Advertisement

Population Genetics

Reference work entry
  • 4.1k Downloads

Abstract

The rapid development of sequencing technology over recent years has both transformed molecular epidemiological surveillance and provided unprecedented detail concerning the molecular evolutionary processes occurring over very short time scales in bacterial pathogens. Here we review recent developments, with an emphasis on the application of next-generation sequencing platforms to understand the spread and diversification of methicillin-resistant Staphylococcus aureus (MRSA). We discuss how these datasets may provide information on transmission dynamics at different epidemiological scales, but also consider methods to gauge the strength of purifying selection acting on populations and subpopulations, and how this is likely to intersect with the ecology or epidemiology of different species or clones. We also discuss how these datasets are shedding light on other evolutionary properties of bacteria, such as genomic base composition, recombination, and mutation rate.

Keywords

Deleterious Mutation Core Genome Epidemiological Surveillance Clonal Complex Illumina Genome Analyzer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

SCR is funded by the TROCAR consortium (FP7-HEALTH #223031). We are grateful to colleagues present at the first international PERMAFROST meeting, Bormio, Italy, on March 5–8 2010, and for their fruitful discussions.

References

  1. Achtman M (2008) Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu Rev Microbiol 62:53–70CrossRefPubMedGoogle Scholar
  2. Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E (1999) Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 96:14043–14048CrossRefPubMedGoogle Scholar
  3. Aires de Sousa M, Conceicao T, Simas C, de Lencastre H (2005) Comparison of genetic backgrounds of methicillin-resistant and -susceptible Staphylococcus aureus isolates from Portuguese hospitals and the community. J Clin Microbiol 43:5150–5157CrossRefPubMedGoogle Scholar
  4. Alm RA, Trust TJ (1999) Analysis of the genetic diversity of Helicobacter pylori:the tale of two genomes. J Mol Med 77:834–846CrossRefPubMedGoogle Scholar
  5. Amaral MM, Coelho LR, Flores RP, Souza RR, Silva-Carvalho MC, Teixeira LA, Ferreira-Carvalho BT, Figueiredo AM (2005) The predominant variant of the Brazilian epidemic clonal complex of methicillin-resistant Staphylococcus aureus has an enhanced ability to produce biofilm and to adhere to and invade airway epithelial cells. J Infect Dis 192(5):801–810CrossRefPubMedGoogle Scholar
  6. Balbi KJ, Feil EJ (2007) The rise and fall of deleterious mutation. Res Microbiol 158:779–786CrossRefPubMedGoogle Scholar
  7. Balbi KJ, Rocha EP, Feil EJ (2009) The temporal dynamics of slightly deleterious mutations in Escherichia coli and Shigella spp. Mol Biol Evol 26:345–355CrossRefPubMedGoogle Scholar
  8. Basset P, Hammer NB, Kuhn G, Vogel V, Sakwinska O, Blanc DS (2009) Staphylococcus aureus clfB and spa alleles of the repeat regions are segregated into major phylogenetic lineages. Infect Genet Evol 9:941–947CrossRefPubMedGoogle Scholar
  9. Boyd EF, Nelson K, Wang FS, Whittam TS, Selander RK (1994) Molecular genetic basis of allelic polymorphism in malate dehydrogenase (mdh) in natural populations of Escherichia coli and Salmonella enterica. Proc Natl Acad Sci USA 91:1280–1284CrossRefPubMedGoogle Scholar
  10. Castillo-Ramirez S, Harris SR, Holden MT, He M, Parkhill J, Bentley SD, Feil EJ (2011) The impact of recombination on dN/dS within recently emerged bacterial clones. PLoS Pathog 7:e1002129CrossRefPubMedGoogle Scholar
  11. Chan MS, Maiden MC, Spratt BG (2001) Database-driven multi locus sequence typing (MLST) of bacterial pathogens. Bioinformatics 17:1077–1083CrossRefPubMedGoogle Scholar
  12. Chongtrakool P, Ito T, Ma XX, Kondo Y, Trakulsomboon S, Tiensasitorn C, Jamklang M, Chavalit T, Song JH, Hiramatsu K (2006) Staphylococcal cassette chromosome mec (SCCmec) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian countries: a proposal for a new nomenclature for SCCmec elements. Antimicrob Agents Chemother 50(3):1001–1012CrossRefPubMedGoogle Scholar
  13. Conceicao T, Aires-de-Sousa M, Fuzi M, Toth A, Paszti J, Ungvari E, van Leeuwen WB, van Belkum A, Grundmann H, de Lencastre H (2007) Replacement of methicillin-resistant Staphylococcus aureus clones in Hungary over time: a 10-year surveillance study. Clin Microbiol Infect 13:971–979CrossRefPubMedGoogle Scholar
  14. Cooper JE, Feil EJ (2006) The phylogeny of Staphylococcus aureus—Which genes make the best intra-species markers? Microbiology 152:1297–1305CrossRefPubMedGoogle Scholar
  15. Cookson BD, Robinson DA, Monk AB, Murchan S, Deplano A, de Ryck R, Struelens MJ, Scheel C, Fussing V, Salmenlinna S et al (2007) Evaluation of molecular typing methods in characterizing a European collection of epidemic methicillin-resistant Staphylococcus aureus strains: the HARMONY collection. J Clin Microbiol 45(6):1830–1837CrossRefPubMedGoogle Scholar
  16. Crisostomo MI, Westh H, Tomasz A, Chung M, Oliveira DC, de Lencastre H (2001) The evolution of methicillin resistance in Staphylococcus aureus: similarity of genetic backgrounds in historically early methicillin-susceptible and -resistant isolates and contemporary epidemic clones. Proc Natl Acad Sci USA 98:9865–9870CrossRefPubMedGoogle Scholar
  17. de Lencastre H, Oliveira D, Tomasz A (2007) Antibiotic resistant Staphylococcus aureus: a paradigm of adaptive power. Curr Opin Microbiol 10:428–435CrossRefPubMedGoogle Scholar
  18. Deleo FR, Otto M, Kreiswirth BN, Chambers HF (2010) Community-associated methicillin-resistant Staphylococcus aureus. Lancet 375:1557–1568CrossRefPubMedGoogle Scholar
  19. Diekema DJ, Pfaller MA, Schmitz FJ, Smayevsky J, Bell J, Jones RN, Beach M (2001) Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis 32(Suppl 2):S114–132CrossRefPubMedGoogle Scholar
  20. Dorrell N, Mangan JA, Laing KG, Hinds J, Linton D, Al-Ghusein H, Barrell BG, Parkhill J, Stoker NG, Karlyshev AV et al (2001) Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res 11(10):1706–1715CrossRefPubMedGoogle Scholar
  21. DuBose RF, Dykhuizen DE, Hartl DL (1988) Genetic exchange among natural isolates of bacteria: recombination within the phoA gene of Escherichia coli. Proc Natl Acad Sci USA 85:7036–7040CrossRefPubMedGoogle Scholar
  22. Edgeworth JD, Yadegarfar G, Pathak S, Batra R, Cockfield JD, Wyncoll D, Beale R, Lindsay JA (2007) An outbreak in an intensive care unit of a strain of methicillin-resistant Staphylococcus aureus sequence type 239 associated with an increased rate of vascular access device-related bacteremia. Clin Infect Dis 44:493–501CrossRefPubMedGoogle Scholar
  23. Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG (2002) The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci USA 99:7687–7692CrossRefPubMedGoogle Scholar
  24. Falush D, Kraft C, Taylor NS, Correa P, Fox JG, Achtman M, Suerbaum S (2001) Recombination and mutation during long-term gastric colonization by Helicobacter pylori: estimates of clock rates, recombination size, and minimal age. Proc Natl Acad Sci USA 98:15056–15061CrossRefPubMedGoogle Scholar
  25. Feil EJ (2004) Small change: keeping pace with microevolution. Nat Rev Microbiol 2:483–495CrossRefPubMedGoogle Scholar
  26. Feil EJ, Cooper JE, Grundmann H et al (2003) How clonal is Staphylococcus aureus? J Bacteriol 185:3307–3316CrossRefPubMedGoogle Scholar
  27. Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG (2004) eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186:1518–1530CrossRefPubMedGoogle Scholar
  28. Feil EJ, Nickerson EK, Chantratita N et al (2008) Rapid detection of the pandemic methicillin-resistant Staphylococcus aureus clone ST 239, a dominant strain in Asian hospitals. J Clin Microbiol 46:1520–1522CrossRefPubMedGoogle Scholar
  29. Fitzgerald JR, Monday SR, Foster TJ, Bohach GA, Hartigan PJ, Meaney WJ, Smyth CJ (2001) Characterization of a putative pathogenicity island from bovine Staphylococcus aureus encoding multiple superantigens. J Bacteriol 183(1): 63–70CrossRefPubMedGoogle Scholar
  30. Fleischmann RD, Adams MD, White O et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512CrossRefPubMedGoogle Scholar
  31. Francisco AP, Bugalho M, Ramirez M, Carrico JA (2009) Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinformatics 10:152CrossRefPubMedGoogle Scholar
  32. Garcia Pelayo MC, Uplekar S, Keniry A et al (2009) A comprehensive survey of single nucleotide polymorphisms (SNPs) across Mycobacterium bovis strains and M. bovis BCG vaccine strains refines the genealogy and defines a minimal set of SNPs that separate virulent M. bovis strains and M. bovis BCG strains. Infect Immun 77:2230–2238CrossRefPubMedGoogle Scholar
  33. Gevers D, Cohan FM, Lawrence JG et al (2005) Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739CrossRefPubMedGoogle Scholar
  34. Gomes AR, Westh H, de Lencastre H (2006) Origins and evolution of methicillin-resistant Staphylococcus aureus clonal lineages. Antimicrob Agents Chemother 50:3237–3244CrossRefPubMedGoogle Scholar
  35. Hanage WP, Fraser C, Spratt BG (2006) Sequences, sequence clusters and bacterial species. Philos Trans R Soc Lond B Biol Sci 361:1917–1927CrossRefPubMedGoogle Scholar
  36. Harris SR, Feil EJ, Holden MT et al (2010) Evolution of MRSA during hospital transmission and intercontinental spread. Science 327:469–474CrossRefPubMedGoogle Scholar
  37. Hartl DL, Moriyama EN, Sawyer SA (1994) Selection intensity for codon bias. Genetics 138:227–234PubMedGoogle Scholar
  38. He M, Sebaihia M, Lawley TD et al (2010) Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci USA 107:7527–7532CrossRefPubMedGoogle Scholar
  39. Hershberg R, Petrov DA (2010) Evidence that mutation is universally biased towards AT in bacteria. PLoS Genet 6:e1001115CrossRefPubMedGoogle Scholar
  40. Hildebrand F, Meyer A, Eyre-Walker A (2010) Evidence of selection upon genomic GC-content in bacteria. PLoS Genet 6:e1001107CrossRefPubMedGoogle Scholar
  41. Holden MT, Feil EJ, Lindsay JA et al (2004a) Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci USA 101:9786–9791CrossRefPubMedGoogle Scholar
  42. Holden MT, Titball RW, Peacock SJ et al (2004b) Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci USA 101:14240–14245CrossRefPubMedGoogle Scholar
  43. Holden MT, Lindsay JA, Corton C, Quail MA, Cockfield JD, Pathak S, Batra R, Parkhill J, Bentley SD, Edgeworth JD (2010) Genome sequence of a recently emerged, highly transmissible, multi-antibiotic- and antiseptic-resistant variant of methicillin-resistant Staphylococcus aureus, sequence type 239 (TW). J Bacteriol 192:888–892CrossRefPubMedGoogle Scholar
  44. Holt KE, Parkhill J, Mazzoni CJ et al (2008) High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat Genet 40:987–993CrossRefPubMedGoogle Scholar
  45. Hughes AL, Friedman R, Rivailler P, French JO (2008) Synonymous and nonsynonymous polymorphisms versus divergences in bacterial genomes. Mol Biol Evol 25:2199–2209CrossRefPubMedGoogle Scholar
  46. Johnson KP, Seger J (2001) Elevated rates of nonsynonymous substitution in island birds. Mol Biol Evol 18:874–881CrossRefPubMedGoogle Scholar
  47. Kryazhimskiy S, Plotkin JB (2008) The population genetics of dN/dS. PLoS Genet 4:e1000304CrossRefPubMedGoogle Scholar
  48. Kuhn G, Francioli P, Blanc DS (2006) Evidence for clonal evolution among highly polymorphic genes in methicillin-resistant Staphylococcus aureus. J Bacteriol 188:169–178CrossRefPubMedGoogle Scholar
  49. Lan R, Reeves PR (2002) Escherichia coli in disguise: molecular origins of Shigella. Microbes Infect 4:1125–1132CrossRefPubMedGoogle Scholar
  50. Larsson P, Elfsmark D, Svensson K, Wikstrom P, Forsman M, Brettin T, Keim P, Johansson A (2009) Molecular evolutionary consequences of niche restriction in Francisella tularensis, a facultative intracellular pathogen. PLoS Pathog 5:e1000472CrossRefPubMedGoogle Scholar
  51. Maiden MC (2006) Multilocus sequence typing of bacteria. Annu Rev Microbiol 60:561–588CrossRefPubMedGoogle Scholar
  52. Maiden MC (2008) Population genomics: diversity and virulence in the neisseria. Curr Opin Microbiol 11:467–471CrossRefPubMedGoogle Scholar
  53. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95(6):3140–3145CrossRefPubMedGoogle Scholar
  54. Melles DC, Schouls L, Francois P, Herzig S, Verbrugh HA, van Belkum A, Schrenzel J (2009) High-throughput typing of Staphylococcus aureus by amplified fragment length polymorphism (AFLP) or multi-locus variable number of tandem repeat analysis (MLVA) reveals consistent strain relatedness. Eur J Clin Microbiol Infect Dis 28:39–45CrossRefPubMedGoogle Scholar
  55. Mellmann A, Weniger T, Berssenbrugge C, Keckevoet U, Friedrich AW, Harmsen D, Grundmann H (2008) Characterization of clonal relatedness among the natural population of Staphylococcus aureus strains by using spa sequence typing and the BURP (based upon repeat patterns) algorithm. J Clin Microbiol 46:2805–2808CrossRefPubMedGoogle Scholar
  56. Milkman R, Bridges MM (1990) Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. Genetics 126:505–517PubMedGoogle Scholar
  57. Moran NA, McLaughlin HJ, Sorek R (2009) The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science 323:379–382CrossRefPubMedGoogle Scholar
  58. Nelson K, Selander RK (1992) Evolutionary genetics of the proline permease gene (putP) and the control region of the proline utilization operon in populations of Salmonella and Escherichia coli. J Bacteriol 174:6886–6895PubMedGoogle Scholar
  59. Nelson K, Selander RK (1994) Intergeneric transfer and recombination of the 6-phosphogluconate dehydrogenase gene (gnd) in enteric bacteria. Proc Natl Acad Sci USA 91:10227–10231CrossRefPubMedGoogle Scholar
  60. Nelson K, Whittam TS, Selander RK (1991) Nucleotide polymorphism and evolution in the glyceraldehyde-3-phosphate dehydrogenase gene (gapA) in natural populations of Salmonella and Escherichia coli. Proc Natl Acad Sci USA 88:6667–6671CrossRefPubMedGoogle Scholar
  61. Novichkov PS, Wolf YI, Dubchak I, Koonin EV (2009) Trends in prokaryotic evolution revealed by comparison of closely related bacterial and archaeal genomes. J Bacteriol 191:65–73CrossRefPubMedGoogle Scholar
  62. Nubel U, Roumagnac P, Feldkamp M et al (2008) Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci USA 105:14130–14135CrossRefPubMedGoogle Scholar
  63. Nubel U, Dordel J, Kurt K et al (2010) A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Pathog 6:e1000855CrossRefPubMedGoogle Scholar
  64. Nulens E, Gould I, MacKenzie F, Deplano A, Cookson B, Alp E, Bouza E, Voss A (2005) Staphylococcus aureus carriage among participants at the 13th European Congress of Clinical Microbiology and Infectious Diseases. Eur J Clin Microbiol Infect Dis 24(2):145–148CrossRefPubMedGoogle Scholar
  65. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304CrossRefPubMedGoogle Scholar
  66. Peacock SJ, de Silva I, Lowy FD (2001) What determines nasal carriage of Staphylococcus aureus? Trends Microbiol 9(12):605–610CrossRefPubMedGoogle Scholar
  67. Perez-Losada M, Crandall KA, Zenilman J, Viscidi RP (2007) Temporal trends in gonococcal population genetics in a high prevalence urban community. Infect Genet Evol 7:271–278CrossRefPubMedGoogle Scholar
  68. Robinson DA, Enright MC (2004) Evolution of Staphylococcus aureus by large chromosomal replacements. J Bacteriol 186:1060–1064CrossRefPubMedGoogle Scholar
  69. Robinson DA, Monk AB, Cooper JE, Feil EJ, Enright MC (2005) Evolutionary genetics of the accessory gene regulator (agr) locus in Staphylococcus aureus. J Bacteriol 187:8312–8321CrossRefPubMedGoogle Scholar
  70. Rocha EP, Feil EJ (2010) Mutational patterns cannot explain genome composition: are there any neutral sites in the genomes of bacteria? PLoS Genet 6:e1001104CrossRefPubMedGoogle Scholar
  71. Rocha EP, Smith JM, Hurst LD, Holden MT, Cooper JE, Smith NH, Feil EJ (2006) Comparisons of dN/dS are time dependent for closely related bacterial genomes. J Theor Biol 239:226–235CrossRefPubMedGoogle Scholar
  72. Roumagnac P, Weill FX, Dolecek C et al (2006) Evolutionary history of Salmonella typhi. Science 314:1301–1304CrossRefPubMedGoogle Scholar
  73. Sanches IS, Saraiva ZC, Tendeiro TC, Serra JM, Dias DC, de Lencastre H (1998) Extensive intra-hospital spread of a methicillin-resistant staphylococcal clone. Int J Infect Dis 3:26–31CrossRefPubMedGoogle Scholar
  74. Schouls LM, Spalburg EC, van Luit M, Huijsdens XW, Pluister GN, van Santen-Verheuvel MG, van der Heide HG, Grundmann H, Heck ME, de Neeling AJ (2009) Multiple-locus variable number tandem repeat analysis of Staphylococcus aureus: comparison with pulsed-field gel electrophoresis and spa-typing. PLoS One 4:e5082CrossRefPubMedGoogle Scholar
  75. Smith JM, Smith NH, O’Rourke M, Spratt BG (1993) How clonal are bacteria? Proc Natl Acad Sci USA 90:4384–4388CrossRefPubMedGoogle Scholar
  76. Smith NH, Dale J, Inwald J, Palmer S, Gordon SV, Hewinson RG, Smith JM (2003) The population structure of Mycobacterium bovis in Great Britain: clonal expansion. Proc Natl Acad Sci USA 100:15271–15275CrossRefPubMedGoogle Scholar
  77. Smith NH, Gordon SV, de la Rua-Domenech R, Clifton-Hadley RS, Hewinson RG (2006) Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nat Rev Microbiol 4:670–681CrossRefPubMedGoogle Scholar
  78. Smyth DS, McDougal LK, Gran FW, Manoharan A, Enright MC, Song JH, de Lencastre H, Robinson DA (2010) Population structure of a hybrid clonal group of methicillin-resistant Staphylococcus aureus, ST239-MRSA-III. PLoS One 5:e8582CrossRefPubMedGoogle Scholar
  79. Touchon M, Hoede C, Tenaillon O et al (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5:e1000344CrossRefPubMedGoogle Scholar
  80. Turner KM, Feil EJ (2007) The secret life of the multilocus sequence type. Int J Antimicrob Agents 29:129–135CrossRefPubMedGoogle Scholar
  81. van Belkum A (2006) Staphylococcal colonization and infection: homeostasis versus disbalance of human (innate) immunity and bacterial virulence. Curr Opin Infect Dis 19(4):339–344CrossRefPubMedGoogle Scholar
  82. Vanderhaeghen W, Hermans K, Haesebrouck F, Butaye P (2010) Methicillin-resistant Staphylococcus aureus (MRSA) in food production animals. Epidemiol Infect 138:606–625CrossRefPubMedGoogle Scholar
  83. Waldron DE, Lindsay JA (2006) Sau1: a novel lineage-specific type I restriction-modification system that blocks horizontal gene transfer into Staphylococcus aureus and between S. aureus isolates of different lineages. J Bacteriol 188:5578–5585CrossRefPubMedGoogle Scholar
  84. Wilson DJ, Gabriel E, Leatherbarrow AJ, Cheesbrough J, Gee S, Bolton E, Fox A, Hart CA, Diggle PJ, Fearnhead P (2009) Rapid evolution and the importance of recombination to the gastroenteric pathogen Campylobacter jejuni. Mol Biol Evol 26:385–397CrossRefPubMedGoogle Scholar
  85. Xu BL, Zhang G, Ye HF, Feil EJ, Chen GR, Zhou XM, Zhan XM, Chen SM, Pan WB (2009) Predominance of the Hungarian clone (ST 239-III) among hospital-acquired meticillin-resistant Staphylococcus aureus isolates recovered throughout mainland China. J Hosp Infect 71(3):245–255CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Biology and BiochemistryUniversity of BathBathUK

Personalised recommendations