Bolin JT, Zheng LM (1993) Nitrogenase metalloclusters—structures, organization, and synthesis. J Bacteriol 175:6737–6744

    PubMed  CAS  Google Scholar 

  • Delwiche CF, Palmer JD (1996) Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol Biol Evol 13:873–882

    PubMed  CAS  Google Scholar 

  • DeWeerd KA, Mandelco L, Tanner RS, Woese CR, Suflita JM (1990) Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic dehalogenating, sulfate-reducing bacterium. Arch Microbiol 154:23–30

    CAS  Google Scholar 

  • Dilworth MJ, Appleby CA (1979) Leghemogiobin and Rhizohium hemoproteins. In: Hardy RWF, Bottomly F, Burns RC (eds) A treatise on dinitrogen fixation. Sec I, II. Wiley, New York, pp 691–764

    Google Scholar 

  • DiMarco AA, Bobik TA, Wolfe RS (1990) Unusual coenzymes of methanogenesis. Annu Rev Biochem 59:355–394

    PubMed  CAS  Google Scholar 

  • Dimroth P, Schink B (1998) Energy conservation in the decarboxylation of dicarboxylic acids by fermenting bacteria. Arch Microbiol 170:69–77

    PubMed  CAS  Google Scholar 

  • Distel DL, Cavanaugh CM (1994) Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves. J Bacteriol 176:1932–1938

    PubMed  CAS  Google Scholar 

  • Dow CS, Whittenbury R (1979) Prosthecate bacteria. In: Parish JH (ed) Developmental biology of prokaryotes. University of California Press, Berkeley

    Google Scholar 

  • Dunny CM, Brown BL, Clewell DB (1978) Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex hormone. Proc Nat Acad Sci USA 75:3479–3483

    PubMed  CAS  Google Scholar 

  • Dworkin M (1973) Cell-cell interactions in the myxobacteria. In: Ashworth JM, Smith JE (eds) Microbial differentiation. Cambridge University Press, London, pp 125–142

    Google Scholar 

  • Dworkin M, Foster JW (1956) Studies on Pseudomonas methanica (Sohngen) nov. comb. J Bacteriol 72:646–659

    PubMed  CAS  Google Scholar 

  • Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799

    PubMed  CAS  Google Scholar 

  • Eichler B, Pfennig N (1986) Characterization of a new platelet-forming purple sulfur bacterium. Amoebobacter pedioformis sp. nov. Arch Microbiol 146:295–300

    CAS  Google Scholar 

  • Emerson D, Moyer C (1997) Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol 63:4784–4792

    PubMed  CAS  Google Scholar 

  • Fosnaugh K, Greenberg EP (1988) Motility and chemotaxis of Spirochaeta aurantia: computer-assisted motion analysis. J Bacteriol 170:1768–1774

    PubMed  CAS  Google Scholar 

  • Fossing H, Gallardo VA, Jorgensen BB, Huttel M, Nielsen LP, Schulz H, Canfield DE, Forster S, Glud RN, Gundersen JK, Kuver J, Ramsing NB, Teske A, Thamdrup B, Ulloa O (1995) Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature 374:713–715

    CAS  Google Scholar 

  • Foster JW (1964) Speculative discourse on where and how microbiological science as such may advance with application. In: Starr MP (ed) Global impacts of applied microbiology. Wiley, New York, pp 61–73

    Google Scholar 

  • Fujita Y, Bauer CE (2000) Reconstitution of light-independent protochlorophyllide reductase from purified bchl and BchN-BchB subunits: in vitro confirmation of nitrogenase-like features of a bacteriochlorophyll biosynthesis enzyme. J Biol Chem 275:23583–23588

    PubMed  CAS  Google Scholar 

  • Garrity GM, Holt JG (2001) A road map to the manual. In: Garrity GA, Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 119–166, http://www.cme.msu.edu//bergeys

    Google Scholar 

  • Giovannoni SJ, Schabatach E, Castenholz R (1987) Isosphaera pallida, gen. and comb. nov., a gliding, budding eubacterium from hot springs. Arch Microbiol 147:276–284

    CAS  Google Scholar 

  • Gottschalk G (1986) Bacterial metabolism. Springer, New York, pp 1–380

    Google Scholar 

  • Gottschalk G, Andreeson JR, Hippe H (1981) The genus Clostridium (non-medical aspects). In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 1176–1803, http://www.prokaryotes.com

  • Gould SJ (1996) The power of the modal bacter, or why the tail can’t wag the dog. Full House Three Rivers Press, New York, pp 167–216

    Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481

    PubMed  CAS  Google Scholar 

  • Grimm AC, Harwood CS (1997) Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl Environ Microbiol 63:4111–4115

    PubMed  CAS  Google Scholar 

  • Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491

    PubMed  CAS  Google Scholar 

  • Haugland RA, Schlemm DJ, Lyons RP, Sferra PR, Chakrabarty AM (1990) Degradation of the chlorinated phenoxyacetate herbicides 2,4-dichlorophenoxyacetic acid and 2,4,5, thrichlorophenoxyacetic acid in pure and mixed bacterial cultures. Appl Environ Microbiol 56:1357–1362

    PubMed  CAS  Google Scholar 

  • Henrichsen J (1983) Twitching motility. Annu Rev Microbiol 37:81–93

    PubMed  CAS  Google Scholar 

  • Hoeniger JFM (1965) Development of flagella by Proteus mirabilis. J Gen Microbiol 40:29–42

    Google Scholar 

  • Holliger C, Wohlfarth G, Diekert G (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398

    CAS  Google Scholar 

  • Holt SC, Canale-Parola E (1967) Fine structure of Sarcina maxima and Sarcina ventriculi. J Bacteriol 93:399–410

    PubMed  CAS  Google Scholar 

  • Huebner A, Danganan CE, Xun L, Chakrabarty AM (1998) Genes for 2,4,5-trichlorophenoxyacetic acid metabolism in Burkholderia cepacia AC1100: characterization of the tftC and tftD genes and locations of the tft operons on multiple replicons. Appl Environ Microbiol 64:2086–2093

    Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    PubMed  CAS  Google Scholar 

  • Ingraham JL, Maaløe O, Neidhardt FC (1983) Growth of the bacterial cell. Sinauer Associates, Sunderland

    Google Scholar 

  • Jarrell KF, Bayley DP, Kostyukova AS (1996) The archaeal flagellum: a unique motility structure. J Bacteriol 178:5057–5064

    PubMed  CAS  Google Scholar 

  • Johnson CH, Golden SS (1999) Circadian programs in cyanobacteria: adaptiveness and mechanism. Annu Rev Microbiol 53:389–409

    PubMed  CAS  Google Scholar 

  • Judson HF (1979) Afterward: always the same impasse. In: The eighth day of creation. Simon and Schuster, New York, pp 605–616

    Google Scholar 

  • Kandler O (1994) Cell wall biochemistry and three-domain concept of life. Syst Appl Microbiol 16:501–509

    CAS  Google Scholar 

  • Kandler O, Weiss N (1986) Regular, non-sporing Gram-positive rods. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1208–1260, http://www.cme.msu.edu//bergeys

    Google Scholar 

  • Katz J, Weihs D (1979) Large amplitude on steady motion of a flexible slender propulsor. J Fluid Mech 90:713–723

    Google Scholar 

  • Keller KH, Grady M, Dworkin M (1983) Surface tension gradients: feasible model for gliding motility of Myxococcus xanthus. J Bacteriol 155:1358–1366

    PubMed  CAS  Google Scholar 

  • Kengen SWM, Stams AJM, de Vos WM (1996) Sugar metabolism in hyperthermophiles. FEMS Microbiol Rev 18:119–137

    CAS  Google Scholar 

  • Kennedy C, Toukdarian A (1987) Genetics of azotobacters: applications to nitrogen fixation and related aspects of metabolism. Annu Rev Microbiol 41:227–258

    PubMed  CAS  Google Scholar 

  • Kreig N (1984) Aerobic, microaerophilic, motile, helical/vibroid Gram-negative bacteria. In: Krieg NR, Holt JG (eds) Bergey’s manual of determinative bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 71–124, http://www.cme.msu.edu//bergeys

    Google Scholar 

  • Kutzner HJ (1981) The family Streptomycetaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 2028–2090

    Google Scholar 

  • Lacy J (1971) Thermoactinomyces sacchari sp. nov., a thermophilic actinomycete causing bagassosis. J Gen Microbiol 66:327–338

    Google Scholar 

  • Lapidus IR, Berg HC (1982) Gliding motility of Cytophaga strain U67. J Bacteriol 151:384–398

    PubMed  CAS  Google Scholar 

  • Lechevalier H, Holbert PE (1965) Electron microscopic observations of the sporangial structure of a strain of Actinoplanes. J Bacteriol 89:217–222

    PubMed  CAS  Google Scholar 

  • Lobo AL, Zinder SH (1992) Nitrogen fixation by methanogenic bacteria. In: Evans H, Stacey G, Burris R (eds) Biological nitrogen fixation. Routledge, Chapman and Hall, New York, pp 191–211

    Google Scholar 

  • Lovley DR, Coates JD (2000) Novel forms of anaerobic respiration of environmental relevance. Curr Opin Microbiol 3:252–256

    PubMed  CAS  Google Scholar 

  • Lovley DR, Phillips EJ (1992) Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58:850–856

    PubMed  CAS  Google Scholar 

  • Ludden PW, Roberts EA (1988) Regulation of nitrogenase activity by reversible ADP-ribosylation of dinitrogenase reductase. In: Boethe H, de Bruijn FJ, Newton WE (eds) Nitrogen fixation: hundred years after. Gustav Fischer Verlag, Stuttgart, pp 157–162

    Google Scholar 

  • Lünsdorf H, Reichenbach H (1989) Ultrastructural details of the apparatus of gliding motility of Myxococcus fulvus (Myxobacterales). J Gen Microbiol 135:1633–1641

    Google Scholar 

  • Macnab RM (1999) The bacterial flagellum: reversible rotary propellor and type III export apparatus. J Bacteriol 181:7149–7153

    PubMed  CAS  Google Scholar 

  • Maeda N, Kitano K, Fukui T, Ezaki S, Atomi H, Miki K, Imanaka T (1999) Ribulose bisphosphate carboxylase/oxygenase from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 is composed solely of large subunits and forms a pentagonal structure. J Mol Biol 293:57–66

    PubMed  CAS  Google Scholar 

  • Mägli A, Wendt M, Leisinger T (1996) Isolation and characterization of Dehlobacterium formicoaceticum gen. nov. sp. nov., a strictly anaerobic bacterium utilizing dichloromethane as a source of carbon and energy. Arch Microbiol 166:101–108

    Google Scholar 

  • Malmquist A, Welander T, Moore E, Ternstrom A, Molin G, Stentrom IM (1994) Edeonella dechloratans, gen. nov., sp. nov., a new bacterium capable of growing anaerobically with chlorate as an electron acceptor. Syst Appl Microbiol 17:58–64

    Google Scholar 

  • Matsuyama T, Takagi Y, Nakagawa Y, Itoh H, Wakita J, Matsushita M (2000) Dynamic aspects of the structured cell population in a swarming colony of Proteus mirabilis. J Bacteriol 182:385–393

    PubMed  CAS  Google Scholar 

  • Maymó-Gatell X, Chien YT, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571

    PubMed  Google Scholar 

  • Mayr E (1998) Two empires or three? Proc Natl Acad Sci USA 95:9720–9723

    PubMed  CAS  Google Scholar 

  • Menendez C, Bauer Z, Huber H, Gad’on N, Stetter KO, Fuchs G (1999) Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation. J Bacteriol 181:1088–1098

    PubMed  CAS  Google Scholar 

  • Merz AJ, So M, Sheetz MP (2000) Pilus retraction powers bacterial twitching motility. Nature 407:98–102

    PubMed  CAS  Google Scholar 

  • Messmer M, Wohlfarth G, Diekert G (1993) Methyl chloride metabolism of the strictly anaerobic, methyl chloride-utilizing homoacetogen strain MC. Arch Microbiol 160:383–387

    CAS  Google Scholar 

  • Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56:482–507

    PubMed  CAS  Google Scholar 

  • Moran NA, Baumann P (2000) Bacterial endosymbionts in animals. Curr Opin Microbiol 3:270–275

    PubMed  CAS  Google Scholar 

  • Moreira D, Le Guyader H, Phillippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405:69–72

    PubMed  CAS  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    PubMed  CAS  Google Scholar 

  • Moshiri F, Kim JW, Fu C, Maier RJ (1994) The FeSII protein of Azotobacter vinelandii is not essential for aerobic nitrogen fixation, but confers significant protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo. Mol Microbiol 14:101–114

    PubMed  CAS  Google Scholar 

  • Nichols JM, Adams DG (1982) Akinetes. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. University of California Press, Berkeley, pp 387–412

    Google Scholar 

  • Palleroni NJ (1984) Gram-negative aerobic rods and cocci. In: Krieg NR, Holt JG (eds) Bergey’s manual of determinative bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 140–406, http://www.cme.msu.edu//bergeys

    Google Scholar 

  • Pangborn J, Kuhn DA, Woods JR (1977) Dorsal-ventral differentiation in Simonsiella and other aspects of its morphology and ultrastructure. Arch Microbiol 113:197–204

    PubMed  CAS  Google Scholar 

  • Pate JL, Chang LYE (1979) Evidence that gliding motility in prokaryotic cells is driven by rotary assemblies in the cell envelope. Curr Microbiol 2:257–262

    Google Scholar 

  • Pate JL, Ordal EJ (1965) The fine structure of two unusual stalked bacteria. J Cell Biol 27:133–150

    PubMed  CAS  Google Scholar 

  • Peekhaus N, Conway T (1998) What’s for dinner?: Entner-Doudoroff metabolism in escherichia coli. J Bacteriol 180:3495–3502

    PubMed  CAS  Google Scholar 

  • Perazzona B, Spudich JL (1999) Identification of methylation sites and effects of phototaxis stimuli on transducer methylation in Halobacterium salinarum. J Bacteriol 181:5676–5683

    PubMed  CAS  Google Scholar 

  • Poindexter JS (1964) Biological properties and classification of the Caulobacter group. Bacteriol Rev 28:231–295

    PubMed  CAS  Google Scholar 

  • Ragsdale SW (1997) The eastern and western branches of the Wood/Ljungdahl pathway: how the east and west were won. Biofactors 6:3–11

    PubMed  CAS  Google Scholar 

  • Reeve JN, Sandman K, Daniels CJ (1997) Archaeal histones, nucleosomes, and transcription initiation. Cell 89:999–1002

    PubMed  CAS  Google Scholar 

  • Reichenbach H (1984) Myxobacteria: a most peculiar group of social prokaryotes. In: Rosenberg E (ed) Myxobacteria: development and cell interactions. Springer, Berlin, pp 1–50

    Google Scholar 

  • Reichenbach H, Dworkin M (1981a) Introduction to the gliding bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 316–327, http://www.prokaryotes.com

  • Reichenbach H, Dworkin M (1981b) The order myxobacterales. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 328–355, http://www.prokaryotes.com

  • Ribbe M, Gadkari D, Meyer O (1997) N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase. J Biol Chem 272:26627–26633

    PubMed  CAS  Google Scholar 

  • Robinson JJ, Stein JL, Cavanaugh CM (1998) Cloning and sequencing of a form II ribulose-1,5-biphosphate carboxylase/oxygenase from the bacterial symbiont of the hydrothermal vent tubeworm Riftia pachyptila. J Bacteriol 180:1596–1599

    PubMed  CAS  Google Scholar 

  • Rosenberg E, Keller KH, Dworkin M (1977) Cell density-dependent growth of Myxococcus xanthus on casein. J Bacteriol 129:770–779

    PubMed  CAS  Google Scholar 

  • Rudolph J, Oesterhelt D (1996) Deletion analysis of the che operon in the archaeon Halobacterium salinarium. J Mol Biol 258:548–554

    PubMed  CAS  Google Scholar 

  • Sadoff HL (1976) Encystment and germination in Azotobacter vinelandii. Bacteriol Rev 39:516–539

    Google Scholar 

  • Saraste M (1999) Oxidative phosphorylation at the fin de siecle. Science 283:1488–1493

    PubMed  CAS  Google Scholar 

  • Schäfer G, Purschke W, Schmidt CL (1996) On the origin of respiration: electron transport proteins from archaea to man. FEMS Microbiol Rev 18:173–188

    PubMed  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Rev 61:262–280

    CAS  Google Scholar 

  • Schleifer KH (1986) Gram-positive cocci. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 999–1002, http://www.cme.msu.edu//bergeys

    Google Scholar 

  • Schulz HN, Brinkhoff T, Ferdelman TG, Marine MH, Teske A, Jorgensen BB (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495

    PubMed  CAS  Google Scholar 

  • Selig M, Xavier KB, Santos H, Schonheit P (1997) Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Arch Microbiol 167:217–232

    PubMed  CAS  Google Scholar 

  • Singleton R (2000) Historical roots. ASM News 66:510–511

    Google Scholar 

  • Sleytr UB, Messner P, Pum D, Sara M (1993) Crystalline bacterial cell surface layers. Mol Microbiol 10:911–916

    PubMed  CAS  Google Scholar 

  • Sneath PHA (1986) Endospore forming Gram-positive rods and cocci. In: Krieg NR, Holt JG, Krieg NR, Holt JG (eds) Bergey’s manual of determinative bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1104–1207, http://www.cme.msu.edu//bergeys

    Google Scholar 

  • Sogin ML, Silberman JD (1998) Evolution of the protists and protistan parasites from the perspective of molecular systematics. Int J Parasitol 28:11–20

    PubMed  CAS  Google Scholar 

  • Sowers KR, Boone JE, Gunsalus RP (1993) Disaggregation of Methanosarcina spp. and growth as single cells at elevated osmolarity. Appl Environ Microbiol 59:3832–3839

    PubMed  CAS  Google Scholar 

  • Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288

    PubMed  CAS  Google Scholar 

  • Spormann AM (1999) Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbiol Mol Biol Rev 63:621–641

    PubMed  CAS  Google Scholar 

  • Spudich JL (1993) Color sensing in the archaea—a eukaryotic-like receptor coupled to a prokaryotic transducer. J Bacteriol 175:7755–7761

    PubMed  CAS  Google Scholar 

  • Stackebrandt E, Ludwig W, Weizenegger M, Dorn S, McGill TJ, Fox GE, Woese CW, Schubert W, Schleifer KH (1987) Comparative 16S rRNA oligonucleotide analyses and murein types of round-spore-forming bacilli and non-spore-forming relatives. J Gen Microbiol 133:2523–2529

    PubMed  CAS  Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Rainey N (1996) Anoxygenic phototrophy across the phylogenetic spectrum: current understanding and future perspectives. Arch Microbiol 166:211–223

    PubMed  CAS  Google Scholar 

  • Stal LJ, Krumbein WE (1985) Nitrogenase activity in the non-heterocystous cyanobacterium Oscillatoria sp. grown under alternating light–dark cycles. Arch Microbiol 143:67–71

    CAS  Google Scholar 

  • Staley JT (1968) Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 95:1921–1942

    PubMed  CAS  Google Scholar 

  • Stanier RY, van Niel CB (1962) The concept of a bacterium. Arch Mikrobiol 42:17–35

    PubMed  CAS  Google Scholar 

  • Stanier RY, Adelberg EA, Ingraham JL, Wheelis ML (1979) Microbial metabolism: the generation of ATP Introduction to the microbial World. Prentice-Hall, New York, pp 154–186

    Google Scholar 

  • Stanier RY, Pfennig N, Trüper HG (1981) Introduction to the phototrophic prokaryotes. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 197–211, http://www.prokaryotes.com

  • Stephenson M (1949) Bacterial metabolism, 3rd edn. Longmans, Green, London

    Google Scholar 

  • Stewart V (1994) Regulation of nitrate and nitrite reductase synthesis in enterobacteria. Antonie van Leeuwenhoek 66:37–45

    PubMed  CAS  Google Scholar 

  • Stokes J (1954) Studies on the filamentous sheathed iron bacterium Sphaerotilus natans. J Bacteriol 67:278–291

    PubMed  CAS  Google Scholar 

  • Strauss G, Fuchs G (1993) Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. Eur J Biochem 215:633–643

    PubMed  CAS  Google Scholar 

  • Strous M, Fuerst JA, Kramer EH, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MS (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449

    PubMed  CAS  Google Scholar 

  • Sudo SZ, Dworkin M (1973) Comparative biology of prokaryotic resting cells. Adv Microbiol Physiol 9:153–224

    CAS  Google Scholar 

  • Suflita JM, Horowitz A, Shelton DR, Tiedje JM (1982) Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds. Science 218:1115–1117

    PubMed  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  • Tomitani A, Okada K, Miyashita H, Matthijs HC, Ohno T, Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400:159–162

    PubMed  CAS  Google Scholar 

  • van Niel CB (1949) The comparative biochemistry of photosynthesis. In: Franck J, Loomis WE (eds) Photosynthesis in plants, vol 400. Iowa State College Press, Ames, pp 437–495

    Google Scholar 

  • Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67

    PubMed  CAS  Google Scholar 

  • Walsby AE (1980) A square bacterium. Nature 283:69–71

    Google Scholar 

  • Watson GM, Yu JP, Tabita FR (1999) Unusual ribulose 1,5-bisphosphate carboxylase/oxygenase of anoxic Archaea. J Bacteriol 181:1569–1575

    PubMed  CAS  Google Scholar 

  • Weiner JH, MacIsaac DP, Bishop RE, Bilous PT (1988) Purification and properties of Escherichia coli dimethyl sulfoxide reductase, an iron-sulfur molybdoenzyme with broad substrate specificity. J Bacteriol 170:1505–1510

    PubMed  CAS  Google Scholar 

  • Weisburg WG, Hatch TP, Woese CR (1986) Eubacterial origin of chlamydiae. J Bacteriol 167:570–574

    PubMed  CAS  Google Scholar 

  • White D (1984) Structure and function of myxobacteria cells and fruiting bodies. In: Rosenberg E (ed) Myxobacteria: development and cell interactions. Springer, Berlin, pp 51–67

    Google Scholar 

  • Whittenbury R, Dow CS (1977) Morphogenesis and differentiation in Rhodomicrobium vannielii and other budding and prosthecatebacteria. Bacteriol Rev 41:754–808

    PubMed  CAS  Google Scholar 

  • Whittenbury R, Davies SL, Davy JF (1970) Exospores and cysts formed by methane-utilizing bacteria. J Gen Microbiol 61:219–226

    PubMed  CAS  Google Scholar 

  • Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phtotrophic bacteria. Nature 362:834–836

    CAS  Google Scholar 

  • Williams FD (1978) Nature of the swarming phenomenon in Proteus. Annu Rev Microbiol 32:101–122

    PubMed  CAS  Google Scholar 

  • Wilson EO (1995) Naturalist. Warner Books, New York, pp 101–122

    Google Scholar 

  • Woese CR (1998) Default taxonomy: Ernst Mayr’s view of the microbial world. Proc Natl Acad Sci USA 95:11043–11046

    PubMed  CAS  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    PubMed  CAS  Google Scholar 

  • Wolin MJ, Miller TL (1982) Interspecies hydrogen transfer: 15 years later. ASM News 48:561–565

    Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730

    PubMed  CAS  Google Scholar 

  • Yoon HS, Golden JW (1998) Heterocyst pattern formation controlled by a diffusible peptide. Science 282:935–938

    PubMed  CAS  Google Scholar 

  • Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269

    PubMed  CAS  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Zinder, S.H., Dworkin, M. (2013). Morphological and Physiological Diversity. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30194-0_9

Download citation

Publish with us

Policies and ethics