Prokaryotes and Their Habitats

Reference work entry


Prokaryotes are well recognized as essential members of the biosphere. They inhabit all possible locations in which life exists from those offering ideal conditions for growth and reproduction to those representing extreme environments at the borderline of abiotic conditions.


Hydrogen Sulfide Green Sulfur Bacterium Phototrophic Bacterium Purple Sulfur Bacterium Stratify Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aaronson S (1970) Experimental microbial ecology. Academic, New YorkGoogle Scholar
  2. Acher AJ, Juven BJ (1977) Destruction of coliforms in water and sewage by dye-sensitized photooxidation. Appl Environ Microbiol 33:1019–1022PubMedGoogle Scholar
  3. Adler J (1974) Chemoreception and chemotaxis in bacteria. In: Jaenicke L (ed) Biochemistry of sensory functions. Springer, BerlinGoogle Scholar
  4. Adler J (1988) Chemotaxis: old and new. Botanica Acta 101:93–100Google Scholar
  5. Ahrens R, Moll G, Rheinheimer G (1968) Die Rolle der Fimbrien bei der eigenartigen Sternbildung von Agrobacterium luteum. Archiv für Mikrobiologie 63:321–330PubMedGoogle Scholar
  6. Akin DE (1976) Ultrastructure of rumen bacterial attachment to forage cell walls. Appl Environ Microbiol 31:562–568PubMedGoogle Scholar
  7. Akin DE, Amos WE (1975) Rumen bacterial degradation of forage cell walls investigated by electron microscopy. Appl Microbiol 29:692–701PubMedGoogle Scholar
  8. Alexander M (1971) Microbial ecology. Wiley, New YorKGoogle Scholar
  9. Alexander M (1976) Natural selection and the ecology of microbial adaption in a biosphere. In: Heinrich MR (ed) Extreme environments. Mechanisms of microbial adaption. Academic, New York, pp 3–25Google Scholar
  10. Alexander M (1977) Introduction to soil microbiology, 2nd edn. Wiley, New YorkGoogle Scholar
  11. Anwar M, Khan TH, Prebble J, Zagalski PF (1977) Membrane-bound carotenoid in Micrococcus luteus protects naphthoquinone from photodynamic action. Nature 270:538–540PubMedGoogle Scholar
  12. Aragno M (1978) Enrichment, isolation and preliminary characterization of a thermophilic, endospore-forming hydrogen bacterium. FEMS Microbiol Lett 3:13–15Google Scholar
  13. Atlas RM, Bartha R (1987) Microbial ecology: fundamentals and applications, 2nd edn. CA The Benjamin/Cummings, Menlo-ParkGoogle Scholar
  14. Babenzien H-D (1965) Über Vorkommen und Kultur von Nevskia ramosa Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 1, Suppl 1:111–116Google Scholar
  15. Babenzien H-D (1967) Zur Biologie von Nevskia ramosa. Zeitschrift für Allgemeine Mikrobiologie 7:89–96PubMedGoogle Scholar
  16. Ballard RD (1977) Notes on a major oceanographic find. Oceanus 20:35–44Google Scholar
  17. Barber RT (1968) Dissolved organic carbon from deep waters resists microbial oxidation. Nature 220:274–275PubMedGoogle Scholar
  18. Baross JA, Deming JW (1983) Growth of black smoker bacteria at temperatures of at least 250 °C. Nature 303:423–426Google Scholar
  19. Baross JA, Morita RY (1978) Microbial life at low temperatures: ecological aspects. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 9–71Google Scholar
  20. Bartha R, Atlas RM (1977) The microbiology of aquatic oil spills. Adv Appl Microbiol 22:225–266PubMedGoogle Scholar
  21. Bartnicki-Garcia S, Nickerson WJ (1962) Nutrition, growth and morphogenesis of Mucor rouxii. J Bacteriol 84:841–858PubMedGoogle Scholar
  22. Bauchop T (1971) Mechanism of hydrogen formation in Tritrichomonas foetus. J Gen Microbiol 68:27–33PubMedGoogle Scholar
  23. Bauchop T (1977) Foregut fermentation. In: Clarke RTJ, Bauchop T (eds) Microbial ecology of the gut. Academic, London, pp 223–310Google Scholar
  24. Bauld J, Brock TD (1973) Ecological studies of Chloroflexus, a gliding photosynthetic bacterium. Archiv für Mikrobiologie 92:267–284Google Scholar
  25. Baumann P, Baumann L (1977) Biology of the marine enterobacteria: genera Beneckea and Photobacterium. Ann Rev Microbiol 31:39–61Google Scholar
  26. Baumann L, Baumann P, Mandel M, Allen RD (1972) Taxonomy of aerobic marine bacteria. J Bacteriol 110:402–429PubMedGoogle Scholar
  27. Bavendamm W (1924) Die farblosen und roten Schwefelbakterien des Süss-und Salzwassers Pflanzenforschung 2:1–156Google Scholar
  28. Bayley ST, Morton RA (1978) Recent developments in the molecular biology of extremely halophilic bacteria. CRC Crit Rev Microbiol 6:151–205PubMedGoogle Scholar
  29. Bayley ST, Morton RA (1979) Biochemical evolution of halobacteria. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 109–124Google Scholar
  30. Bazylinski DA, Frankel RB, Jannasch HW (1988) Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature 334:518–519Google Scholar
  31. Beijerinck MW (1895) Über Spirillum desulfuricans als Ursache von Sulfatreduktion Zentralblatt für Bakteriologie, Parasitenkunde Infektionskrankheiten und Hygiene, Abt. 2, 1:1–9Google Scholar
  32. Beijerinck MW (1921–1940) Verzammelde Geschriften Nijhoff, Den Haag, pp 1–6Google Scholar
  33. Belkin S, Wirsen CO, Jannasch HW (1986a) A new sulfur-reducing, extremely thermophilic eubacterium from a submarine thermal vent. Appl Environ Microbiol 51:1180–1185PubMedGoogle Scholar
  34. Belkin S, Nelson DC, Jannasch HW (1986b) Symbiotic assimilation of CO2 in two hydrothermal vent animals, the mussel Bathymodiolus thermophilus and the tube worm Riftia pachyptila. Biol Bull 170:110–121Google Scholar
  35. Benemann JR (1973) Nitrogen fixation in termites. Science 181:164–165PubMedGoogle Scholar
  36. Bennett AF (1978) Activity metabolism of the lower vertebrates. Ann Rev Physiol 40:447–469Google Scholar
  37. Berg B, van Hofsten B, Pettersson G (1972) Electron microscopic observations on the degradation of cellulose fibers by Cellvibrio fulvus and Sporocytophaga myxococcoides. J Appl Bacteriol 35:215–219PubMedGoogle Scholar
  38. Bergensen FJ, Hipsley EH (1970) The presence of N2-fixing bacteria in the intestine of man and animals. J Gen Microbiol 60:61–65Google Scholar
  39. Berkeley RCW, Lynch JM, Melling J, Rutter PR, Vincent B (1980) Microbial adhesion to surfaces. Ellis Horwood, ChichesterGoogle Scholar
  40. Berndt H, Ostwal K-P, Lalucat J, Schumann CH, Mayer F, Schlegel HG (1976) Identification and physiological characterization of the nitrogen fixing bacterium Corynebacterium autotrophicum GZ 29. Arch Microbiol 108:17–26PubMedGoogle Scholar
  41. Bezdek HG, Carlucci AF (1972) Surface concentration of marine bacteria. Limnol Oceanogr 17:566–569Google Scholar
  42. Bhuiya ZH, Walker N (1977) Autotrophic nitrifying bacteria in acid tea soils from Bangladesh and Sri Lanka. J Appl Bacteriol 42:253–257PubMedGoogle Scholar
  43. Biebl H, Pfennig N (1978) Growth yield of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch Microbiol 117:9–16Google Scholar
  44. Bitton G, Marshall KC (1980) Adsorption of microorganisms to surfaces. Wiley, New YorkGoogle Scholar
  45. Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379PubMedGoogle Scholar
  46. Blakemore RP, Maratea D, Wolfe RS (1979) Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol 140:720–729PubMedGoogle Scholar
  47. Blakemore RP, Frankel RB, Kalmijn AJ (1980) South-seeking magnetotactic bacteria in the Southern Hemisphere. Nature 286:384–385Google Scholar
  48. Bland JA, Staley JT (1978) Observations on the biology of Thiothrix. Arch Microbiol 117:79–87Google Scholar
  49. Blumershine RV, Savage DC (1978) Filamentous microbes indigenous to the murine small bowel: a scanning electron microscopic study of their morphology and attachment to the epithelium. Microb Ecol 4:95–103Google Scholar
  50. Bokor R (1933) Die Mikrobiologie der Szik-(Salz-oder Alkali-) Böden mit besonderer Berücksichtigung ihrer Fruchtbarmachung. In: Fehäer D (ed) Untersuchungen über die Mikrobiologie des Waldbodens. Springer, Berlin, pp 221–258Google Scholar
  51. Bothe H, De Bruijn FJ, Newton WE (eds) (1988) Nitrogen fixation: hundred years after. Gustav-Fischer-Verlag, StuttgartGoogle Scholar
  52. Bousfield IJ, MacKenzie AR (1976) Inactivation of bacteria by freeze-drying. Soc Appl Bacteriol Symp Ser 5:329–344Google Scholar
  53. Boyd SA, Shelton DR, Berry D, Tiedje JM (1983) Anaerobic biodegradation of phenolic compounds in digested sludge. Appl Environ Microbiol 46:50–54PubMedGoogle Scholar
  54. Boyer EV, Ingle MB, Merver GD (1973) Bacillus alcalophilus subsp. halodurans subsp. nov.: an alkaline-amylase-producing, alkalophilic organism. Int J Syst Bacteriol 23:238–242Google Scholar
  55. Boylen CW (1973) Survival of Arthrobacter crystallopoietes during prolonged periods of extreme desiccation. J Bacteriol 113:33–37PubMedGoogle Scholar
  56. Breznak JA, Brill WJ, Mertins JW, Coppel HC (1973) Nitrogen fixation in termites. Nature 244:577–579PubMedGoogle Scholar
  57. Brierley CL (1977) Thermophilic microorganisms in extraction of metals from ores. In: Underkofler LA (ed) Developments in industrial microbiology. Proceedings of the 33rd general meeting of the society for industrial microbiology, vol 18. Washington American Institute of Biological Sciences, Washington, DC, pp 273–284Google Scholar
  58. Brierley CL (1978a) Bacterial leaching. CRC Crit Rev Microbiol 6:207–262PubMedGoogle Scholar
  59. Brierley JA (1978b) Thermophilic iron-oxidizing bacteria found in copper leaching dumps. Appl Environ Microbiol 36:523–525PubMedGoogle Scholar
  60. Brierley CL, Brierley JA (1973) A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Can J Microbiol 19:183–188PubMedGoogle Scholar
  61. Brierley JA, Lockwood SJ (1977) The occurrence of thermophilic iron-oxidizing bacteria in a copper leaching system. FEMS Microbiol Lett 2:163–165Google Scholar
  62. Briston J, Courtois D, Denis F (1974) Microbiological study of a hypersaline lake in French Somaliland. Appl Microbiol 27:819–822Google Scholar
  63. Brock TD (1967) Life at high temperatures. Science 158:1012–1019PubMedGoogle Scholar
  64. Brock TD (1969) Microbial growth under extreme conditions. Soc Gen Microbiol Symp 19:15–41Google Scholar
  65. Brock TD (1970) High temperature systems. Ann Rev Ecol Syst 1:191–220Google Scholar
  66. Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, New YorkGoogle Scholar
  67. Brock TD (1979) Ecology of saline lakes. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 39–47Google Scholar
  68. Brock TD (ed) (1986) Thermophiles: general, molecular and applied microbiology. Wiley, New YorkGoogle Scholar
  69. Brock TD (1987) The study of microorganisms in situ: progress and problems. In: Fletscher M, Gray TRG, Jones JG (eds) Ecology of microbial communities. Cambridge University Press, Cambridge, pp 1–17Google Scholar
  70. Brock TD, Boylen KL (1973) Presence of thermophilic bacteria in laundry and domestic hot-water heaters. Appl Microbiol 25:72–76PubMedGoogle Scholar
  71. Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile. J Bacteriol 98:289–297PubMedGoogle Scholar
  72. Brock TD, Brock ML, Bott TL, Edwards MR (1971) Microbial life at 90 °C: The sulfur bacteria of Boulder Spring. J Bacteriol 107:303–314PubMedGoogle Scholar
  73. Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archiv für Mikrobiologie 84:54–68PubMedGoogle Scholar
  74. Brown AD (1978) Microbial water stress. Bacteriol Rev 40:803–846Google Scholar
  75. Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Archiv für Mikrobiologie 59:20–31PubMedGoogle Scholar
  76. Bryant MP, Campbell LL, Reddy CA, Crabill MR (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33:1162–1169PubMedGoogle Scholar
  77. Buchner P (1953) Endosymbiose der Tiere mit pflanzlichen Mikroorganismen. Birkhäuser Verlag, BaselGoogle Scholar
  78. Buder J (1919) Zur Biologie des Bacteriopurpurins und der Purpurbakterien. Jahrbücher der Wissenschaftlichen Botanik 58:525–628Google Scholar
  79. Burggraf S, Jannasch HW, Nicolaus B, Stetter KO (1990) Archaeoglobus profundus sp. nov., represents a new species of within the sulfate-reducing archaebacteria. Syst Appl Microbiol 10:24–28Google Scholar
  80. Butlin KR, Postgate JR (1954) The microbiological formation of sulphur in Cyrenaican lakes. In: Cloudsley-Thompson JL (ed) Biology of deserts. Institute of Biology, London, pp 112–122Google Scholar
  81. Cagle GD (1975) Fine structure and distribution of extracellular polymer surrounding selected aerobic bacteria. Can J Microbiol 21:395–408PubMedGoogle Scholar
  82. Cappenberg TH-E (1974a) Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake I. Field of observations. Antonie van Leeuwenhoek J Microbiol Serol 40:285–295Google Scholar
  83. Cappenberg TH-E (1974b) Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. II. Inhibition experiments. Antonie van Leeuwenhoek J Microbiol Serol 40:297–306Google Scholar
  84. Castenholz RW (1969) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33:476–504PubMedGoogle Scholar
  85. Castenholz RW (1976) The effect of sulfide on the blue-green algae of hot springs. I. New Zealand and Iceland. J Phycol 12:54–68Google Scholar
  86. Castenholz RW (1977) The effect of sulfide on the blue-green algae of hot springs. II. Yellowstone National Park. Microb Ecol 3:79–105Google Scholar
  87. Castenholz RW (1979) Evolution and ecology of thermophilic microorganisms. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 373–392Google Scholar
  88. Cavanaugh CM, Gardiner SL, Jones MLS, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm. Riftia pachyptila: possible chemoautotrophic symbionts. Science 213:340–342PubMedGoogle Scholar
  89. Characklis WG, Marshall KC (1990) Biofilms. Wiley Interscience, New YorkGoogle Scholar
  90. Chen M, Wolin MJ (1977) Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium. Appl Environ Microbiol 34:756–759PubMedGoogle Scholar
  91. Chet I, Mitchell R (1976) Ecological aspects of microbial chemotactic behavior. Ann Rev Microbiol 30:221–239Google Scholar
  92. Childress JJ, Fisher CR, Brook JM, Kennicutt MC II, Bridigare R, Anderson AE (1986) A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas. Science 233:1306–1308PubMedGoogle Scholar
  93. Chislett ME, Kushner DJ (1961) A strain of Bacillus circulans capable of growing under highly alkaline conditions. J Gen Microbiol 24:187–190PubMedGoogle Scholar
  94. Clark FE (1967) Bacteria in soil. In: Burges A, Raw F (eds) Soil biology. Academic, London, pp 15–49Google Scholar
  95. Clark AE, Walsby AE (1978a) The occurrence of gas-vacuolate bacteria in lakes. Arch Microbiol 118:223–228Google Scholar
  96. Clark AE, Walsby AE (1978b) The development and vertical distribution of populations of gas-vacuolate bacteria in a eutrophic, monomictic lake. Arch Microbiol 118:229–233Google Scholar
  97. Clarke RTJ (1977) The gut and its micro-organisms. In: Clarke RTJ, Bauchop T (eds) Microbial ecology of the gut. Academic, London, pp 35–71Google Scholar
  98. Coates ME, Fuller R (1977) The gnotobiotic animal in the study of gut microbiology. In: Clark RTJ, Bauchop T (eds) Microbial ecology of the gut. Academic, London, pp 311–346Google Scholar
  99. Cohen Y, Rosenberg E (1989) Microbial mats: physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, DCGoogle Scholar
  100. Cohen Y, Padan E, Shilo M (1975) Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J Bacteriol 123:855–861PubMedGoogle Scholar
  101. Cohen Y, Krumbein WE, Goldberg M, Shilo M (1977) Solar lake (Sinai). I. Physical and chemical limnology. Limnol Oceanogr 22:597–608Google Scholar
  102. Cohen-Bazire G, Stainer RY (1958) Inhibition of carotenoid synthesis in photosynthetic bacteria. Nature 181:250–252PubMedGoogle Scholar
  103. Cohen-Bazire G, Kunisawa R, Pfennig N (1969) Comparative study of the structure of gas vacuoles. J Bacteriol 100:1049–1061PubMedGoogle Scholar
  104. Cohn F (1881) Gutachten über die Abwässer verschiedener Zuckerfabriken im Winter 1881 Quoted from Kolkwitz 1906Google Scholar
  105. Colmer AR, Temple KL, Hinkle ME (1950) An iron-oxidizing bacterium from the drainage of some bituminous coal mines. J Bacteriol 59:317–328PubMedGoogle Scholar
  106. Cornax R, Morinigo MA, Romero P, Borrego JJ (1990) Survival of pathogenic microorganisms in seawater. Curr Microbiology 220:293–298Google Scholar
  107. Costerton JW, Cheng KJ (1981) The Bacterial glycocalyx in nature and disease. Ann Rev Microbiol 35:299–324Google Scholar
  108. Costerton JW, Ingram JM, Cheng K-J (1974) Structure and function of the cell envelope of Gram-negative bacteria. Bacteriol Rev 38:87–110PubMedGoogle Scholar
  109. Costerton JW, Geesey GG, Cheng K-J (1978) How bacteria stick. Sci Am 238:86–95PubMedGoogle Scholar
  110. Costerton JW, Irvin RT, Cheng KJ (1981) The role of bacterial surface structures in pathogenesis. Crit Rev Microbiol 8:303–338PubMedGoogle Scholar
  111. Costerton JW, Marrie TJ, Cheng KJ (1985) Phenomena of bacterial adhesion. In: Savage DC, Fletcher M (eds) Bacterium adhesion. Plenum, New York, pp 3–43Google Scholar
  112. Costerton JW, Cheng K-J, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Ann Rev Microbiol 41:435–464Google Scholar
  113. Cross T (1968) Thermophilic actinomycetes. J Appl Bacteriol 31:36–53PubMedGoogle Scholar
  114. Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147PubMedGoogle Scholar
  115. Cundell AM, Sleeter TD, Mitchell R (1977) Microbial populations associated with the surface of the brown alga Ascophyllum nodosum. Microb Ecol 4:81–91Google Scholar
  116. Dazzo FB, Yanke WE, Brill WJ (1978) Trifoliin: a RHIZOBIUM recognition protein from white clover. Biochim Biophys Acta 539:276–286PubMedGoogle Scholar
  117. De Bont JAM, Mulder EG (1974) Nitrogen fixation and co-oxidization of ethylene by a methane-utilizing bacterium. J Gen Microbiol 83:113–121Google Scholar
  118. Degens ET, Ross DA (1974) The Black Sea: geology, chemistry and biology Memoir 20. American Association of Petroleum, TulsaGoogle Scholar
  119. Dehority BA (1971) Carbon dioxide requirement of various species of rumen bacteria. J Bacteriol 105:70–76PubMedGoogle Scholar
  120. DeLong EF, Wickham GS, Pace NR (1988) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363Google Scholar
  121. Deming JW, Colwell RR (1982) Barophilic bacteria associated with digestive tracts of abyssal holothurians. Appl Environ Microbiol 44:1222–1230PubMedGoogle Scholar
  122. Deming JW, Tabor PS, Colwell RR (1981) Barophilic growth from intestinal tracts of deep-sea invertebrates. Microb Ecol 7:85–94Google Scholar
  123. Demoll R, Liebmann H (1952) Über die Verteilung von Sphaerotilus natans im Fluss. Schweizerische Zeitschrift für Hydrologie 14:289–297Google Scholar
  124. Dietz AS, Yayanos AA (1978) Silica gel for isolating and studying bacteria under hydrostatic pressure. Appl Environ Microbiol 36:966–968PubMedGoogle Scholar
  125. Distel DL, Lane DJ, Olsen GJ, Giovannoni SJ, Pace B, Pace NR, Stahl DA, Felbeck H (1988) Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J Bacteriol 170:2506–2510PubMedGoogle Scholar
  126. Dondero NC (1961) Sphaerotilus, its nature and economic significance. Adv Appl Microbiol 3:77–107PubMedGoogle Scholar
  127. Dondero NC (1975) The Sphaerotilus-Leptothrix group. Ann Rev Microbiol 29:407–465Google Scholar
  128. Drasar BS, Barrow PA (1985) Intestinal microbiology (Aspects of Microbiology 10).van Nostrand Reinholf, EnglandGoogle Scholar
  129. Drasar BS, Hill MJ (1974) Human intestinal flora. Academic, LondonGoogle Scholar
  130. Duckworth RB (1975) Water relations in foods. Proceedings of an international symposium in Glasgow, Sept 1974. Academic, LondonGoogle Scholar
  131. Duda VI, Makaer’eva DE (1977) Morphogenesis and function of gas caps on spores of anaerobic bacteria of the genus Clostridium. Mikrobiologiya 46:689–694, In Russian, with English summaryGoogle Scholar
  132. Dugan PR, MacMillan CB, Pfister RM (1970) Aerobic heterotrophic bacteria indigenous to pH 2.8 acid mine water: microscopic examination of acid streamers. J Bacteriol 101:973–981PubMedGoogle Scholar
  133. Dundas IED (1977) Physiology of Halobacteriaceae. Adv Microb Physiol 15:85–120PubMedGoogle Scholar
  134. Dundas ID, Larsen H (1962) The physiological role of the carotenoid pigments of Halobacterium salinarium. Archiv für Mikrobiologie 44:233–239Google Scholar
  135. Ebisu S, Kato K, Kotani S, Misaki A (1975) Structural differences in fructans elaborated by Streptococcus mutans and S. salivarius. J Biochem 78:879–887PubMedGoogle Scholar
  136. Ellwood DC, Hedger JN, Latham MH, Lynch JM, Slater JH (1980) Contemporary microbial ecology. Academic, LondonGoogle Scholar
  137. Ensign JC, Wolfe RS (1964) Nutritional control of morphogenesis in Arthrobacter crystallopoietes. J Bacteriol 87:924–932PubMedGoogle Scholar
  138. Eutick ML, O’Brien RW, Slaytor M (1978) Bacteria from the gut of Australian termites. Appl Environ Microbiol 35:823–828PubMedGoogle Scholar
  139. Fairbairn D (1970) Biochemical adaptation and loss of genetic capacity in helminth parasites. Biol Rev 45:29–72PubMedGoogle Scholar
  140. Felbeck H, Childress JJ, Somero GN (1981) Calvin-Benson cycle and sulphide oxidation enzymes in -animals from sulphiderich habitats. Nature 293:291–293Google Scholar
  141. Fenchel TM (1969) The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem. Ophelia 6:1–182Google Scholar
  142. Fenchel TM, Jørgensen BB (1977) Detritus food chains in aquatic ecosystems: the role of bacteria. Adv Microb Ecol 1:1–58Google Scholar
  143. Fenchel TM, Riedl RJ (1970) The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar Biol 7:255–268Google Scholar
  144. Fenchel TM, Staarup BJ (1971) Vertical distribution of photosynthetic pigments and the penetration of light in marine sediments. Oikos 22:172–182Google Scholar
  145. Ferry JG, Wolfe RS (1976) Anaerobic degradation of benzoate to methane by a microbial consortium. Arch Microbiol 107:33–40PubMedGoogle Scholar
  146. Fiala G, Stetter KO, Jannasch HW, Langworthy TA, Madon J (1986) Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98 °C. Syst Appl Microbiol 8:106–113Google Scholar
  147. Fisher CR, Childress JJ, Minnich E (1989) Autotrophic carbon fixation by the chemoautotrophic symbionts of Riftia pachyptila. Biol Bull 177:372–385Google Scholar
  148. Fletcher M, Loeb GI (1979) Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Appl Environ Microbiol 37:67–72PubMedGoogle Scholar
  149. Fletcher M, Marshall KC (1982) Are solid surfaces of ecological significance to aquatic bacteria? In: Marshall KC (ed) Advances in microbial ecology. Plenum, New YorkGoogle Scholar
  150. Fliermans CB, Brock TD (1972) Ecology of sulfur-oxidizing bacteria in hot acid soils. J Bacteriol 111:343–350PubMedGoogle Scholar
  151. Focht DD, Verstraete W (1977) Biochemical ecology of nitrification and denitrification. Adv Microb Ecol 1:135–214Google Scholar
  152. Foglesong MA, Walker DH Jr, Puffer JS, Markovetz AJ (1975) Ultrastructural morphology of some prokaryotic microorganisms associated with the hindgut of cockroaches. J Bacteriol 123:336–345PubMedGoogle Scholar
  153. Foster JW (1949) Chemical activities of fungi. Academic, New YorkGoogle Scholar
  154. Frankel RB, Blakemore RP, Wolfe RS (1979) Magnetite in freshwater magnetotactic bacteria. Science 203:1355–1356PubMedGoogle Scholar
  155. Fridovich I (1974) Superoxide dismutases. Adv Enzymol 41:35–97PubMedGoogle Scholar
  156. Fridovich I (1975) Oxygen: boon and bane. Am Sci 63:54–59PubMedGoogle Scholar
  157. Fridovich I (1976) Oxygen radicals, hydrogen peroxide, and oxygen toxicity. In: Pryor WA (ed) Free radicals in biology, vol 1. Academic, New York, pp 239–277Google Scholar
  158. Gerber NN (1975) Prodigiosin-like pigments. CRC Crit Rev Microbiol 3:469–485PubMedGoogle Scholar
  159. Germaine GR, Chludzinski AM, Schachtele CF (1974) Streptococcus mutans dextransucrase: requirement for primer dextran. J Bacteriol 120:287–294PubMedGoogle Scholar
  160. Gillespy TG, Thorpe RH (1968) Occurrence and significance of thermophiles in canned foods. J Appl Bacteriol 31:59–65PubMedGoogle Scholar
  161. Giovannoni SJ, DeLong EF, Olsen GJ, Pace NR (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 170:720–726PubMedGoogle Scholar
  162. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345(6270):60–63PubMedGoogle Scholar
  163. Golovacheva RS (1976) Thermophilic nitrifying bacteria from hot springs. Mikrobiologiya 45:377–379, In Russian, with English summaryGoogle Scholar
  164. Golovacheva RS (1979) Attachment of Sulfobacillus thermosulfidooxidans cells to the surface of sulfide minerals. Mikrobiologiya 48:528–533, In Russian, with English summaryGoogle Scholar
  165. Golovacheva RS, Karavaiko GI (1978) Sulfobacillus, a new genus of thermophilic sporeforming bacteria. Mikrobiologiya 47:815–822, In Russian, with English summaryGoogle Scholar
  166. Gorini L (1960) Antagonism between substrate and repressor in controlling the formation of a biosynthetic enzyme. Proc Nat Acad Sci USA 46:682–690PubMedGoogle Scholar
  167. Gorlenko WM, Dubinina GA, Kuznezow SJ (1977) Ecology of aquatic microorganisms. Nauka, MoscowGoogle Scholar
  168. Goto E, Kodama T, Minoda Y (1977) Isolation and culture conditions of thermophilic hydrogen bacteria. Agric Biol Chem 41:685–690Google Scholar
  169. Gottlieb SF (1971) Effect of hyperbaric oxygen on microorganisms. Ann Rev Microbiol 25:111–152Google Scholar
  170. Grant WD, Mills AA, Schofield AK (1979) An alkalophilic species of Ectothiorhodospira from a Kenyan soda lake. J Gen Microbiol 110:137–142Google Scholar
  171. Grassle JF (1986) The ecology of deep-sea hydrothermal vent communities. Adv Mar Biol Ecol 23:301–362Google Scholar
  172. Greenberg EP, Hastings JW, Ulitzur S (1979) Induction of luciferase synthesis in Beneckea harveyi by other marine bacteria. Arch Microbiol 120:87–91Google Scholar
  173. Griffin DM (1981) Water and microbial stress. Adv Microb Ecol 5:91–136Google Scholar
  174. Griffin DM, Luard EJ (1979) Water stress and microbial ecology. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 49–63Google Scholar
  175. Gromet-Elhanan Z (1977) Electron transport and photophosphorylation in photosynthetic bacteria. In: Trebst A, Avron M (eds) Encyclopaedia of plant physiology, vol 5. Springer, Berlin, pp 637–662Google Scholar
  176. Gunner HB, Alexander M (1964) Anaerobic growth of Fusarium oxysporum. J Bacteriol 87:1309–1316PubMedGoogle Scholar
  177. Hansen MH, Ingvorsen K, Jørgensen BB (1978) Mechanisms of hydrogen sulfide release from coastal marine sediments to the atmosphere. Limnol Oceanogr 23:68–76Google Scholar
  178. Harder W, Veldkamp H (1968) Physiology of an obligate psychrophilic marine Pseudomonas species. J Appl Bacteriol 31:12–33Google Scholar
  179. Harder W, Veldkamp H (1971) Competition of marine psychrophilic bacteria at low temperatures. Antonie van Leeuwenhoek J Microbiol Serol 37:51–63Google Scholar
  180. Hardie JM, Bowden GH (1974) The normal microbial flora of the mouth. In: Skinner FA, Carr JG (eds) The normal microbial flora of man. Academic, London, pp 47–83Google Scholar
  181. Harold R, Stanier RY (1955) The genera Leucothrix and Thiothrix. Bacteriol Rev 19:49–58PubMedGoogle Scholar
  182. Harris RH, Mitchell R (1973) The role of polymers in microbial aggregation. Ann Rev Microbiol 27:27–50Google Scholar
  183. Hassan HM, Fridovich I (1979) Superoxide dismutase and its role for survival in the presence of oxygen. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 179–193Google Scholar
  184. Hastings JW, Nealson KH (1977) Bacterial bioluminescence. Ann Rev Microbiol 31:549–595Google Scholar
  185. Hattori T, Ishida Y, Maruyama Y, Morita RY, Uchida A (1989) Recent advances in microbial ecology. In: Proceedings of the 5th international symposium on microbial ecology, Japan Science Society Press, TokyoGoogle Scholar
  186. Hazelbauer GL (1988) The bacterial chemosensory system. Can J Microbiol 34:466–474PubMedGoogle Scholar
  187. Heinen W (1974) Proceedings of the first European workshop on microbial adaptation to extreme environments. Biosystems 6:57–80Google Scholar
  188. Held AA (1970) Nutrition and fermentative energy metabolism of the water mold Aqualinderella fermentans. Mycologia 62:339–358Google Scholar
  189. Held AA, Emerson R, Fuller MS, Gleason FH (1969) Blastocladia and Aqualinderella: fermentative water molds with high carbon dioxide optima. Science 165:706–708PubMedGoogle Scholar
  190. Henrici AT, Johnson DE (1935) Studies of freshwater bacteria. II. Stalked bacteria, a new order of Schizomycetes. J Bacteriol 30:61–86PubMedGoogle Scholar
  191. Herdman M, Janvier M, Waterbury JB, Rippka R, Stanier RY (1979) Deoxyribonucleic acid base composition of cyanobacteria. J Gen Microbiol 111:63–71Google Scholar
  192. Heukelekian H, Heller A (1940) Relation between food concentration and surface for bacterial growth. J Bacteriol 40:547–558PubMedGoogle Scholar
  193. Heumann W, Marx R (1964) Feinstruktur und Funktion der Fimbrien bei dem sternbildenden Bakterium Pseudomonas echinoides. Archiv für Mikrobiologie 47:325–337Google Scholar
  194. Hirsch P (1974) Budding bacteria. Ann Rev Microbiol 28:392–444Google Scholar
  195. Hirsch P (1979) Life under conditions of low nutrient concentrations. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 357–372Google Scholar
  196. Hirsch P, Pankratz St H (1970) Study of bacterial populations in natural environments by use of submerged electron microscope grids. Zeitschrift für Allgemeine Mikrobiologie 10:589–605PubMedGoogle Scholar
  197. Hobson PN (1988) The rumen microbial ecosystem. Elsevier Science, LondonGoogle Scholar
  198. Hochachka PW, Mustafa T (1972) Invertebrate facultative anaerobiosis. Science 178:1056–1060PubMedGoogle Scholar
  199. Hochachka PW, Somero GN (1973) Strategies of biochemical adaptation. WB Saunders, LondonGoogle Scholar
  200. Hoffmann C (1942) Beiträge zur Vegetation des FarbstreifenSandwattes. Kieler Meeresforschungen 4:85–108Google Scholar
  201. Holben WE, Jansson J, Chelm B, Tiedje T (1988) DNA probe method for detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol 54:703–711PubMedGoogle Scholar
  202. Holdemann LV, Cato EP, Moore WEC (1977) Anaerobe laboratory manual, 4th edn. Virginia Polytechnic Institute and State University, BlacksburgGoogle Scholar
  203. Horikoshi K, Akiba T (1982) Alkalophilic microorganisms. A new microbial world. Japan Scientific Societies Press/Springer, Berlin/New YorkGoogle Scholar
  204. Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144:324–333Google Scholar
  205. Huber R, Huber G, Segerer A, Seger J, Stetter KO (1987a) Aerobic and anaerobic extremely thermophilic autotrophs. In: van Verseveld HW, Duine JA (eds) Proceedings of the 5th international symposium. Martinus Nijhoff, Dordrecht, pp 44–51Google Scholar
  206. Huber R, Kristjansson J, Stetter KO (1987b) Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100 °C. Arch Microbiol 149:95–101Google Scholar
  207. Huber R, Kurr M, Jannasch HW, Stetter KO (1989) A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110 °C. Nature 342:833–834Google Scholar
  208. Huber R, Stoffers P, Cheminee JL, Richnow HH, Stetter KO (1990) Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount. Nature 345:179–181Google Scholar
  209. Hughes MN, Poole RK (1989) Metals and microorganisms. Chapman and Hall, LondonGoogle Scholar
  210. Hungate RE (1950) The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14:1–49PubMedGoogle Scholar
  211. Hungate RE (1962) Ecology of bacteria. In: Gunsalus JC, Stanier RY (eds) The bacteria, vol IV, The physiology of growth. Academic, New York, pp 95–119Google Scholar
  212. Hungate RE (1966) The rumen and its microbes. Academic, New YorkGoogle Scholar
  213. Hungate RE (1967) Hydrogen as an intermediate in the rumen fermentation. Archiv für Mikrobiologie 59:158–164PubMedGoogle Scholar
  214. Hungate RE (1975) The rumen microbial ecosystem. Ann Rev Ecol Syst 6:39–66Google Scholar
  215. Hussain HM (1973) Ökologische Untersuchungen über die Bedeutung thermophiler Mikroorganismen für die Selbsterhitzung von Heu. Zeitschrift für Allgemeine Mikrobiologie 13:323–334PubMedGoogle Scholar
  216. Hustede E, Liebergesell M, Schlegel HG (1989) The photophobic response of various sulfur and nonsulfur purple bacteria. Photochem Photobiol 50:809–815Google Scholar
  217. Iannotti EL, Kafkewit D, Wolin MJ, Bryant MP (1973) Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H2. J Bacteriol 114:1231–1240PubMedGoogle Scholar
  218. Imhoff JF, Trüper HG (1977) Ectothiorhodospira halochloris sp. nov., a new extremely halophilic bacterium containing bacteriochlorophyll b. Arch Microbiol 114:115–121Google Scholar
  219. Inniss WE (1975) Interaction of temperature and psychrophilic microorganisms. Ann Rev Microbiol 29:445–465Google Scholar
  220. Inniss WE, Ingraham JL (1978) Microbial life at low temperatures: mechanisms and molecular aspects. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 73–104Google Scholar
  221. Jaggar J (1983) Physiological effects of near-ultraviolet radiation on bacteria. Photochem Photobiol Rev 7:1–75Google Scholar
  222. Jannasch HW (1955) Zur Ökologie der zymogenen planktischen Bakterienflora natürlicher Gewässer. Archiv für Mikrobiologie 23:146–180PubMedGoogle Scholar
  223. Jannasch HW (1957) Die bakterielle Rotfärbung der Salzseen des Wadi Natrun (Ägypten). Archiv für Hydrobiologie 53:425–433Google Scholar
  224. Jannasch HW (1958) Studies of planktonic bacteria by means of a direct membrane filter method. J Gen Microbiol 18:609–620PubMedGoogle Scholar
  225. Jannasch HW (1960) Versuche über Denitrifikation und die Verfügbarketi des Sauerstoffes in Wasser und Schlamm. Archiv für Hydrobiologie 56:335–369Google Scholar
  226. Jannasch HW (1967) Enrichment of aquatic bacteria in continuous culture. Archiv für Mikrobiologie 59:165–173PubMedGoogle Scholar
  227. Jannasch HW (1977) Growth kinetics of aquatic bacteria. Soc Appl Bacteriol Symp Ser 6:55–68Google Scholar
  228. Jannasch HW (1978) Microorganisms and their aquatic habitat. In: Krumbein WE (ed) Environmental biogeochemistry and geomicrobiology, vol 1. Ann Arbor Scientific, Ann Arbor, pp 17–24Google Scholar
  229. Jannasch HW (1979) Microbial ecology of aquatic low-nutrient habitats. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 243–260Google Scholar
  230. Jannasch HW (1984) Microbial processes at deep sea hydrothermal vents. In: Rona PA, Bostrom K, Laubier L, Smith KL (eds) Hydrothermal processes at seafloor spreading centers. Plenum, New York, pp 677–709Google Scholar
  231. Jannasch HW (1989) Chemosynthetically sustained ecosystems in the deep sea. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer, Berlin, pp 147–166Google Scholar
  232. Jannasch HW, Mateles RI (1974) Experimental bacterial ecology studies in continuous culture. Adv Microb Physiol 11:165–212Google Scholar
  233. Jannasch HW, Pritchard PH (1972) The role of inert particulate matter in the activity of aquatic microorganisms. In: Melchiorri-Santolinie U, Hopton JW (ed) Detritus and its role in aquatic ecosystems. Memorie dell’Istituto Italiano di Idrobiologia Dott Marco de Marchi Pallanza Italy Suppl 29:289–308Google Scholar
  234. Jannasch HW, Taylor CD (1984) Deep-sea microbiology. Ann Rev Microbiol 37:487–514Google Scholar
  235. Jannasch HW, Wirsen CO (1973) Deep-sea microorganisms: in situ response to nutrient enrichment. Science 180:641–643PubMedGoogle Scholar
  236. Jannasch HW, Wirsen CO (1977) Retrieval of concentrated and undecompressed microbial populations from the deep sea. Appl Environ Microbiol 33:642–646PubMedGoogle Scholar
  237. Jannasch HW, Wirsen CO (1979) Chemosynthetic primary production at East Pacific sea floor spreading centers. Bioscience 29:592–598Google Scholar
  238. Jannasch HW, Wirsen CO (1981) Morphological survey of microbial mats near deep sea thermal vents. Appl Environ Microbiol 41:528–538PubMedGoogle Scholar
  239. Jannasch HW, Wirsen CO (1982) Microbial activities in undecompressed and decompressed deep-seawater samples. Appl Environ Microbiol 43:1116–1124PubMedGoogle Scholar
  240. Jannasch HW, Trüper HG, Tuttle JH (1974) The microbial sulfur cycle in the Black Sea. Dergens ET, Ross DA (ed) The Black Sea: its geology, chemistry and biology, Memoir 20. American Association of Petroleum, TulsaGoogle Scholar
  241. Jannasch HW, Wirsen CO, Taylor CD (1976) Undecompressed microbial populations from the deep sea. Appl Environ Microbiol 32:360–367PubMedGoogle Scholar
  242. Jannasch HW, Wirsen CO, Taylor CD (1982) Deep-sea bacteria: isolation in the absence of decompression. Science 216:1315–1317PubMedGoogle Scholar
  243. Jannasch HW, Huber R, Belkin S, Stetter KO (1988) Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Arch Microbiol 150:103–104Google Scholar
  244. Jannasch HW, Nelson DC, Wirsen CO (1989) Massive natural occurrence of unusually large bacteria (Beggiatoa sp.) at a hydrothermal deep-sea vent site. Nature 342:834–836Google Scholar
  245. Jones OTG (1977) Electron transport and ATP synthesis in the photosynthetic bacteria. In: Haddock BA, Hamilton WA (eds) Microbial energetics. Cambridge University Press, Cambridge, pp 151–183Google Scholar
  246. Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococcus jannaschii, sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 163:154–261Google Scholar
  247. Jones WJ, Stugard CE, Jannasch HW (1989) Comparison of thermophilic methanogens from submarine hydrothermal vents. Arch Microbiol 151:314–318Google Scholar
  248. Jørgensen BB (1982) Ecology of the bacteria of the sulfur cycle with special reference to anoxic-oxic interface environments. Phil Tran R Soc Lond Biol Sci 298:543–561Google Scholar
  249. Jørgensen BB, Revsbech NP (1983) Colorless sulfur bacteria, Beggiatoa spp. and Thiovulum spp., in O2 and H2S microgradients. Appl Environ Microbiol 45:1261–1270PubMedGoogle Scholar
  250. Jørgensen BB, Zawacki LX, Jannasch HW (1990) Thermophilic bacterial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent site (Gulf of California). Deep-Sea Res 37:695–710Google Scholar
  251. Kato G, Maruyama Y, Nakamura M (1979) Role of lectins and lipopolysaccharides in the recognition process of specific legume-Rhizobium symbiosis. Agric Biol Chem 43:1085–1092Google Scholar
  252. Kefford B, Kjelleberg S, Marshall KC (1982) Bacterial scavenging: utilization of fatty acids localized at a solid-liquid interface. Arch Microbiol 133:257–260Google Scholar
  253. Kelly MT, Brock TD (1969) Physiological ecology of Leucothrix mucor. J Gen Microbiol 59:153–162PubMedGoogle Scholar
  254. Kjelleberg S, Hermansson M, Mardén P, Jones GW (1987) The transient phase between growth and non growth of heterotrophic bacteria, with emphasis on the marine environment. Annu Rev Microbiol 41:25–49PubMedGoogle Scholar
  255. Kluyver AJ, Donker HJL (1925) The unity of the chemistry of the fermentative sugar dissimilation processes of microbes. Proc Roy Acad Amsterdam 28:297–313Google Scholar
  256. Kluyver AJ, Donker HJL (1926) Die Einheit in der Biochemie Chemie der Zelle und Gewebe 13:134–190Google Scholar
  257. Koch AL (1979) Microbial growth in low concentrations of nutrients. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 261–279Google Scholar
  258. Kolkwitz R (1904–1906) Mykologie und Reinigung der städtischen und der Zuckerfabriksabwässer 391. In: Lafar F (ed) Handbuch der technischen Mykologie, vol 3. Jena Gustav, Fischer VerlagGoogle Scholar
  259. Korhonen TK, Nurmiaho E-L, Tuovinen OH (1978) Fimbriation in Thiobacillus A2. FEMS Microbiol Lett 3:195–198Google Scholar
  260. Koshland DE Jr (1974) The chemotactic response in bacteria. In: Jaenicke L (ed) Biochemistry of sensory functions. Springer, Berlin, pp 133–160Google Scholar
  261. Koshland DE Jr (1976) Bacterial chemotaxis as a simple model for a sensory system. Trends Biochem Sci 1:1–3Google Scholar
  262. Koshland DE (1980) Bacterial chemotaxis as a model behavioral system. Raven, New YorkGoogle Scholar
  263. Koshland DE (1981) Biochemistry of sensing and adaptation in a simple bacterial system. Ann Rev Biochem 50:765–782PubMedGoogle Scholar
  264. Krinsky NI (1979) Carotenoid pigments: multiple mechanisms for coping with the stress of photosensitized oxidations. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 163–177Google Scholar
  265. Krul JM, Hirsch P, Staley JT (1970) Toxothrix trichogenes (Chol.) Beger et Bringmann: the organism and its biology. Antonie van Leeuwenhoek J Microbiol Serol 36:409–420Google Scholar
  266. Krulwich TA, Guffanti AA (1983) Physiology of acidophilic and alkalophilic bacteria. Adv Microb Physiol 24:173–214PubMedGoogle Scholar
  267. Kuenen JG, Boonstra HG, Schröder J, Veldkamp H (1977) Competition for inorganic substrates among chemoorganotrophic and chemolithotrophic bacteria. Microb Ecol 3:119–130Google Scholar
  268. Kushner DJ (1971) Life in extreme environments. In: Buvet R, Ponnamperuma C (eds) Chemical evolution and origin of life. North-Holland, Amsterdam, pp 485–491Google Scholar
  269. Kushner DJ (1978) Life in high salt and solute concentrations: halophilic bacteria. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 317–368Google Scholar
  270. Kuznezow SI (1959) Die Rolle der Mikroorganismen im Stoffkreislauf der Seen. Berlin VEB Deutscher Verlag der WissenschaftenGoogle Scholar
  271. Kuznezow SI (1977) Trends in the development of ecological microbiology. In: Droop MR, Jannasch HW (eds) Advances in aquatic microbiology. Academic, London, pp 1–48Google Scholar
  272. la Riviére JWM (1963) Cultivation and properties of Thiovulum majus Hinze. In: Oppenheimer CH (ed) Marine microbiology. Charles C Thomas, Springfield, pp 61–72Google Scholar
  273. la Riviére JWM (1965) Enrichment of colorless sulfur bacteria Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 1, Suppl 1:17–27Google Scholar
  274. Langworthy TA (1978) Microbial life in extreme pH values. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 279–315Google Scholar
  275. Lanyi JK (1979) Physical-chemical aspects of salt-dependence in Halobacteria. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 93–107Google Scholar
  276. Lapage SP, Shelton JE, Mitchell TG, MacKenzie AR (1970) Culture collections and the preservation of bacteria. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3A. Academic, LondonGoogle Scholar
  277. Larsen H (1967) Biochemical aspects of extreme halophilism. Adv Microb Physiol 1:97–132Google Scholar
  278. Larsen H (1971) Halophilism, microbial. In: McGraw-Hill encyclopedia of science and technology, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  279. Larsen H (1973) The halobacteria’s confusion to biology. The fourth A.J. Kluyver memorial lecture delivered before the Netherlands Society for Microbiology, April 1972 at the Delft University of Technology. Antonie van Leeuwenhoek J Microbiol Serol 39:383–396Google Scholar
  280. Larsen H (1986) Halophilic and halotolerant microorganisms—an overview and historical perspective. FEMS Microbiol Rev 39:3–7Google Scholar
  281. Latham MJ, Wolin MJ (1977) Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl Environ Microbiol 34:297–301PubMedGoogle Scholar
  282. Latham MJ, Brooker BE, Pettipher GL, Harris PJ (1978) Ruminococcus flavefaciens cell coat and adhesion to cotton cellulose and to cell walls in leaves of perennial ryegrass (Lolium perenne). Appl Environ Microbiol 35:156–165PubMedGoogle Scholar
  283. Le Roux NW, Wakerley DS, Hunt SD (1977) Thermophilic Thiobacillus-type bacteria from Icelandic thermal areas. J Gen Microbiol 100:197–201Google Scholar
  284. Leathen WW, Braley SA Sr, McIntyre LD (1953) The role of bacteria in the formation of acid from certain sulfuritic constituents associated with bituminous coal. II. Ferrous iron oxidizing bacteria. Appl Microbiol 1:65–68PubMedGoogle Scholar
  285. Lee A, Phillips M (1978) Isolation and cultivation of spirochetes and other spiral-shaped bacteria associated with the cecal mucosa of rats and mice. Appl Environ Microbiol 35:610–613PubMedGoogle Scholar
  286. Leifson E (1962) The bacterial flora of distilled and stored water. I. General observations, techniques and ecology. Int Bull Bacteriol Nomen Taxon 12:133–153Google Scholar
  287. Levi P, Linkletter A (1989) Metals, microorganisms and biotechnology. In: Hughes MN, Poole RK (eds) Metals and microorganisms. Chapman and Hall, LondonGoogle Scholar
  288. Liener IE (1976) Phytohemagglutinins (phytolectins). Ann Rev Plant Physiol 27:291–319Google Scholar
  289. Loesche WJ (1969) Oxygen sensitivity of various anaerobic bacteria. Appl Microbiol 18:723–727PubMedGoogle Scholar
  290. Lovley DR, Phillips EJP (1987) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480Google Scholar
  291. Madigan MT, Brock TD (1977) Adaptation by hot springs phototrophs to reduced light intensities. Arch Microbiol 113:111–120PubMedGoogle Scholar
  292. Mandel M, Leadbetter ER, Pfennig N, Trüper HG (1971) Deoxyribonucleic acid base compositions of phototrophic bacteria. Int J Syst Bacteriol 21:222–230Google Scholar
  293. Mann S, Sparks NH, Frankel RB, Bazylinski DA, Jannasch HW (1990) Biomineralization of ferrimagnetic greigite (FeS) and iron pyrite (FeS) in a magnetotactic bacterium. Nature 343:258–261Google Scholar
  294. Marchlewitz B, Schwartz W (1961) Untersuchungen über die Mikroben-Assoziation saurer Grubenwässer. Zeitschrift für Allgemeine Mikrobiologie 1:100–114Google Scholar
  295. Marples MJ (1965) The ecology of the human skin. Thomas Charles C, SpringfieldGoogle Scholar
  296. Marples MJ (1974) The normal microbial flora of the skin. In: Skinner FA, Carr JG (eds) The normal microbial flora of man. Academic, London, pp 7–12Google Scholar
  297. Marples MJ (1976) Life on the human skin. Sci Am 220:108–115Google Scholar
  298. Marquis RE (1976) High-pressure microbial physiology. In: Rose AH, Tempest DW (eds) Advances in microbial physiology, vol 14. Academic, London, pp 159–241Google Scholar
  299. Marquis RE, Matsumara P (1978) Microbial life under pressure. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 105–158Google Scholar
  300. Marshall KC (1976) Interfaces in microbial ecology. Harvard University Press, Cambridge/LondonGoogle Scholar
  301. Marshall KC (1979) Growth at interfaces. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, WeinheimGoogle Scholar
  302. Marshall KC (ed) (1984) Microbial adhesion and aggregation. Dahlem workshop reports, Life Science, vol 31. Springer, New YorkGoogle Scholar
  303. Martin SM (1964) Conservation of microorganisms. Ann Rev Microbiol 18:1–16Google Scholar
  304. Martin HH (1969) Die Struktur der Zellwand bei Gram-negativen. Bakterien Arzneimittel-Forschung 19:266–272Google Scholar
  305. Marx JL (1977) Looking at lectins: do they function in recognition processes? Science 196:1429–1430PubMedGoogle Scholar
  306. Marx R, Heumann W (1962) Uber Geisselfeinstrukturen und Fimbrien bei zwei Psuedomonas-Stämmen. Archiv für Mikrobiologie 43:245–254PubMedGoogle Scholar
  307. Matin A (1979) Microbial regulatory mechanisms at low nutrient concentrations as studies in chemostat. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 323–339Google Scholar
  308. Matin A, Veldkamp H (1978) Physiological basis of the selective advantage of a Spirillum sp. in a carbon-limited environment. J Gen Microbiol 105:187–197PubMedGoogle Scholar
  309. Matin A, Veldhuis C, Stegemann V, Veenhuis M (1979) Selective advantage of a Spirillum sp. in a carbon-limited environment. Accumulation of poly-β-hydroxybutyric acid and its role in starvation. J Gen Microbiol 112:349–355PubMedGoogle Scholar
  310. Matin A, Auger EA, Blum PH, Schultz JE (1989) Genetic basis of starvation survival in nondifferentiating bacteria. Ann Rev Microbiol 43:293–316Google Scholar
  311. Matthews MM, Sistrom WR (1959) Function of carotenoid pigments in non-photosynthetic bacteria. Nature 184:1892–1893Google Scholar
  312. Mayer F (1971) Elektronenmikroskopische Untersuchung der Fimbrienkontraktion bei dem sternbildenden Bodenbakterium Pseudomonas echinoides. Archiv für Mikrobiologie 76:166–173PubMedGoogle Scholar
  313. Mayer F, Schmitt R (1971) Elektronenmikroskopische, diffraktometrische und disc-elektrophoretische Untersuchungen an Fimbrien des sternbildenden Bodenbakteriums Pseudomonas echinoides und einer nicht-sternbildenden. Mutante Archiv für Mikrobiologie 79:311–326Google Scholar
  314. Mazanec K, Kocur M, Martinec T (1965) Electron microscopy of ultrathin sections of Sporosarcina ureae. J Bacteriol 90:808–816PubMedGoogle Scholar
  315. McBee RH (1977) Fermentation in the hindgut. In: Clarke RTJ, Bauchop T (eds) Microbial ecology of the gut. Academic, London, pp 185–222Google Scholar
  316. McLeod RA (1968) On the role of inorganic ions in the physiology of marine bacteria. Adv Microbiol Sea 1:95Google Scholar
  317. Meers JL (1973) Growth of bacteria in mixed cultures. CRC Crit Rev Microbiol 2:139–184Google Scholar
  318. Megusar F, Gantar M (eds) (1986) Perspectives in microbial ecology. Slovene Society for Microbiology Ljubljana, YugoslaviaGoogle Scholar
  319. Menzel DW, Ryther JH (1970) Distribution and cycling of organic matter in the oceans. In: Hood DW (ed) Organic matter in natural waters. Alaska Institute of Marine-Sciences, AlaskaGoogle Scholar
  320. Millar WN (1973) Heterotrophic bacterial population in acid coal mine water: Flavobacterium acidurans, sp. n. Int J Syst Bacteriol 23:142–150Google Scholar
  321. Miller WD (1890) The micro-organisms of the human mouth. Basel Karger, Philadelphia, unaltered reprint from original workGoogle Scholar
  322. Miller RE, Simons LA (1962) Survival of bacteria after twenty-one years in the dried state. J Bacteriol 84:1111–1114PubMedGoogle Scholar
  323. Minato H, Suto T (1978) Technique for fractionation of bacteria in rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose powder in vitro and elution of bacteria attached therefrom. J Gen Appl Microbiol 24:1–16Google Scholar
  324. Mitskevich IN (1979) The total number of biomass of microorganisms in deep waters of the Black Sea (In Russian, with English summary). Mikrobiologiya 48:552–557Google Scholar
  325. Moore WEC, Holdeman LV (1974) Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27:961–979PubMedGoogle Scholar
  326. Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167PubMedGoogle Scholar
  327. Morita RY (1976) Survival of bacteria in cold and moderate hydrostatic pressure environments with special reference to psychrophilic and barophilic bacteria. In: Gray TGR, Postgate JR (eds) The survival of vegetative microbes. Cambridge University Press, Cambridge, pp 279–298Google Scholar
  328. Morris JG (1975) The physiology of obligate anaerobiosis. Adv Microb Physiol 12:169–246Google Scholar
  329. Morris JG (1976) Fifth Stenhouse-Williams Memorial Lecture—oxygen and the obligate anaerobe. J Appl Bacteriol 40:229–244PubMedGoogle Scholar
  330. Morris JG (1978) The biochemistry of anaerobiosis. Biochem Soc Trans 6:353–356PubMedGoogle Scholar
  331. Morris JG (1979) Nature of oxygen toxicity in anaerobic microorganisms. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 149–162Google Scholar
  332. Morris JG, O’Brien RW (1971) Oxygen and clostridia: a review. In: Barker AN, Gould GW, Wolf J (eds) Spore research 1971. Academic, London, pp 1–37Google Scholar
  333. Mossel DAA (1975) Water and micro-organisms in foods—a synthesis. In: Duckworth RB (ed) Water relations of foods. Academic, London, pp 347–361Google Scholar
  334. Mossel DAA, Ingram M (1955) The physiology of the microbial spoilage of foods. J Appl Bacteriol 18:232–268Google Scholar
  335. Mountfort DO, Asher RA (1983) Role of catabolic regulatory mechanism in control of carbohydrate utilization by the rumen anaerobic fungus Neocallimastix frontalis. Appl Environ Microbiol 46:1331–1338PubMedGoogle Scholar
  336. Mulder EG, Brotonegoro S (1974) Free-living heterotrophic nitrogen-fixing bacteria. In: Quispel A (ed) The biology of nitrogen fixation. North-Holland, Amsterdam, pp 37–85Google Scholar
  337. Müller M (1975) Biochemistry of protozoan microbodies: peroxisomes, glycerophosphate oxidase bodies, hydrogenosomes. Annu Rev Microbiol 29:467–483PubMedGoogle Scholar
  338. Müller-Neuglück M, Engel H (1961) Photoinaktivierung von Nitrobacter winogradskyi Buch. Archiv für Mikrobiologie 39:130–138Google Scholar
  339. Nasim A, James AP (1978) Life under conditions of high irradiation. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 409–439Google Scholar
  340. Neijssel OM, Hueting S, Crabbendam KJ, Tempest DW (1975) Dual pathways of glycerol assimilation in Klebsiella aerogenes NCIB 418. Their regulation and possible functional significance. Arch Microbiol 104:83–87PubMedGoogle Scholar
  341. Nelson DC, Jannasch HW (1983) Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136:262–269Google Scholar
  342. Nelson DC, Jørgensen BB, Revsbech NP (1986) Growth pattern and yield of a chemoautotrophic Beggiatoa sp. in oxygen-sulfide microgradients. Appl Environ Microbiol 53:225–233Google Scholar
  343. Nelson DC, Wirsen CO, Jannasch HW (1989) Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin. Appl Environ Microbiol 55:2909–2917PubMedGoogle Scholar
  344. Noble WC, Pitcher DG (1979) Microbial ecology of the human skin. Adv Microb Ecol 2:245–289Google Scholar
  345. Noble WC, Somerville DA (1974) Microbiology of human skin. Saunders, LondonGoogle Scholar
  346. Nottingham PM, Hungate RE (1969) Methanogenic fermentation of benzoate. J Bacteriol 98:1170–1172PubMedGoogle Scholar
  347. Nultsch W (1975) Phototaxis and photokinesis. In: Carlile MJ (ed) Primitive sensory and communication systems: the taxes and tropisms of microorganisms and cells. Academic, London, pp 29–90Google Scholar
  348. O’Brien RW, Morris JG (1971) Oxygen and the growth and metabolism of Clostridium acetobutylicum. J Gen Microbiol 68:307–318PubMedGoogle Scholar
  349. Odum EP (1977) Ecology: the link between the natural and the social sciences, 2nd edn. Holt, Rinehart & Winston, LondonGoogle Scholar
  350. Ohta K, Kiyomiya A, Koyama N, Nosoh Y (1975) The basis of the alkalophilic property of a species of bacillus. J Gen Microbiol 86:259–266Google Scholar
  351. Okon Y, Albrecht SL, Burris RH (1976) Factors affecting growth and nitrogen fixation of Spirillum lipoferum. J Bacteriol 127:1248–1254PubMedGoogle Scholar
  352. Oren A, Padan E (1978) Induction of anaerobic, photoautotrophic growth in the cyanobacterium Oscillatoria limnetica. J Bacteriol 133:558–563PubMedGoogle Scholar
  353. Oren A, Shilo M (1979) Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: sulfur respiration and lactate fermentation. Arch Microbiol 122:77–84Google Scholar
  354. Orpin CG (1972) The culture in vitro of the rumen bacterium Quin’s oval. J GenMicrobiol 73:523–530Google Scholar
  355. Orpin CG (1973) The intracellular polysaccharide of the rumen bacterium Eadie’s oval. Archiv für Mikrobiologie 90:247–254PubMedGoogle Scholar
  356. Orpin CG, Joblin KN (1988) The rumen anaerobic fungi. In: Hobson PN (ed) The rumen microbial ecosystem. Elsevier Science, LondonGoogle Scholar
  357. Ottow JCG (1975) Ecology, physiology, and genetics of fimbriae and pili. Annu Rev Microbiol 29:79–108PubMedGoogle Scholar
  358. Overbeck J (1972) Zur Struktur und Funktion des aquatischen Ökosystems Berichte der Deutschen Botanischen Gesellschaft 85:553–579Google Scholar
  359. Pace NR, Stahl D, Lane DJ, Olsen GJ (1986) The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microbiol Ecol 9:1–55Google Scholar
  360. Padan E (1979a) Facultative anoxygenic photosynthesis in cyanobacteria. Ann Rev Plant Physiol 30:27–40Google Scholar
  361. Padan E (1979b) Impact of facultatively anaerobic photoautotrophic metabolism on ecology of cyanobacteria (blue-green algae). Adv Microb Ecol 3:1–48Google Scholar
  362. Pask-Hughes RA, Williams RAD (1975) Extremely thermophilic Gram-negative bacteria from hot tap water. J Gen Microbiol 88:321–328PubMedGoogle Scholar
  363. Pask-Hughes RA, Williams RAD (1977) Yellow-pigmented strains of Thermus spp. from Icelandic hot springs. J Gen Microbiol 102:375–383Google Scholar
  364. Patterson H, Irvin R, Costerton JW, Cheng K-J (1975) Ultrastructure and adhesion properties of Ruminococcus albus. J Bacteriol 122:278–287PubMedGoogle Scholar
  365. Pfennig N (1961) Eine vollsynthetische Nährlösung zur selektiven. Anreicherung einiger Schwefelpurpurbakterien Naturwissenschaften 48:136Google Scholar
  366. Pfennig N (1965) Anreicherungskulturen für rote und grüne Schwefelbakterien Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 1, Suppl 1:179–189, 503–504Google Scholar
  367. Pfennig N (1967) Photosynthetic bacteria. Ann Rev Microbiol 21:286–324Google Scholar
  368. Pfennig N (1979) General physiology and ecology of photosynthetic bacteria. In: Sistrom WR, Clayton R (eds) Photosynthetic bacteria. Plenum, New York, pp 3–18Google Scholar
  369. Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110:3–12PubMedGoogle Scholar
  370. Pfennig N, Cohen-Bazire G (1967) Some properties of the green bacterium Pelodictyon clathratiforme. Arch Mikrobiol 59:226–236PubMedGoogle Scholar
  371. Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs. Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24PubMedGoogle Scholar
  372. Poindexter JS (1964) Biological properties and classification of the Caulobacter group. Bacteriol Rev 28:231–295PubMedGoogle Scholar
  373. Poindexter JS (1979) Morphological adaptation to low nutrient concentrations. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 341–356Google Scholar
  374. Prebble J, Huda S (1977) The photosensitivity of the malate oxidase system of a pigmented strain and a carotenoidless mutant of Sarcina lutea (Micrococcus luteus). Arch Microbiol 113:39–42PubMedGoogle Scholar
  375. Pringsheim EG (1957) Observations on Leucothrix mucor and Leucothrix cohaercus nov. sp. with a survey of colorless filamentous organisms. Bacteriol Rev 21:69–81PubMedGoogle Scholar
  376. Prins RA (1977) Biochemical activities of gut microorganisms. In: Clarke RTJ, Bauchop T (eds) Microbial ecology of the gut. Academic, London, pp 73–183Google Scholar
  377. Raj HD (1977) Leucothrix. CRC Crit Rev Microbiol 5:271–301PubMedGoogle Scholar
  378. Ramaley RF, Hixson J (1970) Isolation of a nonpigmented, thermophilic bacterium similar to Thermus aquaticus. J Bacteriol 103:527–528PubMedGoogle Scholar
  379. Reddy CA, Bryant MP, Wolin MJ (1972a) Characteristics of S organism isolated from Methanobacillus omelianskii. J Bacteriol 109:539–545PubMedGoogle Scholar
  380. Reddy CA, Bryant MP, Wolin MJ (1972b) Ferredoxin-independent conversion of acetaldehyde to acetate and H2 in extracts of S organism. J Bacteriol 110:133–138PubMedGoogle Scholar
  381. Reichelt JL, Baumann P (1973) Taxonomy of the marine, luminous bacteria. Arch für Mikrobiol 94:283–330Google Scholar
  382. Repaske DR, Adler J (1981) Change in intracellular pH of escherichia coli mediates the chemotactic response to certain attractants and repellents. J Bacteriol 145:1196–1208PubMedGoogle Scholar
  383. Repeta DJ, Simpson DJ, Jørgensen BB, Jannasch HW (1989) Evidence for anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea. Nature 342:69–72PubMedGoogle Scholar
  384. Richards FR (1975) The Cariaco basin (Trench). Oceanogr Marine Biol Ann Rev 13:11–67Google Scholar
  385. Richards FA, Vaccaro RF (1958) The Cariaco Trench, an anaerobic basin in the Caribbean Sea. Deep-Sea Res 3:214–228Google Scholar
  386. Rittenberg SC (1979) Bdellovibrio: a model of biological interactions in nutrient impoverished environments? In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 305–322Google Scholar
  387. Robinson JB, Salonius PO, Chase FE (1965) A note on the differential response of Arthrobacter spp. and Pseudomonas spp. to drying in soil. Can J Microbiol 11:746–748PubMedGoogle Scholar
  388. Rose AH (1968) Physiology of microorganisms at low temperatures. J Appl Bacteriol 31:1–11PubMedGoogle Scholar
  389. Rosebury T (1972) Der Reinlichkeitstick. Hoffmann & Campe Verlag, HamburgGoogle Scholar
  390. Rudd JWM, Taylor CD (1980) Methane cycling in aquatic environments. Adv Aquat Microbiol 2:77–150Google Scholar
  391. Rupela OP, Tauro P (1973) Isolation and characterization of Thiobacillus from alkali soils. Soil Biol Biochem 5:891–897Google Scholar
  392. Russell C, Melville TH (1978) A review: bacteria in the human mouth. J Appl Bacteriol 44:163–181PubMedGoogle Scholar
  393. Rutter PR, Abbott A (1978) A study of the interaction between oral streptococci and hard surfaces. J Gen Microbiol 105:219–226PubMedGoogle Scholar
  394. Sadoff HL (1973) Comparative aspects of morphogenesis in three prokaryotic genera. Ann Rev Microbiol 27:133–153Google Scholar
  395. Sadoff HL (1975) Encystment and germination in Azotobacter vinelandii. Bacteriol Rev 39:516–539PubMedGoogle Scholar
  396. Savage DC (1977a) Microbial ecology of the gastrointestinal tract. Ann Rev Microbiol 31:107–133Google Scholar
  397. Savage DC (1977b) Interactions between the host and its microbes. In: Clarke RTJ, Bauchop T (eds) Microbial ecology of the gut. Academic, LondonGoogle Scholar
  398. Savage DC, Fletcher M (1985) Bacterial adhesion. Plenum, New YorkGoogle Scholar
  399. Scarr MP (1968) Thermophiles in sugar. J Appl Bacteriol 31:66–74PubMedGoogle Scholar
  400. Schenk A, Aragno M (1979) Bacillus schlegelii, a new species of thermophilic, facultatively chemolithoautotrophic bacterium oxidizing molecular hydrogen. J Gen Microbiol 115:333–341Google Scholar
  401. Schenk EA, Schwemmler W (1983) Endocytobiology II. Walter de Gruyter, BerlinGoogle Scholar
  402. Schlegel HG (ed) (1965) Anreicherungskultur und Mutantenauslese Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 1 Orig., Suppl. 1:179–189Google Scholar
  403. Schlegel HG, Bowien B (1989) Autotrophic bacteria. Science Tech/Springer, Madison/New YorkGoogle Scholar
  404. Schlegel HG, Jannasch HW (1967) Enrichment cultures. Ann Rev Microbiol 21:49–70Google Scholar
  405. Schlegel HG, Pfennig N (1961) Die Anreicherungskultur einiger Schwefelpurpurbakterien. Archiv für Mikrobiologie 38:1–39PubMedGoogle Scholar
  406. Schmaljohann R, Flügel HJ (1987) Methane-oxidizing bacteria in Pogonophora. Sarsia 72:91–98Google Scholar
  407. Schmidt JM (1971) Prosthecate bacteria. Ann Rev Microbiol 25:93–110Google Scholar
  408. Schmidt-Lorenz W (1967) Behavior of microorganisms at low temperatures. Bulletin de l’Institut International du Froid 1–59Google Scholar
  409. Schnaitman C, Lundgren DG (1965) Organic compounds in the spent medium of Ferrobacillus ferrooxidans. Can J Microbiol 11:23–27PubMedGoogle Scholar
  410. Schön GH, Engel H (1962) Der Einfluss des Lichtes auf Nitrosomonas europaea. Win Archiv für Mikrobiologie 42:415–428Google Scholar
  411. Schroff G, Schöttler U (1977) Anaerobic reduction of fumarate in the body wall musculature of Arenicola marina (Polychaeta). J Comp Physiol 116:325–336Google Scholar
  412. Schultz JE, Breznak JA (1978) Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]. Appl Environ Microbiol 35:930–936PubMedGoogle Scholar
  413. Schultz JE, Breznak JA (1979) Cross-feeding of lactate between Streptococcus lactis and Bacteroides sp. isolated from termite hindguts. Appl Environ Microbiol 37:1206–1210PubMedGoogle Scholar
  414. Schweinfurth G, Lewin L (1898) Beiträge zur Topographie und Geochemie des ägyptischen Natron-thals. Zeitschrift für die Gesamte Erdkunde 33:1–25Google Scholar
  415. Schwemmler W, Schenk EA (1980) Endocytobiology. Walter de Gruyter, BerlinGoogle Scholar
  416. Shilo M (ed) (1979) Strategies of microbial life in extreme environments. Verlag Chemie, WeinheimGoogle Scholar
  417. Shokes RF, Trabant PK, Presley BJ, Reid DF (1977) Anoxic, hypersaline basin in the northern. Gulf of Mexico Sci 196:1443–1446Google Scholar
  418. Siñeriz F, Pirt SJ (1977) Methane production from glucose by a mixed culture of bacteria in the chemostat: the role of Citrobacter. J Gen Microbiol 101:57–64Google Scholar
  419. Singer CE, Ames BN (1970) Sunlight ultraviolet and bacterial DNA base ratios. Science 170:822–826PubMedGoogle Scholar
  420. Skopintsev BA, Karpov AV, Vershinina OA (1959) Study of the dynamics of some sulfur compounds in the Black Sea under experimental conditions. Soviet Oceanogr Ser 4:55–72, English translationGoogle Scholar
  421. Sleat R, Robinson JP (1984) The bacteriology of anaerobic degradation of aromatic compounds. J Appl Bacteriol 57:381–394PubMedGoogle Scholar
  422. Smith DW (1978) Water relations of microorganisms in nature. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 369–380Google Scholar
  423. Sneath PHA (1962) Longevity of micro-organisms. Nature 195:643–646PubMedGoogle Scholar
  424. Somerville CC, Knight IT, Straube WL, Colwell RR (1989) Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl Environ Microbiol 55:548–554PubMedGoogle Scholar
  425. Sorokin YI (1964) On the primary production and bacterial activities in the Black Sea. Journal du Conseil Conseil International pour l’Exploration de la Mer 29:41–60Google Scholar
  426. Sorokin YI (1970) Interrelations between sulphur and carbon turnover in meromictic lakes. Archiv für Hydrobiologie 66:391–446Google Scholar
  427. Sorokin YI (1972) The bacterial population and process of sulfide oxidation in the Black Sea. J Cons Int Explor Mer 34:423–454Google Scholar
  428. Souza KA, Deal PH (1977) Characterization of a novel extremely alkaline bacterium. J Gen Microbiol 101:103–109Google Scholar
  429. Souza KA, Deal PH, Mack HM, Turnbill CE (1974) Growth and reproduction of microorganisms under extremely alkaline conditions. Appl Microbiol 28:1066–1068PubMedGoogle Scholar
  430. Stahl DA, Lane DJ, Olsen GJ, Pace NR (1985) Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences. Appl Environ Microbiol 49:1379–1384PubMedGoogle Scholar
  431. Stahl DA, Flesher B, Mansfield HR, Montgomery L (1988) Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol 54:1079–1084PubMedGoogle Scholar
  432. Stanier RY (1942) The cytophaga group: a contribution to the biology of Mycobacteria. Bacteriol Rev 6:143–196PubMedGoogle Scholar
  433. Stapp C, Bortels H (1931) Der Pflanzenkrebs und sein Erreger Pseudomonas tumefaciens. II. Mitteilung: Über den Lebenskreislauf von Pseudomonas tumefaciens Zeitschrift für Parasitenkunde 4:101–125Google Scholar
  434. Stapp C, Knösel D (1954) Zur Genetik sternbildender Bakterien Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 2. 108:244–259Google Scholar
  435. Steinbüchel A (1986) Anaerobic pyruvate metabolism of Trichomonas foetus and Trichomonas vaginalis hydrogenosomes. Mole Biochem Parasitol 20:57–65Google Scholar
  436. Stetter KO (1986) Diversity of extremely thermophilic archaebacteria. In: Brock TD (ed) Thermophiles, general, molecular and applied microbiology. Wiley, New York, pp 39–74Google Scholar
  437. Stetter KO (1989) Extremely thermophilic chemolithoautotrophic archaebacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech, Madison, pp 167–176Google Scholar
  438. Stetter KO, Zillig W (1985) Thermoplasma and the thermophilic sulfur-dependent archaebacteria. In: Wolfe RS, Woese CR (eds) The bacteria, vol 8. Academic, New York, pp 85–170Google Scholar
  439. Stetter KO, König H, Stackebrandt E (1983) Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105 °C. Syst Appl Microbiol 4:535–551PubMedGoogle Scholar
  440. Stetter KO, Fiala G, Huber G, Huber R, Segerer A (1990) Hyperthermophilic microorganisms. FEMS Microbiol Rev 75:117–124Google Scholar
  441. Stockhausen F (1907) Okologie, “Anhäufungen” nach Beijerinck. Institut für Gärungsgewerbe, BerlinGoogle Scholar
  442. Strange RE (1976) Microbiol response to mild stress. Meadowfield Press, DurhamGoogle Scholar
  443. Strength WJ, Isani B, Linn DM, Williams FD, Vandermolen GE, Laughon BE, Krieg NR (1976) Isolation and characterization of Aquaspirillum fascilus sp. nov., a rod-shaped, nitrogen-fixing bacterium having unusual flagella. Int J Syst Bacteriol 26:253–268Google Scholar
  444. Strohl WR, Larkin JM (1979) Enumeration, isolation, and characterization of Beggiatoa from freshwater sediments. Appl Environ Microbiol 36:755–770Google Scholar
  445. Stumm CK, Zwart KB (1986) Symbiosis of protozoa with hydrogen-utilizing methanogens. Microbiol Sci 3:100–105PubMedGoogle Scholar
  446. Sverdrup HW, Johnson MW, Fleming RH (1942) The oceans. Prentice-Hall, LondonGoogle Scholar
  447. Swart-Füchtbauer H, Rippel-Baldes A (1951) Die baktericide Wirkung des Sonnenlichtes. Archiv für Mikrobiologie 16:358–362Google Scholar
  448. Switalski L, Hook M, Beachey EH (1989) Molecular mechanisms of microbial adhesion. Springer, New YorkGoogle Scholar
  449. Tannock GW (1990) The Microecology of lactobacilli inhabiting the gastrointestinal tract. Adv Microb Ecol 11:147–171Google Scholar
  450. Tansey MR, Brock TD (1978) Microbial life at high temperatures: ecological aspects. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 159–216Google Scholar
  451. Tempest DW, Neijssel OM (1976) Microbial adaptation of low-nutrient environments. In: Dean ACR, Ellwood DC, Evans CGT, Melling J (eds) Continuous culture 6: applications and new fields. Ellis Horwood, Chichester, pp 283–296Google Scholar
  452. Tempest DW, Neijssel OM (1979) Eco-physiological aspects of microbial growth in aerobic nutrient-limited environments. Adv Microb Ecol 2:105–153Google Scholar
  453. Tempest DW, Meers JL, Brown CM (1970) Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route. Biochem J 117:405–407PubMedGoogle Scholar
  454. Tempest DW, Meers JL, Brown CM (1973) Glutamate synthetase (Gogat): a key enzyme in the assimilation of ammonia by prokaryotic organisms. In: Prusiner S, Stadtman ER (eds) The enzymes of glutamine metabolism. Academic, New York, pp 167–182Google Scholar
  455. Thiele HH (1968) Die Verwertung einfacher organischer Substrate durch Thiorhodaceae. Archiv für Mikrobiologie 60:124–138PubMedGoogle Scholar
  456. Tindall BJ, Trüper HG (1986) Ecophysiology of the aerobic halophilic archaebacteria. Syst Appl Microbiol 7:202–212Google Scholar
  457. Torma AE (1977) The role of Thiobacillus ferrooxidans in hydrometallurgical processes. Adv Biochem Engin 6:1–37Google Scholar
  458. Torsvik VL, Goksoyr J (1978) Determination of bacterial DNA in soil. Soil Biol Biochem 10:7–12Google Scholar
  459. Trüper HG (1969) Bacterial sulfate reduction in the Red Sea hot brines. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York, pp 262–271Google Scholar
  460. Trüper HG (1976) Higher taxa of the phototrophic bacteria: Chloroflexaceae fam. nov., a family for the gliding filamentous, phototrophic “green” bacteria. Int J Syst Bacteriol 26:74–75Google Scholar
  461. Tschech A (1989) Der anaerobe Abbau von aromatischen Verbindungen Forum. Mikrobiologie 12:251–264Google Scholar
  462. Tuovinen OH, Kelly DP (1972) Biology of Thiobacillus ferrooxidans in relation to the microbiological leaching of sulphide ores. Zeitschrift für Allgemeine Mikrobiologie 12:311–346PubMedGoogle Scholar
  463. Tuttle JH, Randles CI, Dugan PR (1968) Activity of microorganisms in acid mine water. I. Influence of acid water on aerobic heterotrophs of a normal stream. J Bacteriol 95:1495–1503PubMedGoogle Scholar
  464. Uesugi I, Yajima M (1978) Oxygen and “strictly anaerobic” intestinal bacteria. I. Effects of dissolved oxygen on growth. Zeitschrift für Allgemeine Mikrobiologie 18:287–295PubMedGoogle Scholar
  465. Umbreit TH, Pate JL (1978) Characterization of the holdfast region of wild-type cells of holdfast mutants of Asticcacaulis biprosthecum. Arch Microbiol 118:157–168Google Scholar
  466. Unterman PM, Baumann P, McLean DL (1989) Pea aphid symbiont relationships established by analysis of 16S rRNAs. J Bacteriol 171:2970–2974PubMedGoogle Scholar
  467. van Gemerden H (1974) Coexistence of organisms competing for the same substrate: an example among the purple sulfur bacteria. Microb Ecol 1:104–119Google Scholar
  468. van Niel CB (1932) On the morphology and physiology of the purple and green sulphur bacteria. Archiv für Mikrobiologie 3:1–112Google Scholar
  469. van Niel CB (1936) On the metabolism of the Thiorhodaceae. Archiv für Mikrobiologie 7:323–358Google Scholar
  470. van Niel CB (1955) The microbe as a whole. In: Waksman SA (ed) Perspectives and horizons in microbiology. Rutgers University Press, New Brunswick, pp 3–12Google Scholar
  471. van Veen WL, Mulder EG, Deinema MH (1978) The Sphaerotilus-Leptothrix group of bacteria. Microbiol Rev 42:329–356PubMedGoogle Scholar
  472. Vedder A (1934) Bacillus alcalophilus sp. nov., benevens enkle ervaringen met sterk alcalische voedingsbodems. Antonie van Leeuwenhoek J Microbiol Serol 1:141–147Google Scholar
  473. Veldkamp H (1970) Enrichment cultures of prokaryotic organisms. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3A. Academic, London, pp 305–361Google Scholar
  474. Veldkamp H (1976) Continuous culture in microbial physiology and ecology patterns of progress. Meadowfield Press, DurhamGoogle Scholar
  475. Veldkamp H, Jannasch HW (1972) Mixed culture studies with the chemostat. J Appl Chem Biotechnol 22:105–123Google Scholar
  476. Veldkamp H, van den Berg G, Zevenhuizen LPTM (1963) Glutamic acid production by Arthrobacter globiformis. Antonie van Leeuwenhoek J Microbiol Serol 29:35–51Google Scholar
  477. Voelz H, Dworkin M (1962) Fine structure of Myxococcus xanthus during morphogenesis. J Bacteriol 84:943–952PubMedGoogle Scholar
  478. Völker H, Schweisfurth R, Hirsch P (1977) Morphology and ultrastructure of Crenothrix polyspora Cohn. J Bacteriol 131:306–313PubMedGoogle Scholar
  479. Walsby AE (1970) The gas vesicles of aquatic prokaryotes Regulations between structure and function in the prokaryotic cell. In: Society for General Microbiology Symposium, vol 28. Cambridge University Press, London, New York, Melbourne, pp 327–357Google Scholar
  480. Walsby AE (1975) Gas vesicles. Ann Rev Plant Physiol 26:427–439Google Scholar
  481. Walsby AE (1977) The gas vacuoles of blue-green algae. Sci Am 237:90–97Google Scholar
  482. Wangersky PJ (1976) The surface film as a physical environment. Ann Rev Ecol Syst 7:161–176Google Scholar
  483. Watson SW, Waterbury JB (1969) The sterile hot brines of the Red Sea. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposit in the Red Sea. Springer, New York, pp 272–281Google Scholar
  484. Weibull C (1960) Movement. In: Gunsalus IC, Stanier RY (eds) The bacteria, vol 1, Structure. Academic, New York, pp 153–205Google Scholar
  485. Weimer PJ, Zeikus JG (1977) Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautotrophicum. Appl Environ Microbiol 33:289–297PubMedGoogle Scholar
  486. Weiner RM, Devine RA, Powell DM, Dagasan L, Moore RL (1985) Hyphomonas oceanitis spec. nov., H. hirschiana spec. nov. and H. jannaschiana spec. nov. Int J System Bact 35:237–243Google Scholar
  487. Weiss RL (1973) Attachment of bacteria to sulphur in extreme environments. J Gen Microbiol 77:501–507Google Scholar
  488. Weller R, Ward DM (1989) Selective recovery of 16 S rRNA sequences from natural microbial communities in the form of cDNA. Appl Environ Microbiol 55:1818–1822PubMedGoogle Scholar
  489. Whittaker RH, Levin SA, Root RB (1973) Niche, habitat and ecotope. Am Nat 107:321–338Google Scholar
  490. Whittenbury R, Davies SL, Davey JF (1970) Exospores and cysts formed by methane-utilizing bacteria. J Gen Microbiol 61:219–226PubMedGoogle Scholar
  491. Wiegel J, Schlegel HG (1976) Enrichment and isolation of nitrogen fixing hydrogen bacteria. Arch Microbiol 107:139–142PubMedGoogle Scholar
  492. Wiegel J, Wilke D, Baumgarten J, Opitz R, Schlegel HG (1978) Transfer of the nitrogen fixing hydrogen bacterium Corynebacterium autotrophicum (Baumgarten et al.) to Xanthobacter gen. nov. Int J Syst Bacteriol 28:573–581Google Scholar
  493. Wiley WR, Stokes JL (1963) Effect of pH and ammonium ions on the permeability of Bacillus pasteurii. J Bacteriol 86:1152–1156PubMedGoogle Scholar
  494. Williams AG (1986) Rumen holotrich ciliate protozoa. Microbiol Rev 50:25–49PubMedGoogle Scholar
  495. Windberger E, Huber R, Trincone A, Fricke H, Stetter KO (1989) Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental sulfataric springs. Arch Microbiol 151:506–512Google Scholar
  496. Winfrey MR, Zeikus JG (1977) Effect of sulfate on carbon and electron flow during microbial methanogenesis in fresh-water sediments. Appl Environ Microbiol 33:275–281PubMedGoogle Scholar
  497. Winogradksy SN (1926) Études sur la microbiologie du sol. Sur les microbes fixateurs d’azote. Annales de l’Institut Pasteur 40:455–520Google Scholar
  498. Winogradsky SN (1925) Etudes sur la microbiologie du sol. I. Sur la m;aaethode. Annales de l’Institut Pasteur 39:299–354Google Scholar
  499. Winogradsky SN (1947) Principles de la Microbiologie Ecologique. Antonie van Leeuwenhoek J Microbiol Serol 12:5–15Google Scholar
  500. Winogradsky SN (1949) Microbiologie du sol: problèmes et méthodes. Masson et Cie, ParisGoogle Scholar
  501. Wirsen CO, Jannasch HW (1975) Activity of marine psychrophilic bacteria at elevated hydrostatic pressures and low temperatures. Mar Biol 31:201–209Google Scholar
  502. Wirsen CO, Jannasch HW (1978) Physiological and morphological observations on Thiovulum sp. J Bacteriol 136:765–774PubMedGoogle Scholar
  503. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedGoogle Scholar
  504. Wolfe RS (1960) Observations and studies of Crenothrix polyspora. J Am Water Works Assoc 52:915–918Google Scholar
  505. Wolin MJ (1976) Interactions between H2-producing and methane-producing species. In: Schlegel HG, Gottschalk G, Pfennig N (eds) Microbial production and utilization of gases. Goltze, Göttingen, pp 141–150Google Scholar
  506. Wolin MJ, Miller TL (1982) Interspecies hydrogen transfer: 15 years later. ASM-News 48:561–565Google Scholar
  507. Woodroffe RCS, Shaw DA (1974) Natural control and ecology of microbial populations on skin and hair. In: Skinner FA, Carr JG (eds) The normal microbial flora of man. Academic, London, pp 13–34Google Scholar
  508. Yayanos AA, Dietz AS (1983) Death of a hadal deep-sea bacterium after decompression. Science 220:497–498, WashingtonPubMedGoogle Scholar
  509. Yayanos AA, Dietz AS, Van Boxtel R (1979) Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205:808–810, WashingtonPubMedGoogle Scholar
  510. Yayanos AA, Dietz AS, Van Boxtel R (1981) Obligately barophilic bacterium from the Marianas Trench. Proc Nat Acad Sci USA 78:5212–5215PubMedGoogle Scholar
  511. Yayanos AA, Dietz AS, Van Boxtel R (1982) Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria. Appl Environ Microbiol 44:1356–1361PubMedGoogle Scholar
  512. Zaitsev Yu-P (1971) Vinogradov KA (ed) Marine neustonology. Keter Press, JerusalemGoogle Scholar
  513. Zebe E (1977) Anaerober Stoffwechsel bei wirbellosen Tieren Vorträge der Rheinisch-Westfälischen Akademie der WiseenschaftenGoogle Scholar
  514. Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–713PubMedGoogle Scholar
  515. Zhao H, Wood AG, Widdel F, Bryant MP (1988) An extremely thermophilic Methanococcus from a deep-sea hydrothermal vent and its plasmids. Arch Microbiol 150:178–183Google Scholar
  516. Zillig W, Stetter KO, Schäfer W, Janekovic D, Wunderl S, Holz I, Palm P (1981) Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras Zlb. Bakt. Hyg., I. Abt. Orig. C 2:205–227Google Scholar
  517. Zillig W, Schnabel R, Tu J, Stetter KO (1982) The phylogeny of archaebacteria, including novel anaerobic thermoacidophiles in the light of RNA polymerase structure. Naturwiss 69:197–204Google Scholar
  518. ZoBell CE (1946) Marine microbiology, a monograph on hydrobacteriology. Chronica Botanica, WalthamGoogle Scholar
  519. ZoBell CE (1970) Pressure effects of morphology and life processes. In: Zimmermann A (ed) High pressure effects on cellular processes. Academic, London, pp 85–130Google Scholar
  520. ZoBell CE, Johnson FH (1949) The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J Bacteriol 57:179–189PubMedGoogle Scholar
  521. ZoBell CE, Morita RY (1957) Barophilic bacteria in some deep sea sediments. J Bacteriol 73:563–568PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Göttingen Academy of Sciences and HumanitiesGöttingenGermany
  2. 2.Woods Hole Oceanographic InstitutionWoods MAUSA

Personalised recommendations