The Prokaryotes pp 149-207 | Cite as
Principles of Enrichment, Isolation, Cultivation, and Preservation of Prokaryotes
- 20 Citations
- 3 Mentions
- 5.6k Downloads
Abstract
Currently, a total of 9,409 prokaryotic species are recognized (as of January 2012, validly published names not including homotypic and heterotypic synonyms, comb. nov. and nomina nova; DSMZ 2012; Euzéby 2012). By comparison, the number of small subunit ribosomal RNA (SSU rRNA) gene sequences deposited in public databases keeps increasing exponentially (Pruesse et al. 2007; Yarza et al. 2008) and surmounted the species numbers already some 15 years ago (Fig. 7.1). Meanwhile, a total of 2,492,653 sequences are available of which 2,282,670 are prokaryotic whereas only 33,842 originate from cultured strains (SILVA 2012). In line with these cumulative data, culture-independent analyses of DNA reassociation kinetics and of 16S rRNA gene sequences in individual environmental samples also indicate that prokaryotic diversity is poorly represented by the species cultivated so far. Thus, estimates of bacterial species numbers in just one type of soil reached values of up to 53,000 (Sandaa et al. 1999; Roesch et al. 2007). Furthermore, molecular investigations of 16S rRNA gene sequences in natural bacterial assemblages typically yielded many more sequence types than those recovered by cultivation-based approaches (Fuhrman et al. 1992; Ward et al. 1992; Barns et al. 1994; DeLong et al. 1994; Hiorns et al. 1997; Kuske et al. 1997; Ludwig et al. 1997; Suzuki et al. 1997; Gich et al. 2001; Béjà et al. 2002; Roesch et al. 2007). In light of these findings, the earlier estimates of the fraction of already cultured bacterial species of 12–20% (Wayne et al. 1987; Bull et al. 1992) or even the commonly cited estimate of 1% appears to be far too optimistic. Based on recent estimates of total bacterial species numbers (107–109; Dykhuizen 1998; Curtis et al. 2002), the value more likely ranges between 0.1% and 0.001% and may be even lower (compare the higher estimates of bacterial species numbers in Sogin et al. 2006; Harwood and Buckley 2008).
Keywords
Prokaryotic Bacterial Species Number Retentostat Ultramicrobacteria Phototrophic ConsortiaReferences
- Aagot N, Nybroe O, Nielsen P, Johnsen K (2001) An altered Pseudomonas diversity is recovered from soil by using nutrient-poor Pseudomonas-selective soil extract media. Appl Environ Microbiol 67:5233–5239PubMedGoogle Scholar
- Aaronson S (1970) Experimental microbial ecology. Academic, New YorkGoogle Scholar
- Abdul-Tehrani H, Hudson AJ, Chang YS, Timms AR, Hawkins C, Williams JM, Harrison PM, Guest JR, Andrews SC (1999) Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient. J Bacteriol 181:1415–1428PubMedGoogle Scholar
- Achberger AM, Brox TI, Skidmore ML, Christner BC (2011) Expression and partial characterization of an ice-binding protein from a bacterium isolated at a depth of 3,519 m in the Vostok ice core, Antarctica. Front Microbiol 2:255PubMedGoogle Scholar
- Ahn WS, Park SJ, Lee SY (2001) Production of poly (3-hydroxybutyrate) from whey by cell recycle fed-batch culture of recombinant Escherichia coli. Biotechnol Lett 23:235–240Google Scholar
- Aksoy S (1995) Wigglesworthia gen. nov. and Wigglesworthia glossinidia sp. nov., taxa consisting of the mycetocyte-associated, primary endosymbionts of Tsetse flies. Int J Syst Bacteriol 45:848–851PubMedGoogle Scholar
- Alden L, Demoling F, Baath E (2001) Rapid method of determining factors limiting bacterial growth in soil. Appl Environ Microbiol 67:1830–1838PubMedGoogle Scholar
- Aldsworth TG, Sharman RL, Dodd CER (1999) Bacterial suicide through stress. Cell Mol Life Sci 56:378–383PubMedGoogle Scholar
- Alldredge AL, Youngbluth MJ (1985) The significance of macroscopic aggregates (marine snow) as sites for heterotrophic bacterial production in the mesopelagic zone of the subtropical Atlantic. Deep-Sea Res 32:1445–1456Google Scholar
- Amy PS, Morita RY (1983) Starvation-survival patterns of sixteen freshly isolated open-ocean bacteria. Appl Environ Microbiol 45:1109–1115PubMedGoogle Scholar
- Andrews JH (1984) Relevance of r-and K-theory to the ecology of plant pathogens. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. ASM Press, Washington, DC, pp 1–7Google Scholar
- Andrews JH, Harris RF (1986) r-and K-selection and microbial ecology. In: Marshall KC (ed) Advanced microbiology and ecology, vol 9. Plenum, New York, pp 1–7Google Scholar
- Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237PubMedGoogle Scholar
- Angle JS, McGrath SP, Chaney RL (1991) New culture medium containing ionic concentrations of nutrients similar to concentrations found in the soil solution. Appl Environ Microbiol 57:3674–3676PubMedGoogle Scholar
- Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z Phys Chem 4:226–248Google Scholar
- Atlas RM, Bartha R (1993) Microbial ecology, 3rd edn. Benjamin/Cummings, Redwood CityGoogle Scholar
- Austin B (1988) Methods in aquatic bacteriology. Wiley, ChichesterGoogle Scholar
- Azam F (1998) Microbial control of oceanic carbon flux: The plot thickens. Science 280:694–696Google Scholar
- Bak F, Pfennig N (1991) Microbial sulfate reduction in littoral sediment of Lake Constance. FEMS Microbiol Ecol 85:31–42Google Scholar
- Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethane sulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791PubMedGoogle Scholar
- Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC, Weightman AJ, Parkes RJ (1997) Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47:515–521PubMedGoogle Scholar
- Balestra GM, Misaghi IL (1997) Increasing the efficiency of the plate counting method for estimating bacterial diversity. J Microbiol Methods 30:111–117Google Scholar
- Barer MR, Harwood CR (1999) Bacterial viability and culturability. Adv Microb Physiol 41:93–137PubMedGoogle Scholar
- Barns SM, Fundyga RE, Jeffries MW, Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91:1609–1613PubMedGoogle Scholar
- Barns SM, Takala SL, Kuske CR (1999) Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65:1731–1737PubMedGoogle Scholar
- Baross JA, Morita RY (1978) Microbial life at low temperatures: ecological aspects. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 9–17Google Scholar
- Bartlett DH, Welch TJ (1995) ompH gene expression is regulated by multiple environmental cues in addition to high pressure in the deep-sea bacterium Photobacterium species strain SS9. J Bacteriol 177:1008–1016PubMedGoogle Scholar
- Bartlett D, Wright M, Yayanos AA, Silverman M (1989) Isolation of a gene regulated by hydrostatic pressure in a deep-sea bacterium. Nature 342:572–574PubMedGoogle Scholar
- Bartlett DH, Chi E, Wright ME (1993) Sequence of the ompH gene from the deep-sea bacterium Photobacterium SS9. Gene 131:125–128PubMedGoogle Scholar
- Bartscht K, Cypionka H, Overmann J (1999) Evaluation of cell activity and of methods for the cultivation of bacteria from a natural lake community. FEMS Microbiol Ecol 28:249–259Google Scholar
- Basler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246Google Scholar
- Bast E (2001) Mikrobiologische methoden, 2nd edn. Spektrum Akad, BerlinGoogle Scholar
- Bateson MM, Ward DM (1988) Photoexcretion and fate of glycolate in a hot spring cyanobacterial mat. Appl Environ Microbiol 54:1738–1743PubMedGoogle Scholar
- Battley EH (1995) An apparent anomaly in the calculation of ash-free dry weights for the determination of cellular yields. Appl Environ Microbiol 61:1655–1657PubMedGoogle Scholar
- Baxter RM, Gibbons NE (1962) Observations on the physiology of psychrophilism in a yeast. Can J Microbiol 8:511–517Google Scholar
- Beier S, Bertilsson S (2011) Uncoupling of chitinase activity and uptake of hydrolysis products in freshwater bacterioplankton. Limnol Oceanogr 56:1179–1188Google Scholar
- Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906PubMedGoogle Scholar
- Béjà O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM, Hamadas T, Eisen JA, Fraser CM, DeLong EF (2002) Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415:630–633PubMedGoogle Scholar
- Benz M, Schink B, Brune A (1998) Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Appl Environ Microbiol 64:4507–4512PubMedGoogle Scholar
- Bernard L, Schäfer H, Joux F, Courties C, Muyzer G, Lebaron P (2000) Genetic diversity of total, active and culturable marine bacteria in coastal seawater. Aquat Microb Ecol 23:1–11Google Scholar
- Bernhardt G, Lüdemann H-D, Jaenicke R, König H, Stetter KO (1984) Biomolecules are unstable under “black smoker” conditions. Naturwissenschaften 71:583–586Google Scholar
- Beudeker RF, Gottschal JC, Kuenen JG (1982) Reactivity versus flexibility in thiobacilli. Antonie Van Leeuwenhoek 48:39–51PubMedGoogle Scholar
- Beunink J, Rehm HJ (1988) Synchronous anaerobic and aerobic degradation of DDT by an immobilized mixed culture system. Appl Microbiol Biotechnol 29:72–80Google Scholar
- Bhakoo M, Herbert RA (1979) The effects of temperature on the fatty acid and phospholipid composition of four obligately psychrophilic Vibrio spp. Arch Microbiol 121:121–127Google Scholar
- Bi E, Lutkenhaus J (1993) Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. J Bacteriol 175:1118–1125PubMedGoogle Scholar
- Bidle KD, Lee SH, Marchant DR, Falskowski PG (2007) Fossil genes and microbes in the oldest ice on Earth. Proc Natl Acad Sci USA 104:13455–13460PubMedGoogle Scholar
- Biebl H, Pfennig N (1978) Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch Microbiol 117:9–16Google Scholar
- Binnerup SJ, Jensen DF, Thordal-Christensen H, Sorgensen J (1993) Detection of viable, but non-culturable Pseudomonas fluorescens DF57 in soil using a microcolony epifluorescence technique. FEMS Microbiol Ecol 12:97–195Google Scholar
- Biville F, Laurent-Winter C, Danchin A (1996) In vivo positive effects of exogenous pyrophosphate on Escherichia coli cell growth and stationary phase survival. Res Microbiol 147:597–608PubMedGoogle Scholar
- Blochl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. nov. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1:14–21PubMedGoogle Scholar
- Bolen DW (2001) Protein stabilization by naturally occurring osmolytes. Methods Mol Biol 168:17–36PubMedGoogle Scholar
- Boone DR, Bryant MP (1980) Propionate degrading bacterium Syntrophobacter wolinii sp. nov., gen. nov. from methanogenic ecosystems. Appl Environ Microbiol 33:1162–1169Google Scholar
- Botsford JL, Harman JG (1992) Cyclic AMP in prokaryotes. Microbiol Rev 56:100–122PubMedGoogle Scholar
- Bovill RA, Mackey BM (1997) Resuscitation of “non-culturable” cells from aged cultures of Campylobacter jejuni. Microbiology 143:1575–1581PubMedGoogle Scholar
- Bowman JP, McCammon SA, Brown JL, Nichols PD, McMeekin TA (1997a) Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens, gen. nov., sp. nov., psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats. Int J Syst Evol Microbiol 47:670–677Google Scholar
- Bowman JP, McCammon SA, Nichols DS, Skerratt JH, Rea SM, Nichols PE, McMeekin TA (1997b) Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5w3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047PubMedGoogle Scholar
- Bowman JP, McCammon SA, Skerratt JH (1997c) Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143:1451–1459PubMedGoogle Scholar
- Bowman JP, McCammon SA, Brown JL, McMeekin TA (1998a) Glaciecola punicea gen. nov., sp. nov., and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int J Syst Evol Microbiol 48:1213–1222Google Scholar
- Bowman JP, McCammon SA, Lewis T, Skerratt JH, Brown JL, Nichols DS, McMeekin TA (1998b) Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwandense gen. nov., comb. nov. Microbiology 144:1601–1609PubMedGoogle Scholar
- Boyaval P (1989) Lactic acid bacteria and metal ions. Lait 69:87–113Google Scholar
- Bozal N, Montes MJ, Tudela E, Jimenez F, Guinea J (2002) Shewanella frigidimarina and Shewanella livingstonesis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 52:195–205PubMedGoogle Scholar
- Braun V (1997) Avoidance of iron toxicity through regulation of bacterial iron transport. Biol Chem 378:779–786PubMedGoogle Scholar
- Brefeld O (1881) Botanische Untersuchungen Über Schimmelpilze: Culturmethoden. Felix, LeipzigGoogle Scholar
- Brewer DG, Martin SE, Ordal ZJ (1977) Beneficial effects of catalase or pyruvate in a most-probable-number technique for the detection of Staphylococcus aureus. Appl Environ Microbiol 34:797–800PubMedGoogle Scholar
- Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, New YorkGoogle Scholar
- Brock TD (1987) Introduction: an overview of the thermophiles. In: Brock TD (ed) Thermophiles: general molecular and applied microbiology. Wiley, New York, pp 1–16Google Scholar
- Brock TD, O’Dea K (1977) Amorphous ferrous sulfide as a reducing agent for culture of anaerobes. Appl Environ Microbiol 33:254–256PubMedGoogle Scholar
- Broda E (1977) Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol 17:491–493PubMedGoogle Scholar
- Broda DM, Saul DJ, Lawson PA, Bell RG, Musgrave DR (2000) Clostridium gasigenes sp. nov., a psychrophile causing spoilage of vacuum-packed meat. Int J Syst Evol Microbiol 50:107–118PubMedGoogle Scholar
- Bromke B, Hammel JM (1987) Gelatin as a complete endogenous source of calcium for Serratia marcescens protease activity. J Microbiol Methods 6:253–256Google Scholar
- Brooke AG, Watling EM, Attwood MM, Tempest DW (1989) Environmental control of metabolic fluxes in thermotolerant methylotrophic Bacillus strains. Arch Microbiol 151:268–273Google Scholar
- Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846PubMedGoogle Scholar
- Brown AD, Simpson JR (1972) Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J Gen Microbiol 72:589–591PubMedGoogle Scholar
- Brown SA, Whiteley M (2007) A novel exclusion mechanism for carbon resource partitioning in Aggregatibacter actinomycetemcomitans. J Bacteriol 189:6407–6414PubMedGoogle Scholar
- Bruhn JB, Nielsen KF, Hjelm M, Hansen M, Brescani J, Schulz S, Gram L (2005) Ecology, inhibitory activity, and morphogenesis of a marine antagonistic bacterium belonging to the Roseobacter clade. Appl Environ Microbiol 71:7263–7270PubMedGoogle Scholar
- Bruns A, Cypionka H, Overmann J (2002) Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl Environ Microbiol 68:3978–3987PubMedGoogle Scholar
- Bruns A, Hoffelner H, Overmann J (2003a) A novel approach for high throughput assays and the isolation of planktonic bacteria. FEMS Microbiol Ecol 45:161–171PubMedGoogle Scholar
- Bruns A, Nübel U, Cypionka H, Overmann J (2003b) Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton. Appl Environ Microbiol 69:1980–1989PubMedGoogle Scholar
- Bryant MP (1976) The microbiology of anaerobic degradation and methanogenesis with special reference to sewage. In: Schlegel HW, Barnea J (eds) Microbial energy conversion. Erick Goltze KG, Göttingen, pp 107–1167Google Scholar
- Bryson V, Szybalski W (1952) Microbial selection. Science 116:45–51Google Scholar
- Bull AT, Slater JH (1982) Microbial interactions and community structure. In: Bull AT, Slater JH (eds) Microbial interactions and communities, vol 1. Academic, London, pp 13–44Google Scholar
- Bull AT, Goodfellow M, Slater JH (1992) Biodiversity as a source of innovation in biotechnology. Annu Rev Microbiol 46:219–252PubMedGoogle Scholar
- Bulthuis BA, Koningstein GM, Stouthamer AH, van Verseveld HW (1989) A comparison between aerobic growth of Bacillus licheniformis in continuous culture and partial-recycling fermenter, with contributions to the discussion on maintenance energy demand. Arch Microbiol 152:499–507Google Scholar
- Bungay HR, Bungay ML (1968) Microbial interactions in continuous culture. Adv Appl Microbiol 10:269–290PubMedGoogle Scholar
- Bunt JG (1961) Nitrogen-fixing blue-green algae in Australian rice soils. Nature 192:479–480Google Scholar
- Burchard RP (1980) Gliding motility of bacteria. Bioscience 30:157–162Google Scholar
- Burkhardt F (1992) Mikrobiologische diagnostik georg. Thieme, New YorkGoogle Scholar
- Burnham JC, Conti SF (1984) Genus Bdellovibrio. In: Krieg NR (ed) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 118–124Google Scholar
- Bussmann I, Philipp B, Schink B (2001) Factors influencing the cultivability of lake water bacteria. J Microbiol Methods 47:41–50PubMedGoogle Scholar
- Button DK, Schut F, Quang P, Martin R, Robertson BR (1993) Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol 59:881–891PubMedGoogle Scholar
- Button DK, Robertson BR, Lepp PW, Schmidt TM (1998) A small, dilute-cytoplasm, high-affinity, novel bacterium isolated by extinction culture and having kinetic constants compatible with growth at ambient concentrations of dissolved nutrients in seawater. Appl Environ Microbiol 64:4467–4476PubMedGoogle Scholar
- Byrer DE, Rainey FA, Wiegel J (2000) Novel strains of Moorella thermoacetica form unusually heat-resistant spores. Arch Microbiol 174:334–339PubMedGoogle Scholar
- Calcott PH (1981) The construction and operation of continuous cultures. In: Calcott PH (ed) Continuous cultures of cells, vol 1. CRC Press, Boca Raton, pp 13–26Google Scholar
- Calcott PH, Calvert TJ (1981) Characterization of 3′:5′cyclic AMP phosphodiesterase in Klebsiella aerogenes and its role in substrate accelerated death. J Gen Microbiol 122:313–321PubMedGoogle Scholar
- Calcott PH, Postgate JR (1972) On substrate-accelerated death in Klebsiella aerogenes. J Gen Microbiol 70:115–122PubMedGoogle Scholar
- Calcott PH, Montague W, Postgate JR (1972) The levels of cyclic AMP during substrate accelerated death. J Gen Microbiol 73:197–200PubMedGoogle Scholar
- Cangelosi GA, Brabant WH (1997) Depletion of pre-16S rRNA in starved Escherichia coli cells. J Bacteriol 179:4457–4463PubMedGoogle Scholar
- Carlsson J, Granberg GPD, Nyberg GK, Edlund M-BK (1979) Bactericidal effect of cysteine exposed to atmospheric oxygen. Appl Environ Microbiol 37:383–390PubMedGoogle Scholar
- Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66:4514–4517PubMedGoogle Scholar
- Castenholz RW (1973) Movements. In: Carr NG, Whitton BA (eds) The biology of blue-green algae. Blackwell, London, pp 320–339Google Scholar
- Cavicchioli R (2006) Cold-adapted archaea. Nat Rev Microbiol 4:331–343PubMedGoogle Scholar
- Cayley S, Record MT, Lewis BA (1989) Accumulation of 3-[N-morpholino] propanesulfonate by osmotically stressed Escherichia coli K-12. J Bacteriol 171:3597–3602PubMedGoogle Scholar
- Cayley S, Lewis BA, Record MT (1992) Origins of osmoprotective properties of betaine and proline in Escherichia coli K-12. J Bacteriol 174:1586–1595PubMedGoogle Scholar
- Chan M, Himes RH, Akagi JM (1971) Fatty acid composition of thermophilic, mesophilic, and psychrophilic clostridia. J Bacteriol 106:876–881PubMedGoogle Scholar
- Chao H, Davies PL, Carpenter JF (1996) Effects of antifreeze proteins in red blood cell survival during cryopreservation. J Exp Biol 199:2071–2076PubMedGoogle Scholar
- Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549PubMedGoogle Scholar
- Chen H, Jogler M, Rohde M, Klenk H-P, Busse H-J, Tindall B, Spröer C, Overmann J (2012) Reclassification and amended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol (in press)Google Scholar
- Chesbro W (1988) The domains of slow bacterial growth. Can J Microbiol 34:427–435PubMedGoogle Scholar
- Chesbro WR, Evans T, Eifert R (1979) Very slow growth of Escherichia coli. J Bacteriol 139:625–638PubMedGoogle Scholar
- Chi E, Bartlett DH (1995) An rpoE-like locus controls outer membrane protein synthesis and growth at cold temperatures and high pressures in the deep-sea bacterium Photobacterium sp. strain SS9. Mol Microbiol 17:713–726PubMedGoogle Scholar
- Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, West-Johnsrud L, Zettler ER (1992) Prochiorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch Microbiol 157:297–300Google Scholar
- Cho JC, Giovannoni SJ (2004) Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl Environ Microbiol 70:432–440PubMedGoogle Scholar
- Christensen BB, Haagensen JAJ, Heydorn A, Molin S (2002) Metabolic commensalism and competition in a two-species microbial consortium. Appl Environ Microbiol 68:2495–2502PubMedGoogle Scholar
- Christner BC (2010) Bioprospecting for microbial products that affect ice crystal formation and growth. Appl Microbiol Biotechnol 85:481–489PubMedGoogle Scholar
- Clark C, Schmidt EL (1966) Effect of mixed culture on Nitrosomonas europaea simulated by uptake and utilization of pyruvate. J Bacteriol 91:367–373PubMedGoogle Scholar
- Cleland N, Enfors SO (1983) Control of glucose fed batch cultivations of E. coli by means of an oxygen stabilized enzyme electrode. Eur J Appl Microbiol Biotechnol 18:141–147Google Scholar
- Coates JD, Ellis DJ, Blunt-Harris EL, Gaw CV, Roden E, Lovley DR (1998) Recovery of humic-reducing bacteria from a diversity of environments. Appl Environ Microbiol 64:1504–1509PubMedGoogle Scholar
- Coates JD, Cole KA, Chakraborty R, O’Connor SM, Achenbach LA (2002) Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration. Appl Environ Microbiol 68:2445–2453PubMedGoogle Scholar
- Cohen Y, de Jonge I, Kuenen JG (1979) Excretion of glycolate by Thiobacillus neapolitanus grown in continuous culture. Arch Microbiol 122:189–194Google Scholar
- Cohn F (1872) Über bacterien, die kleinsten lebenden. Wesen Carl Habel, BerlinGoogle Scholar
- Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885PubMedGoogle Scholar
- Coolen MJL, Cypionka H, Smock A, Sass H, Overmann J (2002) Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science 296:2407–2410PubMedGoogle Scholar
- Cottrell MT, Kirchman DL (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacteria cluster consuming low-and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66:1692–1697PubMedGoogle Scholar
- Coveney MF (1982) Bacterial uptake of photosynthetic carbon from freshwater phytoplankton. Oikos 38:8–20Google Scholar
- Crevel RWR, Fedyk JK, Spurgeon MJ (2002) Antifreeze proteins: characteristics, occurrence and human exposure. Food Chem Toxicol 40:899–903PubMedGoogle Scholar
- Crocker FH, Guerin WF, Boyd SA (1995) Bioavailability of naphthalene sorbed to cationic surfactant-modified smectite clay. Environ Sci Technol 29:2953–2958PubMedGoogle Scholar
- Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147PubMedGoogle Scholar
- Csonka LN, Epstein W (1996) Osmoregulation. In: Neidhardt FC (ed) Escherichia coli and Salmonella, 2nd edn. ASM Press, Washington, DC, pp 1210–1223Google Scholar
- Csonka LN, Hanson A (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45:569–606PubMedGoogle Scholar
- Currie DJ, Kalff J (1984) Can bacteria outcompete phytoplankton for phosphorus? A chemostat test. Microb Ecol 10:205–216Google Scholar
- Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99:10494–10499PubMedGoogle Scholar
- Cypionka H (1986) Sulfide-controlled continuous culture of sulfate-reducing bacteria. J Microbiol Methods 5:1–9Google Scholar
- Cypionka H (1999) Grundlagen der mikrobiologie. Springer, New YorkGoogle Scholar
- Cypionka H, Widdel F, Pfennig N (1985) Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiol Ecol 31:39–45Google Scholar
- Czeczuga B (1968) An attempt to determine the primary production of the green sulphur bacteria, Chlorobium limicola Nads, (Chlorobacteriaceae). Hydrobiologia 31:317–333Google Scholar
- Dalluge JJ, Hamamoto T, Horikoshi K, Morita RY, Stetter KO, McCloskey JA (1997) Posttranscriptional modification of tRNA in psychrophilic bacteria. J Bacteriol 179:1918–1923PubMedGoogle Scholar
- Damoglou AP, Dawes EA (1968) Studies on the lipid content and phosphate requirement for glucose-and acetate-grown Escherichia coli. Biochem J 110:775–781PubMedGoogle Scholar
- Dang HY, Lovell CR (2000) Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl Environ Microbiol 66:467–475PubMedGoogle Scholar
- Dawson MW, Maddox IS, Boag IF, Brooks JD (1988) Application of fed-batch culture to citric acid production by Aspergillus niger: the effects of dilution rate and dissolved oxygen tension. Biotechnol Bioeng 32:220–226PubMedGoogle Scholar
- De Bary A (1879) Die Erscheinung der Symbiose Naturforschung Versammlung CasselGoogle Scholar
- de Freitas MJ, Fredrickson AG (1978) Inhibition as a factor in the maintenance of the diversity of microbial ecosystems. J Gen Microbiol 106:307–320Google Scholar
- de la Broise D, Durand A (1989) Osmotic, biomass, and oxygen effects on the growth rate of Fusarium oxysporum using a dissolved oxygen controlled turbidstat. Biotechnol Bioeng 33:699–705PubMedGoogle Scholar
- De Wit R, van Gemerden H (1988) Interactions between phototrophic bacteria in sediment ecosystems. Hydrobiol Bull 22:135–145Google Scholar
- Dedysh SN (2011) Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining gaps. Front Microbiol 2:184PubMedGoogle Scholar
- DeLong EF, Yayamos AA (1986) Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl Environ Microbiol 51:730–737PubMedGoogle Scholar
- DeLong EF, Ying Wu K, Prézelin BB, Jovine RVM (1994) High abundance of Archaea in Antarctic marine picoplankton. Nature 371:695–697PubMedGoogle Scholar
- DeLong EF, Franks DG, Yayanos AA (1997) Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63:2105–2108PubMedGoogle Scholar
- Deming JW (1986) Ecological strategies of barophilic bacteria in the deep ocean. Microbiol Sci 3:205–207PubMedGoogle Scholar
- Deming JW, Colwell RR (1985) Observations of barophilic microbial activity in samples of sediments and intercepted particulates from the Demerara abyssal plain. Appl Environ Microbiol 50:1002–1006PubMedGoogle Scholar
- Deming JW, Somers LW, Straube WL, Swartz DG, MacDonell MT (1988) Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst Appl Microbiol 10:152–160Google Scholar
- Dinara S, Sengoku K, Tamate K et al (2001) Effects of supplementation with free radical scavengers on the survival and fertilization rates of mouse cryopreserved oocytes. Human Reprod 16:1976–1981Google Scholar
- Dobell C (1932) Anthony van Leeuwenhoek and his “little animals”. Harcourt Brace, New YorkGoogle Scholar
- Dolfing J, Tiedje JM (1986) Hydrogen cycling in a three-tiered food web growing on the methanogenic conversion of 3-chlorobenzoate. FEMS Microbiol Ecol 38:293–298Google Scholar
- Dong K, Liu H, Zhang J, Zhou Y, Xin Y (2011) Flavobacterium xueshanense sp. nov. and Flavobacterium urumqiense sp. nov., two psychrophilic bacteria isolated from the China No. 1 glacier. Int J Syst Evol Microbiol 62:1151–1157Google Scholar
- Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37PubMedGoogle Scholar
- Driessen FM (1981) Protocooperation of yoghurt bacteria in continuous cultures. In: Buschell ME, Slater JH (eds) Mixed culture fermentations. Academic, London, pp 99–120Google Scholar
- Dubilier N, Giere O, Distel DL, Cavanaugh CM (1995) Characterization of chemoautotrophic bacterial symbionts in a gutless marine worm (Oligochaeta, Annelida) by phylogenetic 16S rRNA sequence analysis and in situ hybridization. Appl Environ Microbiol 61:2346–2350PubMedGoogle Scholar
- Dubinina GA, Leshcheva NV, Grabovich MY (1993) The colorless sulfur bacterium Thiodendron is actually a symbiotic association of spirochetes and sulfidogens. Microbiology 62:432–444Google Scholar
- Dubinina GA, Grabovich MY, Leshcheva NV, Rainey FA, Gavrish E (2011) Spirochaeta perfilievii sp. nov., an oxygen-tolerant, sulfide-oxidizing, sulfur- and thiosulfate-reducing spirochaete isolated from a saline spring. Int J Syst Evol Microbiol 61:110–117PubMedGoogle Scholar
- Dukan S, Nyström T (1998) Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon. Genes Dev 12:3431–3441PubMedGoogle Scholar
- Dunfield PF, Liesack W, Henckel T, Knowles R, Conrad R (1999) High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph. Appl Environ Microbiol 65:1009–1014PubMedGoogle Scholar
- Dwyer DF, Weeg-Aerssens E, Shelton DR, Tiedje JM (1988) Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in coculture with hydrogen oxidizing methanogenic and sulfidogenic bacteria. Appl Environ Microbiol 54:1354–1359PubMedGoogle Scholar
- Dykhuizen DE (1998) Santa Rosalia revisited: why are there so many species of bacteria? Antonie Van Leeuwenhoek 73:25–33PubMedGoogle Scholar
- Dykhuizen D, Davies M (1980) An experimental model: bacterial specialists and generalists competing in chemostats. Ecology 61:1213–1227Google Scholar
- Egland PG, Palmer RJ, Kolenbrander PE (2004) Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc Natl Acad Sci USA 101:16917–16922PubMedGoogle Scholar
- Egli T, Lindley ND, Quayle JR (1983) Regulation of enzyme synthesis and variation of residual methanol concentration during carbon limited growth of Kloeckera ap. 2201. on mixtures of methanol and glucose. J Gen Microbiol 129:1269–1281Google Scholar
- Eguchi M, Ostrowski M, Fegatella F, Bowman J, Nichols D, Nishino T, Cavicchioli R (2001) Sphingomonas alaskensis AFO1, an abundant oligotrophic ultramicrobacterium from the North Pacific. Appl Environ Microbiol 67:4945–4954PubMedGoogle Scholar
- Eichorst SA, Breznak JA, Schmidt TM (2007) Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl Environ Microbiol 73:2708–2717PubMedGoogle Scholar
- Eilers H, Pernthaler J, Peplies J, Glöckner FO, Gerdts G, Amann R (2001) Isolation of novel pelagic bacteria from the German Bight and their seasonal contributions to surface picoplankton. Appl Environ Microbiol 67:5134–5142PubMedGoogle Scholar
- Emde R, Schink B (1990) Oxidation of glycerol, lactate, and propionate by Propionibacterium freudenreichii in a poised-potential amperometric culture system. Arch Microbiol 153:506–512Google Scholar
- Emde R, Swain A, Schink B (1989) Anaerobic oxidation of glycerol by Escherichia coli in an amperometric poised-potential culture system. Appl Microbiol Biotechnol 32:170–175Google Scholar
- Epstein W (1986) Osmoregulation by potassium transport in Escherichia coli. FEMS Microbiol Rev 39:73–78Google Scholar
- Epstein W, Rothman-Denes LB, Hesse J (1975) Adenosine 3′:5′-cyclic monophosphate as mediator of catabolite repression in Escherichia coli. Proc Natl Acad Sci USA 72:2300–2304PubMedGoogle Scholar
- Esener AA, Roels JA, Kossen NW (1981) Fed batch culture: modelling and application in the study of microbial energetics. Biotechnol Bioeng 22:1851–1871Google Scholar
- Ettwig KF, Butler MK, LePaslier D, Pelletier E, Mangenot S, Kuypers MMM et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548PubMedGoogle Scholar
- Euzéby JP, Tindall BJ (2001) Nomenclatural type of orders: corrections necessary according to Rules 15 and 21a of the Bacteriological Code (1990 Revision), and designation of appropriate nomenclatural types of classes and subclasses. Request for an opinion. Int J Syst Evol Microbiol 51(Pt 2):725–727Google Scholar
- Euzéby JP (2012) List of bacterial names with standing in nomenclature. http://www.bacterio.cict.fr
- Evans CG, Herbert D, Tempest DW (1970) The continuous cultivation of microorganisms. 2. Construction of a chemostat. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 2. Academic, London, pp 277–327Google Scholar
- Feller G (2007) Life at low temperatures: is disorder the driving force? Extremophiles 11:211–216PubMedGoogle Scholar
- Feller G, Narinx E, Arpigny JL, Zekhnini Z, Swings J, Gerday C (1994a) Temperature dependence of growth, enzyme secretion and activity of psychrophilic Antarctic bacteria. Appl Microbiol Biotechnol 41:477–479Google Scholar
- Feller G, Payan F, Theys F, Quian M, Haser R, Gerday C (1994b) Stability and structural analysis of α-amylase from the Antarctic psychrophile Alteromonas haloplanctis A23. Eur J Biochem 222:441–447PubMedGoogle Scholar
- Felske A, Wolterink A, van Lis R, Akkermans ADL (1998) Phylogeny of the main bacterial 16S rRNA sequences in Drentse A grassland soils (The Netherlands). Appl Environ Microbiol 64:871–879PubMedGoogle Scholar
- Felske A, Wolterink A, van Lis R, de Vos WM, Akkermans ADL (1999) Searching for predominant soil bacteria: 16S rDNA cloning versus strain cultivation. FEMS Microbiol Ecol 30:137–145PubMedGoogle Scholar
- Ferchichi M, Hemme D, Bouillaune C (1986) Influence of oxygen and pH on methanethiol production from l-methionine by Brevibacterium linens CNRZ 918. Appl Environ Microbiol 51:725–729PubMedGoogle Scholar
- Ferris MJ, Ruff-Roberts AL, Kopczynski ED, Bateson MM, Ward DM (1996) Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat. Appl Environ Microbiol 62:1045–1050PubMedGoogle Scholar
- Filippini M, Kaech A, Ziegler U, Bagheri HC (2011) Fibrisoma limi gen. nov., sp. nov., a filamentous bacterium isolated from tidal flats. Int J Syst Evol Microbiol 61:1418–1424PubMedGoogle Scholar
- Fleming A (1929) On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226–236Google Scholar
- Flint KP (1985) A note on a selective agar medium for the enumeration of Flavobacterium species in water. J Appl Bacteriol 59:561–566PubMedGoogle Scholar
- Fogg GE (1971) Extracellular products of algae in freshwater. Arch Hydrobiol Beih Ergebn Limnol 5:1–25Google Scholar
- Forsberg CW (1987) Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species. Appl Environ Microbiol 53:639–643PubMedGoogle Scholar
- Francis CA, Tebo BM (2002) Enzymatic manganese(II) oxidation by metabolically dormant spores of diverse Bacillus species. Appl Environ Microbiol 68:874–880PubMedGoogle Scholar
- Franzmann PD, Höpfl P, Weiss N, Tindall BJ (1991) Psychrotrophic, lactic acid-producing bacteria from anoxic waters in Ace Lake, Antarctica: Carnobacterium funditum sp. nov. and Carnobacterium alterfunditum sp. nov. Arch Microbiol 156:255–262PubMedGoogle Scholar
- Franzmann PD, Springer N, Ludwig W, Conway de Macario E, Rohde M (1992) A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15:573–581Google Scholar
- Franzmann PD, Liu Y, Balkwill DL, Aldrich HC, Conway de Macario E, Boone DR (1997) Methanogenium frigidum sp. nov., a psychrophilic H2-using methanogen from Ace Lake Antarctica. Int J Syst Bacteriol 47:1068–1072PubMedGoogle Scholar
- Fredrickson AG (1977) Behaviour of mixed cultures of microorganisms. Annu Rev Microbiol 31:63–87PubMedGoogle Scholar
- Fredrickson AG, Stephanopoulos G (1981) Microbial competition. Science 213:972–979PubMedGoogle Scholar
- Fritsche TR, Sobek D, Gautom RK (1998) Enhancement of in vitro cytopathogenicity by Acanthamoeba spp. following acquisition of bacterial endosymbionts. FEMS Microbiol Lett 166:231–236PubMedGoogle Scholar
- Fröhlich J, König H (1999) Rapid isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator. Syst Appl Microbiol 22:249–257PubMedGoogle Scholar
- Fröstl JM, Overmann J (1998) Physiology and tactic response of the phototrophic consortium “Chlorochromatium aggregatum”. Arch Microbiol 169:129–135PubMedGoogle Scholar
- Fröstl JM, Overmann J (2000) Phylogenetic affiliation of the bacteria that constitute phototrophic consortia. Arch Microbiol 174:50–58PubMedGoogle Scholar
- Fry JC (1990) Direct methods and biomass estimation. In: Grigorova R, Norris JR (eds) Methods in microbiology, vol 22. Academic, London, pp 41–85Google Scholar
- Fuhrman JA, McCallum K, Davis AA (1992) Novel major archaebacterial group from marine plankton. Nature 356:148–149PubMedGoogle Scholar
- Fuhrman JA, McCallum K, Davis AA (1993) Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl Environ Microbiol 59:1294–1302PubMedGoogle Scholar
- Funk HB, Krulwich TA (1964) Preparation of clear silica gels that can be streaked. J Bacteriol 88:1200–1201PubMedGoogle Scholar
- Fuqua C, Greenberg EP (1998) Self perception in bacteria: quorum sensing with acylated homoserine lactones. Curr Opin Microbiol 1:50–58Google Scholar
- Galinski EA, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108Google Scholar
- Gangola P, Rosen BP (1987) Maintenance of intracellular calcium in Escherichia coli. J Biol Chem 262:12570–12574PubMedGoogle Scholar
- Ganzert L, Bajerski F, Mangelsdorf K, Lipski A, Wagner D (2011a) Arthrobacter livingstonensis sp. nov. and Arthrobacter cryotolerans sp. nov., salt-tolerant and psychrotolerant species from Antarctic soil. Int J Syst Evol Microbiol 61:979–984PubMedGoogle Scholar
- Ganzert L, Bajerski F, Mangelsdorf K, Lipski A, Wagner D (2011b) Leifsonia psychrotolerans sp. nov., a psychrotolerant species of the family Microbacteriaceae from Livingston Island, Antarctica. Int J Syst Evol Microbiol 61:1938–1943PubMedGoogle Scholar
- Garcia-Lara J, Shang LH, Rothfield LI (1996) An extracellular factor regulates expression of sdiA, a transcriptional activator of cell division genes in Escherichia coli. J Bacteriol 178:2742–2748PubMedGoogle Scholar
- Garnham CP, Gilbert JA, Hartman CP, Campbell RL, Laybourn-Parry J, Davies PL (2008) A Ca2+-dependent bacterial antifreeze protein domain has a novel β-helical ice-binding fold. Biochem J 411:171–180PubMedGoogle Scholar
- Garnham CP, Campbell RL, Dabies PL (2011) Anchored clathrate waters bind antifreeze proteins to ice. Proc Natl Acad Sci USA 108:7363–7367PubMedGoogle Scholar
- Gause GF (1934) The struggle for existence. Williams and Wilkins, BaltimoreGoogle Scholar
- Geissinger O, Herlemann DPR, Mörschel E, Maier UG, Brune A (2009) The ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the first cultivated representative of the termite group 1 phylum. Appl Environ Microbiol 75:2831–2840PubMedGoogle Scholar
- Genomes Online Database (GOLD) (2012) http://www.genomesonline.org/cgi-bin/GOLD/index.cgi?page_requested=Statistics
- Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (1981) Manual of methods for general bacteriology. American Society for Microbiology, Washington, DCGoogle Scholar
- Gherna RL, Reddy CA (2007) Culture preservation. In: Reddy CA (ed) Methods for general and molecular microbiology. ASM Press, Washington, DC, pp 1019–1033Google Scholar
- Gich F, Garcia-Gil J, Overmann J (2001) Previously unknown and phylogenetically diverse members of the green nonsulfur bacteria are indigenous to freshwater lakes. Arch Microbiol 177:1–10PubMedGoogle Scholar
- Gich F, Schubert K, Bruns A, Hoffelner H, Overmann J (2005) Specific detection, isolation and characterization of selected, previously uncultured members of freshwater bacterioplankton. Appl Environ Microbiol 71:5908–5919PubMedGoogle Scholar
- Giovannoni S, Stingl U (2007) The importance of culturing bacterioplankton in the ‘omics’ age. Nature 5:820–826Google Scholar
- Glöckner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Perthaler A, Amann R (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol 66:5053–5065PubMedGoogle Scholar
- Gond O, Engasser JM, Matta-El-Amouri C, Petitdemange H (1986) The acetone butanol fermentation on glucose and xylose. II: Regulation and kinetics in fed batch cultures. Biotechnol Bioeng 28:167–175Google Scholar
- González JM, Mayer F, Moran MA, Hodson RE, Withman WB (1997) Sagittula stellata gen. nov., sp. nov., a lignin-transforming bacterium from a coastal environment. Int J Syst Bacteriol 47:773–780PubMedGoogle Scholar
- Goodfellow M (1992a) The family Nocardiaceae. In: Balows A, Trüper HG, Dworkin M, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 1188–1213Google Scholar
- Goodfellow M (1992b) The family Streptosporangiaceae. In: Balows A, Trüper HG, Dworkin M, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 1115–1138Google Scholar
- Görtz H-D, Brigge T (1998) Intracellular bacteria in protozoa. Naturwissenschaften 85:359–368PubMedGoogle Scholar
- Gosink JJ, Staley JT (1995) Biodiversity of gas vacuolate bacteria from Antarctic sea ice and water. Appl Environ Microbiol 61:3486–3489PubMedGoogle Scholar
- Gosink JJ, Woese CR, Staley JT (1998) Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus so. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of “Flectobacillus glomeratus” as Polaribacter glomeratus comb. nov. Int J Syst Evol Microbiol 48:223–235Google Scholar
- Gottschal JC (1986) Mixed substrate utilization by mixed cultures. In: Leadbetter ER, Poindexter JS (eds) Bacteria in nature, vol 2. Plenum, New York, pp 261–292Google Scholar
- Gottschal JC (1990) Different types of continuous culture in ecological studies. In: Norris JR, Grigorova R (eds) Methods in microbiology, vol 22. Academic, London, pp 87–124Google Scholar
- Gottschal JC, Dijkhuizen L (1988) The place of the continuous culture in ecological research. In: Wimpenny JWT (ed) Handbook of laboratory model systems for microbial ecosystems, vol 1. CRC Press, Boca Raton, pp 19–79Google Scholar
- Gottschal JC, Kuenen JG (1980) Selective enrichment of facultatively chemolithotrophic thiobacilli and related organisms in continuous culture. FEMS Microbiol Lett 7:241–247Google Scholar
- Gottschal JC, Morris JG (1981) The induction of acetone and butanol production in cultures of Clostridium acetobutylicum by elevated concentrations of acetate and butyrate. FEMS Microbiol Lett 12:385–389Google Scholar
- Gottschal JC, de Vries S, Kuenen JG (1979) Competition between the facultatively chemolithotrophic Thiobacillus A2, an obligately chemolithotrophic Thiobacillus and a heterotrophic Spirillum for inorganic and organic substrates. Arch Microbiol 121:241–249Google Scholar
- Gottschal JC, Harder W, Prins RA (1991) Principles of enrichment, isolation, cultivation, and preservation. In: Balows A, Trüper HG, Dworkin M, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 149–196Google Scholar
- Gottschalk G (1985) Bacterial metabolism. Springer, New YorkGoogle Scholar
- Gottwald M, Gottschalk G (1985) The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation. Arch Microbiol 143:42–46Google Scholar
- Graber JR, Breznak JA (2005) Folate cross-feeding supports symbiotic homoacetogenic spirochetes. Appl Environ Microbiol 71:1883–1889PubMedGoogle Scholar
- Graham AF, Lund BM (1983) The effect of alkaline pH on growth and metabolic products of a motile, yellow-pigmented Streptococcus sp. J Gen Microbiol 129:2429–2435Google Scholar
- Grant WD, Tindall BJ (1986) The alkaline saline environment. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. Academic, London, pp 25–54Google Scholar
- Graumann P, Marahiel MA (1996) Some like it cold: response of microorganisms to cold shock. Arch Microbiol 166:293–300PubMedGoogle Scholar
- Gray ND, Howarth R, Pickup RW, Jones JG, Head IM (2000) Use of combined microautoradiography and fluorescence in situ hybridization to determine carbon metabolism in mixed natural communities of uncultured bacteria from the genus Achromatium. Appl Environ Microbiol 66:4518–4522PubMedGoogle Scholar
- Groeschel DHM (1982) The etiology of tuberculosis: a tribute to Robert Koch on the occasion of the centenary of his discovery of the tubercle bacillus. ASM News 48:248–250Google Scholar
- Gross CA (1996) Function and regulation of the heat shock proteins. In: Neidhardt FC (ed) Escherichia coli and Salmonella, 2nd edn. ASM Press, Washington, DC, pp 1382–1399Google Scholar
- Grosser RJ, Friedrich M, Ward DM, Inskeep WP (2000) Effect of model sorptive phases on phenanthrene biodegradation: different enrichment conditions influence bioavailability and selection of phenanthrene-degrading isolates. Appl Environ Microbiol 66:2695–2702PubMedGoogle Scholar
- Guan LL, Onuki H, Kamino K (2000) Bacteria growth stimulation with exogenous siderophore and synthetic N-acyl homoserine lactone autoinducers under iron-limited and low-nutrient conditions. Appl Environ Microbiol 66:2797–2803PubMedGoogle Scholar
- Guerin WF, Boyd SA (1997) Bioavailability of naphthalene associated with natural and synthetic sorbents. Water Res 51:1504–1512Google Scholar
- Guerrero R, Pedros-Alió C, Esteve I, Mas J, Chase D, Margulis L (1986) Predatory prokaryotes: predation and primary consumption evolved in bacteria. Proc Natl Acad Sci USA 83:2138–2142PubMedGoogle Scholar
- Hackstein JH, Akhmanova A, Boxma B, Harhangi HR, Voncken FG (1999) Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends Microbiol 7:441–447PubMedGoogle Scholar
- Hahn MW (2003) Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl Environ Microbiol 69:5248–5254PubMedGoogle Scholar
- Hahn MW (2009) Description of seven candidate species affiliated with the phylum Actinobacteria, representing planktonic freshwater bacteria. Int J Syst Evol Microbiol 59:112–117PubMedGoogle Scholar
- Hahn MW, Lünsdorf H, Wu Q, Schauer M, Höfle MG, Boenigk J, Stadler P (2003) Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol 69:1442–1451PubMedGoogle Scholar
- Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, DeLong EF (2006) Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4:e95PubMedGoogle Scholar
- Handelsmann J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685Google Scholar
- Harder W, Dijkhuizen L (1982) Strategies of mixed substrate utilization in microorganisms. Philos Trans R Soc Lond B Biol Sci 297:459–480PubMedGoogle Scholar
- Harder W, Veldkamp H (1971) Competition of marine psychrophilic bacteria at low temperatures. Antonie Van Leeuwenhoek 37:51–63PubMedGoogle Scholar
- Harder W, Kuenen JG, Matin A (1977) Microbial selection in continuous culture. J Appl Bacteriol 43:1–24PubMedGoogle Scholar
- Hardin G (1960) The competitive exclusion principle. Science 131:1292–1297PubMedGoogle Scholar
- Harms H, Zehnder AJB (1995) Bioavailability of sorbed 3-chlorodibenzofuran. Appl Environ Microbiol 61:27–33PubMedGoogle Scholar
- Harris JE (1985) Gelrite as an agar substitute for the cultivation of mesophilic Methanobacterium and Methanobrevibacter species. Appl Environ Microbiol 50:1107–1109PubMedGoogle Scholar
- Harwood C, Buckley M (2008) The uncharted microbial world: microbes and their activities in the environment. A report from the American Academy of Microbiology. American Academy of Microbiology, Washington, DC, 37 pGoogle Scholar
- Hastings RC, Saunders JR, Hall GH, Pickup RW, McCarthy AJ (1998) Application of molecular biological techniques to a seasonal study of ammonia oxidation in a eutrophic freshwater lake. Appl Environ Microbiol 64:3674–3682PubMedGoogle Scholar
- Herbert RA (1986) The ecology and physiology of psychrophilic microorganisms. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. Academic, London, pp 1–23Google Scholar
- Herbert D, Elsworth R, Telling RC (1956) The continuous culture of bacteria: a theoretical and experimental study. J Gen Microbiol 14:601–622PubMedGoogle Scholar
- Hespell RB, Bryant MP (1981) The genera Butyrivibrio, Succinivibrio, Lachnospira and Selenomonas. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, New York, pp 1479–1494Google Scholar
- Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805PubMedGoogle Scholar
- Hiorns WD, Methé BA, Nierzwicki-Bauer SA, Zehr JP (1997) Bacterial diversity in Adirondack Mountain lakes as revealed by 16S rRNA gene sequence analysis. Appl Environ Microbiol 63:2957–2960PubMedGoogle Scholar
- Hippe H (1991) Maintenance of methanogenic bacteria. In: Kirsop BE, Doyle A (eds) Maintenance of microorganisms and cultured cells, 2nd edn. Academic, London, pp 101–114Google Scholar
- Hirsch P (1984) Microcolony formation and consortia. In: Marshall KC (ed) Microbial adhesion and aggregation: Dahlem Konferenzen. Springer, New York, pp 373–393Google Scholar
- Hochachka PW, Moon TW, Mustafa T (1972) The adaptation of enzymes to pressure in abyssal and midwater fishes. In: Sleigh MA, Macdonald AG (eds) The effects of pressure on living organisms. Academic, London, pp 175–195Google Scholar
- Holmes AJ, Roslev P, McDonald IR, Iversen N, Henriksen K, Murrell JC (1999) Characterization of methanotrophic bacterial populations in soil showing atmospheric methane uptake. Appl Environ Microbiol 65:3312–3318PubMedGoogle Scholar
- Hommes RWJ, Postma PW, Tempest DW, Neijssel OM (1989) The influence of the culture pH value on the direct glucose oxidation pathway in Klebsiella pneumoniae NCTC 418. Arch Microbiol 151:261–267PubMedGoogle Scholar
- Hooke R (1665) Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon. John Martyn and James Allestry, LondonGoogle Scholar
- Horikoshi K, Akiba T (1982) Alkalophilic microorganisms. Springer, New YorkGoogle Scholar
- Huang L, Forsberg CW, Gibbins LN (1986) Influence of external pH and fermentation products on Clostridium acetobutylicum intracellular pH and cellular distribution of fermentation products. Appl Environ Microbiol 51:1230–1234PubMedGoogle Scholar
- Hubalek Z (2003) Protectants used in the cryopreservation of microorganisms. Cryobiology 46:205–229PubMedGoogle Scholar
- Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67PubMedGoogle Scholar
- Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol Rev 3:0003.1–0003.8Google Scholar
- Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a yellowstone hot spring. J Bacteriol 180:366–376PubMedGoogle Scholar
- Humphry DR, George A, Black GW, Cummings SP (2001) Flavobacterium frigidarium sp. nov., an aerobic psychrophilic, xylanolytic and laminariolytic bacterium from Antarctica. Int J Syst Evol Microbiol 51:1235–1243PubMedGoogle Scholar
- Hungate RE (1950) The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14:1–49PubMedGoogle Scholar
- Hungate RE (1960) Microbial ecology of the rumen. Symposium: selected topics in microbial ecology. Bacteriol Rev 24:353–364PubMedGoogle Scholar
- Hungate RE (1966) The rumen and its microbes. Academic, New YorkGoogle Scholar
- Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons WD (eds) Methods in microbiology, vol 3B. Academic, London, pp 117–132Google Scholar
- Hungate RE (1985) Anaerobic biotransformations of organic matter. In: Leadbetter ER, Poindexter JS (eds) Bacteria in nature, vol 1. Plenum, New York, pp 39–96Google Scholar
- Huston AL, Krieger-Brockett BB, Deming JW (2000) Remarkably low temperature optima for extracellular enzyme activity form Arctic bacteria and sea ice. Environ Microbiol 2:383–388PubMedGoogle Scholar
- Ianotti EL, Kafkewitz D, Wolin MJ, Bryant MP (1973) Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes. J Bacteriol 114:1231–1240Google Scholar
- Imhoff JF (1986) Osmoregulation and compatible solutes in eubacteria. FEMS Microbiol Rev 39:57–66Google Scholar
- Ingham CJ, Sprenkels A, Bomer J, Molenaar D, van der Berg A, van Hylckama Vlieg JET, de Vos WM (2007) The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc Natl Acad Sci USA 104:18217–18222PubMedGoogle Scholar
- Ingraham JL (1962) Temperature relationships. In: Gunsalus IC, Stanier RY (eds) The bacteria, vol 4. Academic, New York, pp 265–296Google Scholar
- Ingraham JL, Marr AG (1996) Effect of temperature, pressure, pH, and osmotic stress on growth. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium. ASM Press, Washington, DC, pp 1570–1578Google Scholar
- Irgens RL, Gosink JJ, Staley JT (1996) Polaromonas vacuolata gen. nov., sp. nov., a psychrophilic, marine gas vacuolate bacterium from Antarctica. Int J Syst Evol Microbiol 46:822–826Google Scholar
- Isaksen MF, Jørgensen BB (1996) Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments. Appl Environ Microbiol 62:408–414PubMedGoogle Scholar
- Ishii A, Sato T, Wachi M, Nagai K, Kato C (2004) Effects of high hydrostatic pressure on bacterial cytoskeleton FtsZ polymers in vivo and in vitro. Microbiology 150:1965–1972PubMedGoogle Scholar
- Jackson BE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415:454–456PubMedGoogle Scholar
- Jacobi CA, Aßmus B, Reichenbach H, Stackebrandt E (1997) Molecular evidence for association between the Sphingobacterium-like organism “Candidatus comitans” and the myxobacterium Chondromyces crocatus. Appl Environ Microbiol 63:719–723PubMedGoogle Scholar
- Jaenicke R (1988) Molecular mechanisms of adaptation of bacteria to extreme environments. Forum Microbiol 11:435–440Google Scholar
- Jannasch HW (1967a) Enrichment of aquatic bacteria in continuous culture. Arch Mikrobiol 59:165–173PubMedGoogle Scholar
- Jannasch HW (1967b) Growth of marine bacteria at limiting concentrations of organic carbon in seawater. Limnol Oceanogr 12:264–271Google Scholar
- Jannasch HW, Mateles RI (1974) Experimental bacterial ecology studied in continuous culture. Adv Microb Physiol 11:165–212Google Scholar
- Jannasch HW, Taylor CD (1984) Deep-sea microbiology. Annu Rev Microbiol 38:487–514PubMedGoogle Scholar
- Jannasch HW, Wirsen CO, Taylor CD (1976) Undecompressed microbial populations from the deep sea. Appl Environ Microbiol 32:360–367PubMedGoogle Scholar
- Jannasch HW, Wirsen CO, Doherty KW (1996) A pressurized chemostat for the study of marine barophilic and oligotrophic bacteria. Appl Environ Microbiol 62:1593–1596PubMedGoogle Scholar
- Janssen PH, Schuhmann A, Mörschel E, Rainey FA (1997) Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial decent isolated by dilution culture from anoxic rice paddy soil. Appl Environ Microbiol 63:1382–1388PubMedGoogle Scholar
- Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68:2391–2396PubMedGoogle Scholar
- Jaspers E, Nauhaus K, Cypionka H, Overmann J (2001) Multitude and temporal variability of ecological niches as indicated by the diversity of cultivated bacterioplankton. FEMS Microbiol Ecol 36:153–164PubMedGoogle Scholar
- Jensen PR, Williams PG, Oh DC, Zeigler L, Fennical W (2007) Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 73:1146–1152PubMedGoogle Scholar
- Jetten MSM, Strous M, van de Pas-Schoonen KT, Schalk J, van Dongen UGJM, van de Graaf AA, Logemann S, Muyzer G, van Loosdrecht MCM, Kuenen JG (1998) The anaerobic oxidation of ammonium. FEMS Microbiol Rev 22:421–437PubMedGoogle Scholar
- Jones AK (1982) The interaction of algae and bacteria. In: Bull AT, Slater JH (eds) Microbial interactions and communities. Academic, London, pp 189–247Google Scholar
- Jones SL, Drouin P, Wilkinson BJ, Morse PD (2002) Correlation of long-range membrane order with temperature-dependent growth characteristics of parent and a cold-sensitive, branched-chain-fatty-acid-deficient mutant of Listeria monocytogenes. Arch Microbiol 177:217–222PubMedGoogle Scholar
- Jørgensen BB (1982) Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. Philos Trans R Soc Lond B Biol Sci 298:543–561PubMedGoogle Scholar
- Jost JL, Drake JF, Fredrickson AG, Tsuchiya HM (1973) Interactions of Tetrahymena pyriformis, Escherichia coli, Azotobacter vinelandii and glucose in a minimal medium. J Bacteriol 113:834–840PubMedGoogle Scholar
- Jung L, Jost R, Stoll E, Zuber H (1974) Metabolic differences in Bacillus stearothermophilus grown at 55°C and 37°C. Arch Microbiol 95:125–138Google Scholar
- Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557PubMedGoogle Scholar
- Kaeberlein T, Lewis K, Epstein SS (2002) Isolating the “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129PubMedGoogle Scholar
- Kalmbach S, Manz W, Szewyk U (1997) Isolation of new bacterial species from drinking water biofilms and proof of their in situ dominance with highly specific 16S rRNA probes. Appl Environ Microbiol 63:4164–4170PubMedGoogle Scholar
- Kämpfer P, Rainey FA, Andersson MA, Nurmiaho Lassila EL, Ulrych U, Busse HJ, Weiss N, Mikkola R, Salkinoja-Salonen M (2000) Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae. Int J Syst Evol Microbiol 50:355–363PubMedGoogle Scholar
- Kämpfer P, Buczolits S, Albrecht A, Busse H-J, Stackebrandt E (2003) Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov. Int J Syst Evol Microbiol 53:893–896PubMedGoogle Scholar
- Kane MD, Poulsen LK, Stahl DA (1993) Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide probes designed from environmentally derived 16S rRNA sequences. Appl Environ Microbiol 59:682–686PubMedGoogle Scholar
- Kaneda T (1991) Iso-fatty and anteiso-fatty acids in bacteria-biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302PubMedGoogle Scholar
- Kaprelyants AS, Kell DB (1993) Dormancy in stationary-phase cultures of Micrococcus luteus—flow cytometric analysis of starvation and resuscitation. Appl Environ Microbiol 59:3187–3196PubMedGoogle Scholar
- Kaprelyants AS, Mukamolova GV, Kell DB (1994) Estimation of dormant Micrococcus luteus cells by penicillin lysis and by resuscitation in cell free spent culture medium at high dilution. FEMS Microbiol Lett 115:347–352Google Scholar
- Kaprelyants AS, Mukamolova GV, Davey HM, Kell DB (1996) Quantitative analysis of the physiological heterogeneity within starved cultures of Micrococcus luteus by flow cytometry and cell sorting. Appl Environ Microbiol 62:1311–1316PubMedGoogle Scholar
- Karl DM, Bird DF, Björkman K, Houlihan T, Shackelford R, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2147PubMedGoogle Scholar
- Karner M, Fuhrman JA (1997) Determination of active bacterioplankton: a comparison of universal 16S rRNA probes, autoradiography, and nucleoid staining. Appl Environ Microbiol 63:1208–1213PubMedGoogle Scholar
- Kato Y, Sakala RM, Hayashidani H, Kiuchi A, Kaneuchi C, Ogawa M (2000) Lactobacillus algidus sp. nov., a psychrophilic lactic acid bacterium isolated from vacuum-packaged refrigerated beef. Int J Syst Evol Microbiol 50:1143–1149PubMedGoogle Scholar
- Kawato M, Shinobu R (1959) On Streptomyces herbaricolor nov. sp.; supplement: a simple technique for the microscopical observation. Mem Osaka Univ Lib Arts Educ 8:114Google Scholar
- Keith SM, Herbert RA (1985) The application of compound bi-directional flow diffusion chemostats to the study of microbial interactions. FEMS Microbiol Ecol 31:239–248Google Scholar
- King GM (1984) Utilization of hydrogen, acetate, and “noncompetitive” substrates by methanogenic bacteria in marine sediments. Geomicrobiol J 3:275–306Google Scholar
- King D, Nedwell DB (1984) Changes in the nitrate-reducing community of an anaerobic saltmarsh sediment in response to seasonal selection by temperature. J Gen Microbiol 130:2935–2941Google Scholar
- Kjaergaard L, Jørgensen BB (1979) Redox potential as a state variable in fermentation systems. Biotechnol Bioeng Symp 9:85–94Google Scholar
- Kjelleberg S, Humphrey BA, Marshall KC (1982) Effect of interfaces on small, starved bacteria. Appl Environ Microbiol 43:1166–1172PubMedGoogle Scholar
- Kjelleberg S, Flardh KBG, Nystrom T, Moriarty DJW (1993) Growth limitation and starvation in bacteria. In: Ford TE (ed) Aquatic microbiology: an ecological approach. Blackwell, Oxford, pp 298–320Google Scholar
- Kluyver AJ, Donker HJL (1926) Unity in biochemistry. Chem Zelle Gewebe 13:134–190Google Scholar
- Knoblauch C, Jørgensen BB (1999) Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments. Environ Microbiol 1:457–467PubMedGoogle Scholar
- Knoblauch C, Jørgensen BB, Harder J (1999) Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in arctic marine sediments. Appl Environ Microbiol 65:4230–4233PubMedGoogle Scholar
- Koch IH, Gich F, Dunfield PF, Overmann J (2008) Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., two novel acidobacteria isolated from alpine and forest soils. Int J Syst Evol Bacteriol 58:1114–1122Google Scholar
- Kogure K, Simidu U, Taga N (1979) A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol 25:415–420PubMedGoogle Scholar
- Kole MM, Draper I, Gerson DF (1988) Protease production by Bacillus subtilis in oxygen controlled, glucose fed-batch fermentations. Appl Microbiol Biotechnol 28:404–408Google Scholar
- Kolenbrander PE, London J (1993) Adhere today, here tomorrow: oral bacterial adherence. J Bacteriol 175:3247–3252PubMedGoogle Scholar
- Kolter R, Siegele DA, Tormo A (1993) The stationary phase of the bacterial life cycle. Annu Rev Microbiol 47:855–874PubMedGoogle Scholar
- Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–645PubMedGoogle Scholar
- Krembs C, Juhl AR, Long RA, Azam F (1998) Nanoscale patchiness of bacteria in lake water studied with the spatial information preservation method. Limnol Oceanogr 43:307–314Google Scholar
- Kristjansson JR, Schönheit P, Thauer RK (1982) Different Km values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate. Arch Microbiol 131:278–282Google Scholar
- Krulwich TA, Guffanti AA (1983) Physiology of acidophilic and alkalophilic bacteria. Adv Microb Physiol 24:173–214PubMedGoogle Scholar
- Krulwich TA, Guffanti AA (1989) Alkalophilic bacteria. Annu Rev Microbiol 43:435–463PubMedGoogle Scholar
- Kuenen JG, Gottschal JC (1982) Competition among chemolithotrophs and methylotrophs and their interactions with heterotrophic bacteria. In: Bull AT, Slater JH (eds) Microbial interactions and communities, vol 1. Academic, London, pp 153–187Google Scholar
- Kuenen JG, Harder W (1982) Microbial competition in continuous culture. In: Burns RG, Slater JH (eds) Experimental microbial ecology. Blackwell, Oxford, pp 342–367Google Scholar
- Kuenen JG, Robertson LA (1984) Competition among chemolithotrophic bacteria under aerobic and anaerobic conditions. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. ASM Press, Washington, DC, pp 306–313Google Scholar
- Kuenen JG, Robertson LA, van Gemerden H (1985) Microbial interactions among aerobic and anaerobic sulfur-oxidizing bacteria. Adv Microbiol Ecol 8:1–59Google Scholar
- Kushner DJ (1978) Life in high salt and solute concentrations: halophilic bacteria. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 318–368Google Scholar
- Kuske CR, Barns SM, Busch JD (1997) Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographical regions. Appl Environ Microbiol 63:3614–3621PubMedGoogle Scholar
- Kuznetsov SI, Dubinina GA, Laptev NA (1979) Biology of oligotrophic bacteria. Annu Rev Microbiol 33:377–387PubMedGoogle Scholar
- Laanbroek HJ, Veldkamp H (1982) Microbial interactions in sediment communities. Philos Trans R Soc Lond B Biol Sci 297:533–550PubMedGoogle Scholar
- Laanbroek HJ, Smit AJ, Klein Nulend G, Veldkamp H (1979) Competition for l-glutamate between specialized and versatile Clostridium species. Arch Microbiol 120:61–66PubMedGoogle Scholar
- Laanbroek HJ, Geerlings HJ, Peynenburg AACM, Siesling J (1983) Competition for l-lactate between Desulfovibrio, Veillonella, and Acetobacterium species isolated from anaerobic intertidal sediments. Microb Ecol 9:341–354Google Scholar
- Laanbroek HJ, Geerlings HJ, Sijtsma L, Veldkamp H (1984) Competition for sulfate and ethanol among Desulfobacter, Desulfobulbus, and Desulfovibrio species isolated from intertidal sediments. Appl Environ Microbiol 47:329–334PubMedGoogle Scholar
- Lange W (1971) Enhancement of algal growth in cyanophyta-bacteria systems by carbonaceous compounds. Can J Microbiol 17:303–314PubMedGoogle Scholar
- Lange R, Hengge-Aronis R (1991) Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5:49–59PubMedGoogle Scholar
- Langworthy TA (1978) Microbial life in extreme pH values. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, New York, pp 279–317Google Scholar
- Lapierre L, Undeland P, Cox LJ (1992) Lithium chloride-sodium propionate agar for the enumeration of bifidobacteria in fermented dairy products. J Dairy Sci 75:1192–1196PubMedGoogle Scholar
- Larsen H (1986) Halophilic and halotolerant microorganisms—an overview and historical perspective. FEMS Microbiol Rev 39:3–7Google Scholar
- Law AT, Button DK (1977) Multiple-carbon-source-limited growth kinetics of a marine coryneform bacterium. J Bacteriol 129:115–123PubMedGoogle Scholar
- Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 Plus CO2 by Spirochetes from Termite Guts. Science 283:686–689PubMedGoogle Scholar
- Lee IH, Fredrickson AG, Tsuchiya HM (1976) Dynamics of mixed cultures of Lactobacillus plantarum and Propionibacterium shermanii. Biotechnol Bioeng 18:513–526PubMedGoogle Scholar
- Lee N, Nielsen PH, Andrasen KH, Juretschko S, Nielsen JL, Schleifer K-H, Wagner M (1999) Combination of fluorescent in situ hybridization and microautoradiography—a new tool for structure: function analyses in microbial ecology. Appl Environ Microbiol 65:1289–1297PubMedGoogle Scholar
- Lee KC-Y, Dunfield PF, Morgan XC, Crowe MA, Houghton KM, Vyssotski M, Ryan JLJ, Lagutin K, McDonald IR, Stott MB (2011) Chthonomonas calidirosea gen. nov., sp. nov., an aerobic, pigmented, thermophilic micro-organism of a novel bacterial class, Chthonomonadetes classis nov., of the newly described phylum Armatimonadetes originally designated candidate division OP10. Int J Syst Evol Microbiol 61:2482–2490PubMedGoogle Scholar
- Leedle JAZ, Hespell RB (1980) Differential carbohydrate media and anaerobic replica plating technique in delineating carbohydrate utilizing subgroups in rumen bacterial populations. Appl Environ Microbiol 39:709–719PubMedGoogle Scholar
- Legan JD, Owens JD (1988) Bacterial competition for methylamine: computer simulation of a three-strain continuous culture supplied continuously or alternatively with two nutrients. FEMS Microbiol Ecol 53:307–314Google Scholar
- Legan JD, Owens JD, Chilvers GA (1987) Competition between specialist and generalist methylotrophic bacteria for an intermittent supply of methylamine. J Gen Microbiol 133:1061–1073Google Scholar
- Lengeler JW, Drews G, Schlegel HG (1999) Biology of the prokaryotes. Thieme, New YorkGoogle Scholar
- Li L, Kato C, Nogi Y, Horikoshi K (1998) Distribution of the pressure-regulated operons in deep-sea bacteria. FEMS Microbiol Lett 159:159–166PubMedGoogle Scholar
- Licht TR, Tolker-Nielsen T, Holmstrøm K, Krogfelt KA, Molin S (1999) Inhibition of Escherichia coli precursor-16S rRNA processing by mouse intestinal contents. Environ Microbiol 1:23–32PubMedGoogle Scholar
- Liesack W, Janssen PH, Rainey FA, Ward-Rainey NL, Stackebrandt E (1997) Microbial diversity in soil: the need for a combined approach using molecular and cultivation techniques. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, New York, pp 375–439Google Scholar
- Lilburn TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JR, Breznak JA (2001) Nitrogen fixation by symbiotic and free-living spirochetes. Science 292:2495–2498PubMedGoogle Scholar
- Lins U, Farina M (1999) Organization of cells in magnetotactic multicellular aggregates. Microbiol Res 154:9–13Google Scholar
- Little B, Gerchakov S, Udey L (1987) A method for sterilization of natural seawater. J Microbiol Methods 7:193–200Google Scholar
- Loewen PC, Hengge-Aronis R (1994) The role of the sigma factor σ6 (Kat F) in bacterial global regulation. Annu Rev Microbiol 48:53–80PubMedGoogle Scholar
- Loewen PC, Hu B, Stutinsky J, Sparling R (1998) Regulation in the rpoS regulon of Escherichia coli. Can J Microbiol 44:707–717PubMedGoogle Scholar
- Long RA, Azam F (2001) Antagonistic interactions among marine pelagic bacteria. Appl Environ Microbiol 67:4975–4983PubMedGoogle Scholar
- Lonhienne T, Gerday C, Feller G (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543:1–10PubMedGoogle Scholar
- Loomis WD, Durst RW (1992) Chemistry and biology of boron. Biofactors 3:229–239PubMedGoogle Scholar
- Loveland-Curtze J, Sheridan PP, Gutshall KR, Brenchley JE (1999) Biochemical and phylogenetic analyses of psychrophilic isolates belonging to the Arthrobacter subgroup and description of Arthrobacter psychrolactophilus, sp. nov. Arch Microbiol 171:355–363PubMedGoogle Scholar
- Lovitt RW, Wimpenny JWT (1981) The gradostat: a bidirectional compound chemostat and its application in microbiological research. J Gen Microbiol 127:261–268PubMedGoogle Scholar
- Lovley DR, Blunt-Harris EL (1999) Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction. Appl Environ Microbiol 65:4252–4254PubMedGoogle Scholar
- Lovley DR, Dwyer DF, Klug MJ (1982) Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. Appl Environ Microbiol 43:1373–1379PubMedGoogle Scholar
- Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996a) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448Google Scholar
- Lovley DR, Woodward JC, Chapelle FH (1996b) Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms. Appl Environ Microbiol 62:288–291PubMedGoogle Scholar
- Lovley DR, Fraga JL, Coates JD, Blunt-Harris EL (1999) Humics as an electron donor for anaerobic respiration. Environ Microbiol 1:89–98PubMedGoogle Scholar
- Ludwig W, Bauer SH, Bauer H, Held I, Kirchhof G, Schulze R, Huber I, Spring S, Hartmann A, Schleifer K-H (1997) Detection and in situ identification of representatives of a widely distributed bacterial phylum. FEMS Microbiol Lett 153:181–190PubMedGoogle Scholar
- Lum KT, Meers PD (1989) Boric acid converts urine into an effective bacteriostatic transport medium. J Infect 18:51–58PubMedGoogle Scholar
- MacDonald AG (1984) The effects of pressure on the molecular structure and physiological functions of cell membranes. Philos Trans R Soc Lond B Biol Sci 304:47–68PubMedGoogle Scholar
- Macy JM, Snellen JE, Hungate RE (1972) Use of syringe methods for anaerobiosis. Am J Clin Nutr 25:1318–1323PubMedGoogle Scholar
- Madigan MT (1998) Isolation and characterization of psychrophilic purple bacteria from Antarctica. In: Peschek GA, Löffelhardt W, Schmetterer G (eds) The phototrophic prokaryotes. Kluwer/Plenum, New York, pp 699–706Google Scholar
- Madigan MT, Martinko JM, Parker J (2000a) Biology of microorganisms. Prentice-Hall International, Upper Saddle RiverGoogle Scholar
- Madigan MT, Jung DO, Woese CR, Achenbach LA (2000b) Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat. Arch Microbiol 173:269–277PubMedGoogle Scholar
- Malone AS, Shellhammer TH, Courtney PD (2002) Effects of high pressure on the viability, morphology, lysis and cell wall hydrolase activity of Lactococcus lactis subsp. cremoris. Appl Environ Microbiol 68:4357–4363PubMedGoogle Scholar
- Mannisto MK, Schumann P, Rainey FA, Kampfer P, Tsitko I, Tiirola MA, Salkinoja-Salonen MS (2000) Subtercola boreus gen. nov., sp. nov., and Subtercola frigoramans sp. nov., two new psychrophilic actinobacteria isolated from boreal groundwater. Int J Syst Evol Microbiol 50:1731–1739PubMedGoogle Scholar
- Margesin R, Spröer C, Zhang DC, Busse HJ (2011) Polaromonas glacialis sp. nov. and Polaromonas cryoconiti sp. nov., two novel bacteria from alpine glacier cryoconite. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.037556-0Google Scholar
- Margesin R, Zhang DC, Busse HJ (2012) Sphingomonas alpina sp. nov., a psychrophilic bacterium isolated from alpine soil. Int J Syst Evol Microbiol 62:1558–1563Google Scholar
- Margulis L (1981) Symbiosis in cell evolution. Freeman, San FranciscoGoogle Scholar
- Marquis RE (1976) High pressure microbial physiology. Adv Microb Physiol 14:159–239PubMedGoogle Scholar
- Marquis RE, Matsumura P (1978) Microbial life under pressure. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 105–158Google Scholar
- Marschall E, Jogler M, Henssge U, Overmann J (2010) Large scale distribution and activity patterns of an extremely low-light adapted population of green sulfur bacteria in the Black Sea. Environ Microbiol 12:1348–1362PubMedGoogle Scholar
- Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976–979PubMedGoogle Scholar
- Martin GA, Hempfling WP (1976) A method for the regulation of microbial population density during continuous culture at high growth rates. Arch Microbiol 107:41–47PubMedGoogle Scholar
- Martin SE, Flowers RS, Ordal ZJ (1976) Catalase: its effect on microbial enumeration. Appl Environ Microbiol 32:731–734PubMedGoogle Scholar
- Maruyama A, Honda D, Yamamoto H, Kitamura K, Higashihara T (2000) Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. Int J Syst Evol Microbiol 50:835–846PubMedGoogle Scholar
- Mason CA, Egli T (1993) Dynamics of microbial growth in the decelerating and stationary phase of batch culture. In: Kjelleberg S (ed) Starvation in bacteria. Plenum, New York, pp 81–98Google Scholar
- Matin A (1981) Regulation of enzyme synthesis as studied in continuous culture. In: Calcott PH (ed) Continuous culture of cells, vol 2. CRC Press, Boca Raton, pp 69–97Google Scholar
- Matin A (1990) Keeping a neutral cytoplasm: the bioenergetics of obligate acidophiles. FEMS Microbiol Rev 75:307–318Google Scholar
- Matin A, Veldkamp H (1978) Physiological basis of the selective advantage of a Spirillum sp. in a carbon-limited environment. J Gen Microbiol 105:187–197PubMedGoogle Scholar
- Mazur P (1980) Limits to life at low temperatures and at reduced water contents and water activities. Orig Life 10:137–159PubMedGoogle Scholar
- McDougald D, Kjelleberg S (1999) New perspectives on the viable but nonculturable response. Biologia 54:617–623Google Scholar
- McInerney MJ, Bryant MD, Pfennig N (1979) Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122:129–135Google Scholar
- McInerney MJ, Bryant MP, Hespell RB, Costerton JW (1981) Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41:1029–1039PubMedGoogle Scholar
- Meers JL (1973) Growth of bacteria in mixed cultures CRC. Crit Rev Microbiol 2:139–184Google Scholar
- Megee RD 3rd, Drake JF, Fredrickson AG, Tsuchiya HM (1972) Studies in intermicrobial symbiosis. Saccharomyces cerevisiae and Lactobacillus casei. Can J Microbiol 18:1733–1742PubMedGoogle Scholar
- Meldrum FC, Heywood BR, Mann S, Frankel RB, Bazylinski DA (1993) Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium. Proc R Soc Lond B Biol Sci 251:231–236Google Scholar
- Meyer JS, Tsuchiya HM, Fredrickson AG (1975) Dynamics of mixed populations having complementary metabolism. Biotechnol Bioeng 17:1065–1081Google Scholar
- Michels PAM, Michels JPJ, Boonstra J, Konings WN (1979) Generation of an electrochemical proton gradient in bacteria by the excretion of metabolic end-products. FEMS Microbiol Lett 5:357–364Google Scholar
- Mikx FJM, van der Hoeven JS (1975) Symbiosis of Streptococcus mutans and Veillonella alcalescens in mixed continuous cultures. Arch Oral Biol 20:407–410PubMedGoogle Scholar
- Miller TL, Wolin MJ (1974) A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987PubMedGoogle Scholar
- Miura Y, Tanaka H, Okazaki M (1980) Stability analysis of commensal and mutual relations with competitive assimilation in continuous mixed culture. Biotechnol Bioeng 22:929–948Google Scholar
- Miyamoto-Shinohara Y, Sukenobe J, Imaizumi T, Nakahara T (2006) Survival curves for microbial species stored by freeze-drying. Cryobiology 52:27–32PubMedGoogle Scholar
- Mizunoe Y, Wai SN, Takade A, Yoshida S (1999) Restoration of culturability of starvation-stressed and low-temperature-stressed Escherichia coli O157 cells using H2O2-degrading compounds. Arch Microbiol 172:63–67PubMedGoogle Scholar
- Moench TT, Zeikus JG (1983) An improved preparation method for a titanium (III) media reductant. J Microbiol Methods 1:199–202Google Scholar
- Moissl C, Rudolph C, Huber R (2002) Natural communities of novel archaea and bacteria with a string-of-pearls-like morphology: molecular analysis of the bacterial partners. Appl Environ Microbiol 68:933–937PubMedGoogle Scholar
- Monod J (1942) Recherches sur la croissance des cultures bacteriennes. Hermann, ParisGoogle Scholar
- Monod J (1950) La technique de culture continue: théorie et applications. Ann Inst Pasteur 79:390–410Google Scholar
- Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167PubMedGoogle Scholar
- Morita RY (1982) Starvation—survival of heterotrophs in the marine environment. Adv Microbiol Ecol 6:171–198Google Scholar
- Morita RY (1986) Pressure as an extreme environment. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. Academic, London, pp 171–185Google Scholar
- Morotomi M, Nagai F, Watanabe Y (2011) Parasutterella secunda sp. nov., isolated from human faeces and proposal of Sutterellaceae fam. nov. in the order Burkholderiales. Int J Syst Evol Microbiol 61:637–643PubMedGoogle Scholar
- Mossel DAA, Veldman A, Eelderink I (1980) Comparison of the effects of liquid medium repair and the incorporation of catalase in Macconkey type media on the recovery of Enterobacteriaceae sublethally stressed by freezing. J Appl Bacteriol 49:405–419PubMedGoogle Scholar
- Mountfort DO, Asher RA (1986) Isolation from a methanogenic ferulate degrading consortium of an anaerobe that converts methoxyl groups of aromatic acids to volatile fatty acids. Arch Microbiol 144:55–61Google Scholar
- Mountfort DO, Bryant MP (1985) Isolation and characterization of an anaerobic syntrophic benzoate degrading bacterium from sewage sludge. Arch Microbiol 133:249–256Google Scholar
- Mountfort DO, Rainey FA, Burghardt J, Kaspar HF, Stackebrandt E (1997) Clostridium vincentii sp. nov., a new anaerobic, saccharolytic, psychrophilic bacterium isolated from low-salinity pond sediment of the McMurdo ice shelf, Antarctica. Arch Microbiol 167:54–60PubMedGoogle Scholar
- Mountfort DO, Rainey FA, Burghardt J, Kaspar HF, Stackebrandt E (1998) Psychromonas antarcticus gen. nov., sp. nov., a new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo ice shelf, Antarctica. Arch Microbiol 169:231–238PubMedGoogle Scholar
- Mukamolova GV, Kaprelyants AS, Young DI, Young M, Kell DB (1998) A bacterial cytokine. Proc Natl Acad Sci USA 95:8916–8921PubMedGoogle Scholar
- Müller RH, Babel W (1996) Measurement of growth at very low rates (μ ≧ 0), an approach to study the energy requirement for the survival of Alcaligenes eutrophus JMP 134. Appl Environ Microbiol 62:147–151PubMedGoogle Scholar
- Munro PM, Flatau GN, Clément RL, Gauthier MJ (1995) Influence of the RpoS (KatF) sigma factor on maintenance of viability and culturability of Escherichia coli and Salmonella typhimurium in seawater. Appl Environ Microbiol 61:1853–1858PubMedGoogle Scholar
- Mur LR, Gons HJ, van Liere L (1977) Some experiments on the competition between green algae and blue-green bacteria in light-limited environments. FEMS Microbiol Lett 1:335–338Google Scholar
- Murray DR (1989) Biology of food radiation. Wiley, ChichesterGoogle Scholar
- Myers J, Clark LB (1944) Culture conditions and the development of the photosynthetic mechanism. II: an apparatus for the continuous culture of Chlorella. J Gen Physiol 28:103–112PubMedGoogle Scholar
- Nakamura I, Ogimoto K, Izumu H (1995) ATP-dependent calcium release from binding site in Streptococcus bovis: bound versus free pools. J Gen Appl Microbiol 41:389–398Google Scholar
- Nakasone K, Ikegami A, Kato C, Usami R, Horikoshi K (1998) Mechanisms of gene expression controlled by pressure in deep-sea microorganisms. Extremophiles 2:149–154PubMedGoogle Scholar
- National Center for Biotechnology Information (2012) http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_growth.html
- Nedwell DB (1984) The input and mineralization of organic carbon in anaerobic aquatic sediments. Adv Microbiol Ecol 7:93–131Google Scholar
- Nedwell DB, Rutter M (1994) Influence of temperature on growth rate and competition between two psychrotolerant Antarctic bacteria: low temperature diminishes affinity for substrate uptake. Appl Environ Microbiol 60:1984–1992PubMedGoogle Scholar
- Neidhardt FC, Umbarger HE (1996) Chemical composition of Escherichia coli. In: Neidhardt FC (ed) Escherichia coli and Salmonella, 2nd edn. ASM Press, Washington, DC, pp 13–16Google Scholar
- Nelson DC, Jørgensen BB, Revsbech NP (1986) Growth pattern and yield of a chemoautotrophic Beggiatoa sp. in oxygen-sulfide microgradients. Appl Environ Microbiol 52:225–233PubMedGoogle Scholar
- Neuhard J, Kelln RA (1996) Biosynthesis and conversions of pyrimidines. In: Neidhardt FC (ed) Escherichia coli and Salmonella, 2nd edn. ASM Press, Washington, DC, pp 580–599Google Scholar
- Nichols DS, Greenhill AR, Shadbolt CT, Ross T, McMeekin TA (1999) Physicochemical parameters for growth of the sea ice bacteria Glaciecola punicea ACAM 611T and Gelidibacter sp. strain IC158. Appl Environ Microbiol 65:3757–3760PubMedGoogle Scholar
- Nichols D, Lewis K, Orjala J, Mo S, Ortenberg R, O’Connor P, Zhao C, Vouros P, Kaeberlein T, Epstein SS (2008) Short peptide induces an “uncultivable” microorganism to grow in vitro. Appl Environ Microbiol 74:4889–4897PubMedGoogle Scholar
- Niehaus F, Hantke K, Unden G (1991) Iron content and FNR-dependent gene regulation in Escherichia coli. FEMS Microbiol Lett 84:319–324Google Scholar
- Nielsen PH, de Muro MA, Nielsen JL (2000) Studies on the in situ physiology of Thiothrix spp. present in activated sludge. Environ Microbiol 2:389–398PubMedGoogle Scholar
- Nogales B, Guerrero R, Esteve I (1997) A heterotrophic bacterium inhibits growth of several species of the genus Chlorobium. Arch Microbiol 167:396–399Google Scholar
- Nogales B, Moore ERB, Abraham WR, Timmis KN (1999) Identification of the metabolically active members of a bacterial community in a polychlorinated biphenyl-polluted moorland soil. Environ Microbiol 1:199–212PubMedGoogle Scholar
- Norland S, Fagerbakke KM, Heldal M (1995) Light element analysis of individual bacteria by X-ray microanalysis. Appl Environ Microbiol 61:1357–1362PubMedGoogle Scholar
- Norris JR, Ribbons DW (1970) Methods in microbiology, vol 3. Academic, New York, pp 1–506Google Scholar
- Notley L, Ferenci T (1996) Induction of RpoS-dependent functions in glucose-limited continuous culture: what levels of nutrient limitation induces the stationary phase of Escherichia coli. J Bacteriol 178:1465–1468PubMedGoogle Scholar
- Novick A, Szilard L (1950) Description of the chemostat. Science 112:715–716PubMedGoogle Scholar
- Nozhevnikova AN, Simankova MV, Parshina SN, Kotsyurbenko OR (2001) Temperature characteristics of methanogenic archaea and acetogenic bacteria isolated from cold environments. Water Sci Technol 44:41–48PubMedGoogle Scholar
- Nurmikko V (1956) Biochemical factors affecting symbiosis among bacteria. Experientia 12:245–249PubMedGoogle Scholar
- Oerther DB, Pernthaler J, Schramm A, Amann R, Raskin L (2000) Monitoring precursor 16S rRNAs of Acinetobacter spp. in activated sludge wastewater treatment systems. Appl Environ Microbiol 66:2154–2165PubMedGoogle Scholar
- Ohmura N, Matsumoto N, Sasaki K, Saiki H (2002) Electrochemical regeneration of Fe(III) to support growth on anaerobic iron respiration. Appl Environ Microbiol 68:405–407PubMedGoogle Scholar
- Okada T, Ueyama K, Niya S, Kanazawa H, Futai M, Tsuchiya T (1981) Role of inducer exclusion in preferential utilization of glucose over melibiose in diauxic growth of Escherichia coli. J Bacteriol 146:1030–1037PubMedGoogle Scholar
- Oliver JD (1995) The viable but non-culturable state in the human pathogen Vibrio vulnificus. FEMS Microbiol Lett 133:203–208PubMedGoogle Scholar
- Olsen RA, Bakken LR (1987) Viability of soil bacteria: optimization of plate-counting technique and comparison between total counts and plate counts within different size groups. Microb Ecol 13:59–74Google Scholar
- Oltmann LF, Schoenmaker GS, Reijnders WNM, Stouthamer AH (1978) Modification of the pH auxostat culture method for the mass cultivation of bacteria. Biotechnol Bioeng 20:921–925PubMedGoogle Scholar
- Orcutt KM, Rasmussen U, Webb EA, Waterbury JB, Gundersen K, Bergman B (2002) Characterization of Trichodesmium spp. by genetic techniques. Appl Environ Microbiol 68:2236–2245PubMedGoogle Scholar
- Oremland RS (1988) Biogeochemistry of methanogenic bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 641–706Google Scholar
- Oremland RS, Hoeft SE, Santini JM, Bano N, Hollibough RA (2002) Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68:4795–4802PubMedGoogle Scholar
- Oren A (1986) Intracellular salt concentrations of the halophilic eubacteria Haloaerobium praevalens and Halobacteroides halobius. Can J Microbiol 32:4–9Google Scholar
- Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348PubMedGoogle Scholar
- Ostrowski M, Cavicchioloi R, Blaauw M, Gottschal JC (2001) Specific growth rate plays a critical role in hydrogen peroxide resistance of the marine oligotrophic ultramicrobacterium Sphingomonas alaskensis strain RB2256. Appl Environ Microbiol 67:1292–1299PubMedGoogle Scholar
- Ott JA, Novak R, Schiemer F, Hentschel U, Nebelsiek M, Polz M (1991) Tackling the sulfide gradient: a novel strategy involving marine nematodes and chemoautotrophic ectosymbionts. Mar Ecol 12:261–279Google Scholar
- Otto R, Hugenholtz J, Konings WN, Veldkamp H (1980) Increase of molar growth yield of Streptococcus cremoris for lactose as a consequence of lactate consumption by Pseudomonas stutzeri in mixed culture. FEMS Microbiol Lett 9:85–88Google Scholar
- Ouverney CC, Fuhrman JA (1999) Combined microautoradiography—16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl Environ Microbiol 65:1746–1752PubMedGoogle Scholar
- Ouverney CC, Fuhrman JA (2000) Marine planktonic Archaea take up amino acids. Appl Environ Microbiol 66:4829–4833PubMedGoogle Scholar
- Overmann J (2002a) Phototrophic consortia: a tight cooperation between non-related eubacteria. In: Seckbach J (ed) Symbiosis. Mechanisms and model systems. Kluwer, Dordrecht, pp 239–255Google Scholar
- Overmann J (2002b) Principles of enrichment, isolation, cultivation, and preservation of bacteria. In: Dworkin M et al (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn (latest update release 3.11, September 2002). Springer, New York. http://ep.springer-ny.com:6336/contents/ or http://141.150.157.117:8080/prokPROD/index.htm
- Overmann J (2005) Chemotaxis and behavioural physiology of not-yet-cultivated microbes, vol 397, Methods in enzymology. Elsevier, San Diego, pp 133–147, Chap II.8Google Scholar
- Overmann J, Pfennig N (1989) Pelodictyon phaeoclathratiforme sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies. Arch Microbiol 152:401–406Google Scholar
- Overmann J, Pfennig N (1992) Continuous chemotrophic growth and respiration of Chromatiaceae species at low oxygen concentrations. Arch Microbiol 158:59–67Google Scholar
- Overmann J, Schubert K (2002) Phototrophic consortia: model systems for symbiotic interrelations between prokaryotes. Arch Microbiol 177:201–208PubMedGoogle Scholar
- Overmann J, van Gemerden H (2000) Microbial interactions involving sulfur bacteria: implications for the ecology and evolution of bacterial communities. FEMS Microbiol Rev 24:591–599PubMedGoogle Scholar
- Overmann J, Lehmann S, Pfennig N (1991) Gas vesicle formation and buoyancy regulation in Pelodictyon phaeoclathratiforme (green sulfur bacteria). Arch Microbiol 157:29–37Google Scholar
- Overmann J, Beatty JT, Hall KJ (1996) Purple sulfur bacteria control the growth of aerobic heterotrophic bacterioplankton in a meromictic salt lake. Appl Environ Microbiol 62:3251–3258PubMedGoogle Scholar
- Overmann J, Tuschak C, Fröstl J, Sass H (1998) The ecological niche of the consortium “Pelochromatium roseum”. Arch Microbiol 169:120–128PubMedGoogle Scholar
- Padan E, Schuldinger S (1986) Intracellular pH regulation in bacterial cells. Methods Enzymol 125:337–352PubMedGoogle Scholar
- Paerl H (1978) Role of heterotrophic bacteria in promoting N2-fixation by Anabaena in aquatic habitats. Microb Ecol 4:215–231Google Scholar
- Paerl HW (1982) Interactions with bacteria. In: Carr NG, Whitton NG (eds) The biology of cyanobacteria. University of California Press, Los Angeles, pp 441–461Google Scholar
- Pankratov TA, Dedysh SN (2011) Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. Int J Syst Evol Microbiol 60:2951–2959Google Scholar
- Parkes RJ, Senior E (1988) Multistage chemostats and other models for studying anoxic ecosystems. In: Wimpenny JWT (ed) Handbook of laboratory model systems for microbial ecosystems, vol 1. CRC Press, Boca Raton, pp 51–71Google Scholar
- Pastan I, Perlman R (1969) Repression of β-galactosidase synthesis by glucose in phosphotransferase mutants of Escherichia coli. Repression in the absence of glucose phosphorylation. J Biol Chem 244:5836–5842PubMedGoogle Scholar
- Pasteur L (1862) Mémoire sur les corpuscules qui existent dans l’atmosphère: examen de la doctrine des génerations spontanées. Ann Chém Phys 64:5–110Google Scholar
- Pernthaler J, Posch T, Simek K, Vrba J, Pernthaler A, Glöckner FO, Nübel U, Psenner R, Amann R (2001) Predator-specific enrichment of Actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture. Appl Environ Microbiol 67:2145–2155PubMedGoogle Scholar
- Pfennig N (1980) Syntrophic mixed cultures and symbiotic consortia with phototrophic bacteria: a review. In: Gottschalk G, Pfennig N, Werner HH (eds) Anaerobes and anaerobic infections. Fischer, Stuttgart, pp 127–131Google Scholar
- Pfennig N (1993) Reflections of a microbiologist, or how to learn from the microbes. Annu Rev Microbiol 47:1–29PubMedGoogle Scholar
- Pfennig N, Trüper HG (1989) Anoxygenic phototrophic bacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 1635–1709Google Scholar
- Pietzsch O (1967) Ein Nährboden zur Schwärmhemmung und gleichzeitigen Unterscheidung der Proteuskeime von Salmonellen. Fleischwirtschaft 1:31–32Google Scholar
- Pinhassi J, Berman T (2003) Differential growth response of colony-forming α- and γ-Proteobacteria in dilution culture and nutrient addition experiments from Lake Kinneret (Israel), the Eastern Mediterranean Sea, and the Gulf of Eilat. Appl Environ Microbiol 69:199–211PubMedGoogle Scholar
- Pinhassi J, Zweifel UL, Hagström Å (1997) Dominant marine bacterioplankton species found among colony-forming bacteria. Appl Environ Microbiol 63:3359–3366PubMedGoogle Scholar
- Pirt SJ (1974) The theory of fed batch culture with reference to the penicillin fermentation. J Appl Chem Biotechnol 24:415–4224Google Scholar
- Pirt SJ (1975) Principles of microbe and cell cultivation. Blackwell, OxfordGoogle Scholar
- Ploug H, Grossart HP, Azam F, Jørgensen BB (1999) Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: implications for the carbon cycle in the ocean. Mar Ecol Prog Ser 179:1–11Google Scholar
- Poindexter JS (1992) Dimorphic protshecate bacteria: the genera Caulobacter, Asticcacaulis, Hyphomicrobium, Pedomicrobium, Hyphomonas, and Thiodendron. In: Balows A, Trüper HG, Dworkin M, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 2176–2196Google Scholar
- Poindexter JS, Leadbetter ER (1986) Enrichment cultures in bacterial ecology. In: Poindexter JS, Leadbetter ER (eds) Bacteria in nature, vol 2. Plenum, New York, pp 229–260Google Scholar
- Porter JR (1976) Antony van Leeuwenhoek: tercentenary of is discovery of bacteria. Microbiol Rev 40:260–269Google Scholar
- Pörtner R, Märkl H (1998) Dialysis cultures. Appl Microbiol Biotechnol 50:403–414PubMedGoogle Scholar
- Postgate JR, Hunter JR (1963) Acceleration of bacterial death by growth substrates. Nature 198:273–280PubMedGoogle Scholar
- Postgate JR, Hunter JR (1964) Accelerated death of Aerobacter aerogenes starved in the presence of growth-limiting substrates. J Gen Microbiol 34:459–473PubMedGoogle Scholar
- Powell EO (1958) Criteria for the growth of contaminants and mutants in continuous culture. J Gen Microbiol 18:259–268PubMedGoogle Scholar
- Pratuangdejkul J, Dharmsthiti S (2000) Purification and characterization of lipase from psychrophilic Acinetobacter calcoaceticus LP009. Microbiol Res 155:95–100PubMedGoogle Scholar
- Price B (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci USA 97:1247–1251PubMedGoogle Scholar
- Pringault O, de Wit R, Caumette P (1996) A benthic gradient chamber for culturing phototrophic sulfur bacteria on reconstituted sediments. FEMS Microbiol Ecol 20:237–250Google Scholar
- Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196PubMedGoogle Scholar
- Puskas A, Greenberg EP, Kaplan S, Schaefer AL (1997) A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J Bacteriol 179:7530–7537PubMedGoogle Scholar
- Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649PubMedGoogle Scholar
- Rappe MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633PubMedGoogle Scholar
- Ratkowsky PA, Lowry RR, McMeekin TA, Stokes AN, Chandler RE (1983) Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154:1222–1226PubMedGoogle Scholar
- Reddy GS, Aggarwal RK, Matsumoto GI, Shivaji S (2000) Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 50:1553–1561PubMedGoogle Scholar
- Reed RH, Walsby AE (1985) Changes in turgor pressure in response to increases in external NaCl concentration in the gas-vacuolate cyanobacterium Microcystis sp. Arch Microbiol 143:290–296Google Scholar
- Reichenbach H (1984) Myxobacteria: a most peculiar group of social prokaryotes. In: Rosenberg E (ed) Myxobacteria: development and cell interactions. Springer, New York, pp 1–50Google Scholar
- Reisch CR, Stoudemayer MJ, Varaljay VA, Amster IJ, Moran MA, Whitman WB (2011) Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine bacteria. Nature 12:208–211Google Scholar
- Renesto P, Crapoulet N, Ogata H, La Scola B, Vestris G, Claveri J-M, Raoult D (2003) Genome-based design of a cell-free culture medium for Tropheryma whipplei. Lancet 362:447–449PubMedGoogle Scholar
- Reusse U, Meyer A (1972) Der “Pril-Mannit-Agar” in der Salmonellen-Diagnostik. Zbl Bakteriol I Abt Orig 219:555–557Google Scholar
- Revsbech NP, Jørgensen BB (1986) Microelectrodes: their use in microbial ecology. Adv Microbiol Ecol 9:293–352Google Scholar
- Rhee GY (1972) Competition between an algae and an aquatic bacterium for phosphate. Limnol Oceanogr 17:505–514Google Scholar
- Ricica J, Dobersky P (1981) Complex systems. In: Calcott PH (ed) Continuous cultures of cells, vol 1. CRC Press, Boca Raton, pp 63–96Google Scholar
- Robinson JA, Tiedje JM (1984) Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch Microbiol 137:26–32Google Scholar
- Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290PubMedGoogle Scholar
- Roeßler M, Müller V (1998) Quantitative and physiological analyses of chloride dependence of growth of Halobacillus halophilus. Appl Environ Microbiol 64:3813–3817PubMedGoogle Scholar
- Roeßler M, Müller V (2002) Chloride, a new environmental signal molecule involved in gene regulation in a moderately halophilic bacterium, Halobacillus halophilus. J Bacteriol 184:6207–6215PubMedGoogle Scholar
- Rose AH, Evison LM (1965) Studies on the biochemical basis of the minimum temperature for growth of certain psychrophilic and mesophilic microorganisms. J Gen Microbiol 38:131–141PubMedGoogle Scholar
- Rosenberg E, Keller KH, Dworkin M (1977) Cell-density dependent growth of Myxococcus xanthus on casein. J Bacteriol 129:770–777PubMedGoogle Scholar
- Roslev P, Iversen N (1999) Radioactive fingerprinting of microorganisms that oxidize atmospheric methane in different soils. Appl Environ Microbiol 65:4064–4070PubMedGoogle Scholar
- Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379PubMedGoogle Scholar
- Rouf MA (1964) Spectrochemical analysis of inorganic elements in bacteria. J Bacteriol 88:1545–1549PubMedGoogle Scholar
- Ruger HJ, Fritze D, Sproer C (2000) New psychrophilic and psychrotolerant Bacillus marinus strains from tropical and polar deep-sea sediments and emended description of the species. Int J Syst Evol Microbiol 50:1305–1313PubMedGoogle Scholar
- Russel NJ (1984) Mechanisms of thermal adaptation in bacteria: blueprints for survival TIBS. Trends Biol Sci 9:108–112Google Scholar
- Russel NJ (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4:83–90Google Scholar
- Russel NJ, Fukunaga N (1990) A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol Rev 74:171–182Google Scholar
- Russell EJ (1923) The micro-organisms of the soil. Longmans, Green, LondonGoogle Scholar
- Sambanis A, Fredrickson AG (1987) Long-term studies of ciliate-bacterial interactions: use of a chemostat fed with bacteria grown in a separate chemostat. J Gen Microbiol 133:1619–1630Google Scholar
- Sánchez O, van Gemerden H, Mas J (1996) Description of a redox-controlled sulfidostat fro the growth of sulfide-oxidizing phototrophs. Appl Environ Microbiol 62:3640–3645PubMedGoogle Scholar
- Sandaa R-A, Torsvik V, Enger Ø, Daae FL, Castberg T, Hahn D (1999) Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiol Ecol 30:237–251PubMedGoogle Scholar
- Sass A, Sass H, Coolen MJL, Cypionka H, Overmann J (2001) Microbial communities in the chemocline of a hypersaline deep-sea basin (Urania Basin, Mediterranean Sea). Appl Environ Microbiol 67:5392–5402PubMedGoogle Scholar
- Schauer NL, Brown DP, Ferry JG (1982) Kinetics of formate metabolism in Methanobacterium formicicum and Methanospirillum hungatei. Appl Environ Microbiol 44:549–554PubMedGoogle Scholar
- Schink B (1991) Syntrophism among prokaryotes. In: Balows A, Trüper HG, Dworkin M, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 276–299Google Scholar
- Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280PubMedGoogle Scholar
- Schink B, Friedrich M (2000) Phosphite oxidation by sulphate reduction. Nature 406:37PubMedGoogle Scholar
- Schink B, Thiemann V, Laue H, Friedrich MW (2002) Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate. Arch Microbiol 177:381–391PubMedGoogle Scholar
- Schlegel HG, Jannasch HW (1967) Enrichment cultures. Annu Rev Microbiol 21:49–70PubMedGoogle Scholar
- Schlesner H (1986) Pirellula marina sp. nov., a budding peptidoglycanless bacterium from brackish water. Syst Appl Microbiol 8:177–180Google Scholar
- Schlesner H (1994) The development of media suitable for the microorganisms morphologically resembling Planctomyces spp., Pirellula spp., and other Planctomycetales from various aquatic habitats using dilute media. Syst Appl Microbiol 17:135–145Google Scholar
- Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol Mol Biol Rev 68:686–691PubMedGoogle Scholar
- Schmid M, Schmitz-Esser S, Jetten M, Wagner M (2001) 16S–23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environ Microbiol 3:450–459PubMedGoogle Scholar
- Schmidt GB, Rosano CL, Hurwitz C (1971) Evidence for a magnesium pump in Bacillus cereus T. J Bacteriol 105:150–155PubMedGoogle Scholar
- Schober A, Günther R, Schwienhorst A, Döring M, Lindemann BF (1993) Accurate high-speed liquid handling of very small biological samples. Biotechniques 15:324–329PubMedGoogle Scholar
- Scholten JCM, Conrad R (2000) Energetics of syntrophic propionate oxidation in defined batch and chemostat cultures. Appl Environ Microbiol 66:2934–2942PubMedGoogle Scholar
- Schopfer P, Brennicke A (1999) Pflanzenphysiologie, 5th edn. Springer, New YorkGoogle Scholar
- Schramm A, de Beer D, van den Heuvel JC, Ottengraf S, Amann R (1999) Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. Appl Environ Microbiol 65:3690–3696PubMedGoogle Scholar
- Schulten HR, Plage B, Schnitzer M (1991) A chemical structure for humic substances. Naturwissenschaften 78:31–312Google Scholar
- Schulz E, Lüdemann H-D, Jaenicke R (1976) High-pressure equilibrium studies on the dissociation-association of E. coli ribosomes. FEBS Lett 64:40–43PubMedGoogle Scholar
- Schumann P, Zhang DC, Redzic M, Margesin R (2012) Alpinimonas psychrophila gen. nov., sp. nov., a novel actinobacterium of the family Microbacteriaceae isolated from alpine lacier cryoconite. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.036160-0Google Scholar
- Schut F, de Vries EJ, Gottschal JC, Robertson BR, Harder W, Prins RA, Button DK (1993) Isolation of typical marine bacteria by dilution culture: growth, maintenance, and characteristics of isolates under laboratory conditions. Appl Environ Microbiol 59:2150–2160PubMedGoogle Scholar
- Schut F, Jansen M, Pedro Gomes TM, Gottschal JC, Harder W, Prins RA (1995) Substrate uptake and utilization by a marine ultramicrobacterium. Microbiology 141:351–361PubMedGoogle Scholar
- Schut F, Prins RA, Gottschal JC (1997) Oligotrophy and pelagic marine bacteria: facts and fiction. Aquat Microb Ecol 12:177–202Google Scholar
- Scott DT, McKnight DM, Blunt-Harris EL, Kolesar SE, Lovley DR (1998) Quinone moieties act as electron acceptors in the reduction of humic substances by humic-reducing microorganisms. Environ Sci Technol 32:2984–2989Google Scholar
- Seitz AP, Nielsen TH, Overmann J (1993) Physiology of purple sulfur bacteria forming macroscopic aggregates in Great Sippewissett Salt Marsh, Massachusetts. FEMS Microbiol Ecol 12:225–236Google Scholar
- Sekiguchi Y, Takahashi H, Kamagata Y, Ohashi A, Harada H (2001) In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I. Appl Environ Microbiol 67:5740–5749PubMedGoogle Scholar
- Shilo M (1984) Bdellovibrio as a predator. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. ASM Press, Washington, DC, pp 334–339Google Scholar
- Shindler DB, Wydro RM, Kushner DJ (1977) Cell-bound cations in the moderately halophilic bacterium Vibrio costicola. J Bacteriol 130:698–703PubMedGoogle Scholar
- Shockey WL, Dehority BA (1989) Comparison of two methods for enumeration of anaerobe numbers on forages and evaluation of ethylene oxide treatment for forage sterilization. Appl Environ Microbiol 55:1766–1768PubMedGoogle Scholar
- Siebert J, Hirsch P (1988) Characterization of 15 selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo-Dry Valleys (South-Victoria Land). Polar Biol 9:37–44PubMedGoogle Scholar
- Simankova MV, Kotsyurbenko OR, Stackebrandt E, Kostrikina NA, Lysenko AM, Osipov GA, Nozhevnikova AN (2000) Acetobacterium tundrae sp. nov., a new psychrophilic acetogenic bacterium from tundra soil. Arch Microbiol 174:440–447PubMedGoogle Scholar
- Simek K, Vrba J, Pernthaler J, Posch T, Hartman P, Nedoma J, Psenner R (1997) Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. Appl Environ Microbiol 63:587–595PubMedGoogle Scholar
- Sitnikov DM, Schineller JB, Baldwin TO (1996) Control of cell division in Escherichia coli: regulation of transcription of ftsQA involves both rpoS and SdiA-mediated autoinduction. Proc Natl Acad Sci USA 93:336–341PubMedGoogle Scholar
- Skerman VDB (1968) A new type of micromanipulator and microforge. J Gen Microbiol 54:287–297PubMedGoogle Scholar
- Skulachev VP (1987) Bacterial sodium transport: bioenergetic functions of sodium ions. In: Rosen BP, Silver S (eds) Ion transport in prokaryotes. Academic, New York, pp 131–164Google Scholar
- Slater JH, Bull AT (1978) Interactions between microbial populations. In: Bull AT, Meadow PM (eds) Companion to microbiology. Longman, London, pp 181–206Google Scholar
- Slonczewski J, Foster JW (1996) pH-regulated genes and survival at extreme pH. In: Neidhardt FC (ed) Escherichia coli and Salmonella, 2nd edn. ASM Press, Washington, DC, pp 1539–1549Google Scholar
- Sly LI, Arunpairojana V (1987) Isolation of manganese-oxidizing Pedomicrobium cultures from water by micromanipulation. J Microbiol Methods 6:177–182Google Scholar
- Soendergaard M, Riemann B, Jörgensen NOG (1985) Extracellular organic carbon (EOC) released by phytoplankton and bacterial production. Oikos 45:323–332Google Scholar
- Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120PubMedGoogle Scholar
- Somero GN (1992) Adaptations to high hydrostatic pressure. Annu Rev Physiol 54:557–577PubMedGoogle Scholar
- Spring S, Amann R, Ludwig W, Schleifer K-H, van Gemerden H, Petersen N (1993) Dominating role of an unusual magnetotactic bacterium in the micraerobic zone of a freshwater sediment. Appl Environ Microbiol 59:2397–2403PubMedGoogle Scholar
- Spring S, Schulze R, Overmann J, Schleifer K-H (2000) Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes: molecular and cultivation studies. FEMS Microbiol Rev 24:573–590PubMedGoogle Scholar
- Stal LJ, van Gemerden H, Krumbein WE (1985) Structure and development of a benthic marine microbial mat. FEMS Microbiol Ecol 31:111–125Google Scholar
- Staley JT, Fuerst JA, Giovannoni SJ, Schlesner H (1992) The order Planctomycetales and the genera Planctomyces, Pirellula, gemmata and Isosphaera. In: Balows A, Dworkin M, Harder W, Schleifer K-H, Trüper HG (eds) The prokaryotes. Springer, New York, pp 3710–3731Google Scholar
- Stanton TB, Canale-Parola E (1979) Enumeration and selective isolation of rumen spirochetes. Appl Environ Microbiol 38:965–973PubMedGoogle Scholar
- Stetter KO (2001) Genus III: Pyrolobus. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1. Springer, New York, pp 186–197Google Scholar
- Stevens TO (1995) Optimization of media for enumeration and isolation of aerobic heterotrophic bacteria from the deep terrestrial subsurface. J Microbiol Methods 21:293–303Google Scholar
- Stewart CS, Bryant MP (1988) The rumen bacteria. In: Hobson PN (ed) The rumen microbial ecosystem. Elsevier Applied Science, London, pp 21–75Google Scholar
- Stolp H, Starr MP (1963) Bdellovibrio bacteriovorus gen. et sp. n., a predatory ectoparasitic and bacteriolytic microorganism. Antonie Van Leeuwenhoek 29:217–248PubMedGoogle Scholar
- Stolp H, Starr MP (1965) Bacteriolysis. Annu Rev Microbiol 19:79–104PubMedGoogle Scholar
- Stringfellow WT, Aitken MD (1994) Comparative physiology of phenanthrene degradation by two dissimilar pseudomonads isolated from a creosote-contaminated soil. Can J Microbiol 40:432–438PubMedGoogle Scholar
- Sugio T, Kuwano H, Negishi A, Maeda T, Takeuchi F, Kamimura K (2001) Mechanism of growth inhibition by tungsten in Acidithiobacillus ferrooxidans. Biosci Biotechnol Biochem 65:555–562PubMedGoogle Scholar
- Suh DH, Becker TC, Sands JA, Montenecourt BS (1988) Effects of temperature on xylanase secretion by Trichoderma reesei. Biotechnol Bioeng 32:821–825PubMedGoogle Scholar
- Suzuki K, Sasaki J, Uramoto M, Nakase T, Komagata K (1997a) Cryobacterium psychrophilum gen. nov., sp. nov., nom. rev., comb. nov., an obligately psychophilic actinomycete to accommodate “Curtobacterium psychrophilum”, Inoue and Komagata 1976. Int J Syst Evol Microbiol 47:474–478Google Scholar
- Suzuki MT, Rappé MS, Haimberger ZW, Winfield H, Adair N, Ströbel J, Giovannoni SJ (1997b) Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl Environ Microbiol 63:983–989PubMedGoogle Scholar
- Sweerts JPRA, de Beer D (1989) Microelectrode measurements of nitrate gradients in the littoral and profundal sediments of a meso-eutrophic lake (Lake Vechten, The Netherlands). Appl Environ Microbiol 55:754–757PubMedGoogle Scholar
- Swift ST, Najita IY, Ohtaguchi K, Fredrickson AG (1982) Continuous culture of the ciliate Tetrahymena pyriformis on Escherichia coli. Biotechnol Bioeng 24:1953–1964PubMedGoogle Scholar
- Szewzyk U, Schink B (1989) Degradation of hydroquinone, gentisate, and benzoate by a fermenting bacterium in pure or defined mixed culture. Arch Microbiol 15:541–545Google Scholar
- Talamoto S, Yamada K, Ezura Y (1994) Producing of bacteriolytic enzymes during the growth of a marine bacterium Alteromonas sp. no. 8-R. J Gen Appl Microbiol 40:499–508Google Scholar
- Tamaki H, Sekiguchi Y, Hanada S, Nakamura K, Nomura N, Matsumara M, Kamagata Y (2005) Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl Environ Microbiol 71:2162–2169PubMedGoogle Scholar
- Tamaki H, Tanaka Y, Matsuzawa H, Muramatsu M, Meng X, Hanada S, Mori K, Kamagata Y (2011) Armatimonas rosea gen. nov., sp. nov., of a novel bacterial phylum, Armatimonadetes phyl. nov., formally called the candidate phylum OP10. Int J Syst Evol Microbiol 61:1442–1447PubMedGoogle Scholar
- Tang W-C, White JC, Alexander M (1998) Utilization of sorbed compounds by microorganisms specifically isolated for that purpose. Appl Microbiol Biotechnol 49:117–121PubMedGoogle Scholar
- Tappe W, Tomaschewski C, Rittershaus S, Groeneweg J (1996) Cultivation of nitrifying bacteria in the retentostat, a simple fermenter with internal biomass retention. FEMS Microbiol Ecol 19:47–52Google Scholar
- Tappe W, Laverman A, Bohland M, Braster M, Rittershaus S, Groeneweg J, van Versefeld HW (1999) Maintenance energy demand and starvation recovery dynamics of Nitrosomonas europaea and Nitrobacter winogradskyi cultivated in a retentostat with complete biomass retention. Appl Environ Microbiol 65:2471–2477PubMedGoogle Scholar
- Tarin JJ, Trounson AO (1993) Effect of stimulation or inhibition of lipid peroxidation on freezing-thawing of mouse embryos. Biol Reprod 49:1362–1368PubMedGoogle Scholar
- Teather RM (1982) Maintenance of laboratory strains of obligately anaerobic rumen bacteria. Appl Environ Microbiol 44:499–501PubMedGoogle Scholar
- Tempest DW (1970) The continuous culture in microbial research. Adv Microb Physiol 4:223–250Google Scholar
- Tempest DW, Neyssel OM (1978) Eco-physiological aspects of microbial growth in aerobic nutrient limited environments. Adv Microbiol Ecol 2:105–153Google Scholar
- Tempest DW, Herbert F, Phipps PJ (1967) Studies on the growth of Aerobacter aerogenes at low dilution rates in a chemostat. In: Powell EO, Evans CGT, Strange RE, Tempest DW (eds) Microbial physiology and continuous culture. HMSO, London, pp 240–254Google Scholar
- Thauer RK, Käufer B, Fuchs G (1975) The active species of “CO2” utilized by reduced ferredoxin: CO2 oxidoreductase from Clostridium pasteurianum. Eur J Biochem 27:282–290Google Scholar
- Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180PubMedGoogle Scholar
- Thiele JH, Zeikus JG (1988) Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl Environ Microbiol 54:20–29PubMedGoogle Scholar
- Thiele JH, Chartrain M, Zeikus JG (1988) Control of interspecies electron flow during anaerobic digestion: role of floc formation in syntrophic methanogenesis. Appl Environ Microbiol 54:10–19PubMedGoogle Scholar
- Thompson LA, Nedwell DB, Balba MT, Banat IM, Senior E (1983) The use of multiple vessel, open flow systems to investigate carbon flow in anaerobic microbial communities. Microb Ecol 9:189–199Google Scholar
- Tindall BJ (2007) Vacuum-drying and cryopreservation of prokaryotes. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols, vol 368, 2nd edn, Methods in molecular biology. Humana Press, Totowa, pp 73–97Google Scholar
- Tomczak MM, Hincha DK, Crowe JH, Harding MM, Haymet ADJ (2003) The effect of hydrophobic analogues of the type I winter flounder antifreeze protein on lipid bilayers. FEBS Lett 551:13–19PubMedGoogle Scholar
- Torella F, Morita RY (1981) Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater. Appl Environ Microbiol 41:518–527Google Scholar
- Trimbur DE, Gutshall KR, Prema P, Brenchley JE (1994) Characterization of a psychrotrophic Arthrobacter gene and its cold-active β-galactosidase. Appl Environ Microbiol 60:4544–4552PubMedGoogle Scholar
- Tripp HJ, Kitner JB, Schwalbach MS, Dacey JW, Wilhelm LJ, Giovannoni SJ (2008) SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452:741–744PubMedGoogle Scholar
- Trüper HG, Pfennig N (1971) Family of phototrophic green sulfur bacteria: Chlorobiaceae Copeland, the correct family name; rejection of Chlorobacterium Lauterborn; and the taxonomic situation of the consortium-forming species. Int J Syst Bacteriol 21:8–10Google Scholar
- Tuschak C, Glaeser J, Overmann J (1999) Specific detection of green sulfur bacteria by in situ hybridization with a fluorescent labeled oligonucleotide probe. Arch Microbiol 171:265–272PubMedGoogle Scholar
- Uphoff HU, Felske A, Fehr W, Wagner-Döbler I (2001) The microbial diversity in picoplankton enrichment cultures: a molecular screening of marine isolates. FEMS Microbiol Ecol 35:249–258PubMedGoogle Scholar
- Urakawa H, Kita-Tsukamoto K, Steven SE, Ohwada K, Colwell RR (1998) A proposal to transfer Vibrio marinus (Russell 1891) to a new genus Moritella gen. nov. as Moritella marina comb. nov. FEMS Microbiol Lett 165:373–378PubMedGoogle Scholar
- Urbach E, Vergin KL, Giovannoni SJ (1999) Immunochemical detection and isolation of DNA from metabolically active bacteria. Appl Environ Microbiol 65:1207–1213PubMedGoogle Scholar
- Usui K, Hiraishi T, Kawamoto J, Kurihara T, Nogi Y, Kato C, Abe F (2012) Eicosapentaenoic acid plays a role in stabilizing dynamic membrane structure in the deep-sea piezophile Shewanella violacea: a study employing high-pressure time-resolved fluorescence anisotropy measurement. Biochim Biophys Acta 1818:574–583PubMedGoogle Scholar
- Van den Ende FPL, Laverman AM, van Gemerden H (1996) Coexistence of aerobic chemotrophic and anaerobic phototrophic sulfur bacteria under oxygen limitations. FEMS Microbiol Ecol 19:141–151Google Scholar
- Van den Ende FP, Meier J, van Gemerden H (1997) Syntrophic growth of sulfate-reducing bacteria and colorless sulfur bacteria during oxygen limitation. FEMS Microbiol Ecol 23:65–80Google Scholar
- van der Meer MTJ, Schouten S, van Dongen BE, Rijpstra WIC, Fuchs G, Sinninghe Damsté JS, de Leeuw JW, Ward DM (2001) Biosynthetic controls on the 13C contents of organic components in the photoautotrophic bacterium Chloroflexus aurantiacus. J Biol Chem 276:10971–10976PubMedGoogle Scholar
- Van der Wielen PWJJ, Lipman LJA, van Knapen F, Biesterveld S (2002) Competitive exclusion of Salmonella enterica serovar enteritidis by Lactobacillus crispatus and Clostridium lactatifermentans in a sequencing fed-batch culture. Appl Environ Microbiol 68:555–559PubMedGoogle Scholar
- van Gemerden H (1974) Coexistence of organisms competing for the same substrate: an example among purple sulfur bacteria. Microb Ecol 1:104–110Google Scholar
- van Gemerden H, Mas J (1995) Ecology of phototrophic sulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic phototrophic bacteria. Kluwer, Dordrecht, pp 49–85Google Scholar
- van Gemerden H, Tughan CS, De Witz R, Herbert RA (1989) Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands. FEMS Microbiol Ecol 62:87–102Google Scholar
- Van Iterson G Jr, Den Dooren de Jong LE, Kluyver AJ (1940) Martinus Willem Beijerinck, his life and work. Martinus Nijhoff, The HagueGoogle Scholar
- Van Niel CB (1930) Contributions to marine biology. Stanford University Press, Stanford, pp 161–169Google Scholar
- Van Niel CB (1967) Prefatory chapter. The education of a microbiologist: some reflections. Annu Rev Microbiol 21:1–30Google Scholar
- Van Verseveld HW, Chesbro WR, Braster M, Stouthamer AH (1984) Eubacteria have 3 growth modes keyed to nutrient-flow—consequences for the concept of maintenance and maximal growth yield. Arch Microbiol 137:176–184PubMedGoogle Scholar
- Vancanneyt M, Schut F, Snauwaert C, Goris J, Swings J, Gottschal JC (2001) Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. Int J Syst Evol Microbiol 51:73–79PubMedGoogle Scholar
- Varon M, Shilo M (1980) Ecology of aquatic Bdellovibrios. Adv Aquat Microbiol 2:1–48Google Scholar
- Veldkamp H (1965) Enrichment cultures—history and prospects. In: Schlegel HG, Kröger E (eds) Anreicherungskultur und Mutantenauslese: zentralbl. Bakteriol. Parasitenkd. Infektionskrankh. Hygiene I. Abteilung Gustav. Fischer, Stuttgart, Supplement 1, pp 1–13Google Scholar
- Veldkamp H (1977) Ecological studies with the chemostat. Adv Microbiol Ecol 1:59–94Google Scholar
- Veldkamp H, Jannasch HW (1972) Mixed culture studies with the chemostat. J Appl Chem Biotechnol 22:105–123Google Scholar
- Veldkamp H, Kuenen JG (1973) The chemostat as a model system for ecological studies. Bull Ecol Res Commun 17:347–355Google Scholar
- Veldkamp H, van Gemerden H, Harder W, Laanbroek HJ (1984) Microbial competition. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. ASM Press, Washington, DC, pp 279–290Google Scholar
- Vester F, Ingvorsen K (1998) Improved most-probable-number method to detect sulfate-reducing bacteria with natural media and a radiotracer. Appl Environ Microbiol 64:1700–1707PubMedGoogle Scholar
- Visscher PT, Prins RA, van Gemerden H (1992a) Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiol Ecol 86:283–294Google Scholar
- Visscher PT, van den Ende FP, Schaub BEM, van Gemerden H (1992b) Competition between anoxygenic phototrophic bacteria and colorless sulfur bacteria in a microbial mat. FEMS Microbiol Ecol 101:51–58Google Scholar
- Vobis G (1992) The genus, Actinoplanes and related genera. In: Balows A, Trüper HG, Dworkin M, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 1029–1060Google Scholar
- Vogl K, Glaeser J, Pfannes KR, Wanner G, Overmann J (2006) Chlorobium chlorochromatii sp. nov., a symbiotic green sulfur bacterium isolated from the phototrophic consortium “Chlorochromatium aggregatum”. Arch Microbiol 185:363–372PubMedGoogle Scholar
- Wachenheim DE, Hespell RB (1984) Inhibitory effects of titanium (III) citrate on enumeration of bacteria from rumen contents. Appl Environ Microbiol 48:444–445PubMedGoogle Scholar
- Wagner M, Nielsen PH, Loy A, Nielsen JL, Daims H (2006) Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Curr Opin Biotechnol 17:1–9Google Scholar
- Walderhaug MO, Dosch DC, Epstein W (1987) Potassium transport in bacteria. In: Rosen BP, Silver S (eds) Ion transport in prokaryotes. Academic, New York, pp 85–130Google Scholar
- Walker GC (1996) The SOS response of Escherichia coli. In: Neidhardt FC (ed) Escherichia coli and Salmonella, vol 1. ASM Press, Washington, DC, pp 1400–1416Google Scholar
- Wang X, de Boer PAJ, Rothfield LI (1991) A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. EMBO J 10:3363–3372PubMedGoogle Scholar
- Ward DM, Bateson MM, Weller R, Ruff-Roberts AL (1992) Ribosomal RNA analysis of microorganisms as they occur in nature. Adv Microbiol Ecol 12:219–286Google Scholar
- Warthmann R, Cypionka H, Pfennig N (1992) Photoproduction of H2 from acetate by syntrophic cocultures of green sulfur bacteria and sulfur-reducing bacteria. Arch Microbiol 157:343–348Google Scholar
- Waterbury JB (1991) The cyanobacteria—isolation, purification, and identification. In: Balows A, Trüper HG, Dworkin M, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 149–196Google Scholar
- Waterbury JB, Calloway CB, Turner RD (1983) A cellulolytic nitrogen-fixing bacterium cultured from the gland of Deshayes in shipworms (Bivalvia: Terebrenidae). Science 221:1401–1403PubMedGoogle Scholar
- Watson TG (1969) Steady state operation of a continuous culture at maximum growth rate by control of carbon-dioxide production. J Gen Microbiol 59:83–89PubMedGoogle Scholar
- Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464Google Scholar
- Weimer PJ, Zeikus JG (1977) Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautotrophicum. Appl Environ Microbiol 33:289–297PubMedGoogle Scholar
- Weise W, Rheinheimer G (1978) Scanning electron microscopy and epifluorescence investigation of bacterial colonization of marine sand sediments. Microb Ecol 4:175–188Google Scholar
- Welch TJ, Farewell A, Neidhardt FC, Bartlett D (1993) Stress response of Escherichia coli to elevated hydrostatic pressure. J Bacteriol 175:7170–7177PubMedGoogle Scholar
- Westermann P, Ahring BK, Mah RA (1989) Temperature compensation in Methanosarcina barkeri by modulation of hydrogen and acetate affinity. Appl Environ Microbiol 55:1262–1266PubMedGoogle Scholar
- White RH (1984) Hydrolytic stability of biomolecules at high temperatures and its implications for life at 250°C. Nature 310:430–432PubMedGoogle Scholar
- Whitesides MD, Oliver JD (1997) Resuscitation of Vibrio vulnificus from the viable but non-culturable state. Appl Environ Microbiol 63:1002–1005PubMedGoogle Scholar
- Widdel F (1988) Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 469–585Google Scholar
- Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 3352–3378Google Scholar
- Widdel F, Kohring G-W, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III: characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294Google Scholar
- Wiegel J (1990) Temperature spans for growth: hypothesis and discussion. FEMS Microbiol Rev 75:155–170Google Scholar
- Wiegel J, Ljungdahl LG (1986) The importance of thermophilic bacteria in biotechnology CRC. Crit Rev Biotechnol 3:39–107Google Scholar
- Wilkinson TG, Topiwala HH, Hamer G (1974) Interactions in a mixed bacterial population growing on methane in continuous culture. Biotechnol Bioeng 16:41–59PubMedGoogle Scholar
- Winogradsky S (1949) Microbiologie du sol: oeuvres complèetes. Marson, ParisGoogle Scholar
- Wirsen CO, Jannasch HW (1978) Physiological and morphological observations on Thiovulum sp. J Bacteriol 136:765–774PubMedGoogle Scholar
- Wirsen CO, Molyneaux SJ (1999) A study of deep-sea natural microbial populations and barophilic pure cultures using a high-pressure chemostat. Appl Environ Microbiol 65:5314–5321PubMedGoogle Scholar
- Wirsen CO, Jannasch HW, Wakeham SG, Cannel EA (1987) Membrane lipids of a psychrophilic and barophilic deep-sea bacterium. Curr Microbiol 14:319–322Google Scholar
- Wolfe RS, Pfennig N (1977) Reduction of sulfur by Spirillum 5175 and syntrophism with Chlorobium. Appl Environ Microbiol 33:427–433PubMedGoogle Scholar
- Wolin MJ (1982) Hydrogen transfer in microbial communities. In: Bull AT, Slater JH (eds) Microbial interactions and communities, vol 1. Academic, London, pp 323–356Google Scholar
- Wolter K (1982) Bacterial incorporation of organic substances released by natural phytoplankton populations. Mar Ecol Prog Ser 7:287–295Google Scholar
- Xiao J, Luo Y, Xu J, Xie S, Xu J (2011) Modestobacter marinus sp. nov., a psychrotolerant actinobacterium from deep-sea sediment, and emended description of the genus Modestobacter. Int J Syst Evol Microbiol 61:1710–1714PubMedGoogle Scholar
- Xu HS, Roberts N, Singleton FL, Attwell RW, Grimes DJ, Colwell RR (1982) Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microbiol Ecol 8:313–323Google Scholar
- Xu M, Xin Y, Tian J, Dong K, Yu Y, Zhang J, Liu H, Zhou Y (2011) Flavobacterium sinopsychrotolerans sp. nov., isolated from a glacier. Int J Syst Evol Microbiol 61:20–24PubMedGoogle Scholar
- Yabe S, Aiba Y, Sakai Y, Hazaka M, Yokota A (2011) Thermogemmatispora onikobensis gen. nov., sp. nov. and Thermogemmatispora foliorum sp. nov., isolated from fallen leaves on geothermal soils, and description of Thermogemmatisporaceae fam. nov. and Thermogemmatisporales ord. nov. within the class Ktedonobacteria. Int J Syst Evol Microbiol 61:903–910PubMedGoogle Scholar
- Yamamoto Y, Fukui K, Koujin N, Ohya H, Kimura K, Kamio Y (2004) Regulation of the intracellular free iron pool by Dpr provides oxygen tolerance to Streptococcus mutans. J Bacteriol 186:5997–6002PubMedGoogle Scholar
- Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1227PubMedGoogle Scholar
- Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer K-H, Ludwig W, Glöckner FO, Rosselo-Mora R (2008) The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250PubMedGoogle Scholar
- Yasumoto-Hirose M, Nishijima M, Ngirchechol MK, Kanoh K, Shizuri Y, Miki W (2006) Isolation of marine bacteria by in situ culture on media-supplemented polyurethane foam. Mar Biotechnol 8:227–237PubMedGoogle Scholar
- Yayanos AA (1978) Recovery and maintenance of live amphipods at a pressure of 580 bars from an ocean depth of 5700 meters. Science 200:1056–1059PubMedGoogle Scholar
- Yayanos AA (1986) Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc Natl Acad Sci USA 83:9542–9546PubMedGoogle Scholar
- Yoshida F, Yamane T, Nakamoto K (1973) Fed-batch hydrocarbon fermentation with colloidal emulsion feed. Biotechnol Bioeng 15:257–270Google Scholar
- Yu Y, Li H-R, Zeng Y-Y (2011) Colwellia chukchiensis sp. nov., a psychrotolerant bacterium isolated from the Arctic Ocean. Int J Syst Evol Microbiol 61:850–853PubMedGoogle Scholar
- Yumoto I, Yamazaki K, Hishinuma M, Nodasaka Y, Nakajima K, Inoue N, Kawasaki K (2001) Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51:349–355PubMedGoogle Scholar
- Yumoto I, Nakamura A, Iwata H, Kusumoto K, Nodasaka Y, Matsuyama H (2002) Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol 52:85–90PubMedGoogle Scholar
- Zehnder AJB, Stumm W (1988) Geochemistry and biogeochemistry of anaerobic habitats. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 1–38Google Scholar
- Zehnder AJB, Wuhrman K (1976) Titanium (III) citrate as a non-toxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 194:1165–1166PubMedGoogle Scholar
- Deutsche Sammlung für Mikroorganismen und Zellkulturen (2012) Bacterial nomenclature up-to-date. http://www.dsmz.de/bacterial-diversity/bacterial-nomenclature-up-to-date.html
- Zengler K, Richnow HH, Rosselló-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269PubMedGoogle Scholar
- Zengler K, Toledo G, Rappe M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci USA 99:15681–15686PubMedGoogle Scholar
- Zhang DC, Rezic M, Schinner F, Margesin R (2011a) Glaciimonas immobilis gen. nov., sp. nov., a member of the family Oxalobacteraceae isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 61:2186–2190PubMedGoogle Scholar
- Zhang DC, Busse H-J, Liu H-C, Zhou Y-G, Schinner F, Margesin R (2011b) Hymenobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 61:859–863PubMedGoogle Scholar
- Zhang DC, Redzic M, Liu HC, Zhou YG, Schinner F, Margesin R (2012) Devosia psychrophila sp. nov. and Devosia glacialis sp. nov., two novel bacteria from alpine glacier cryoconite. Int J Syst Evol Microbiol 62:710–715Google Scholar
- Zhou Z, Jiang F, Wang S, Peng F, Dai J, Li W, Fang C (2012) Pedobacter arcticus sp. nov., a facultative psychrophile isolated from Arctic soil and emended descriptions of the genus Pedobacter, P. heparinus, P. daechungensis, P. terricola, P. glucosidilyticus and P. lentus. Int J Syst Evol Microbiol 62:1963–1969Google Scholar
- Zinder SH, Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch Microbiol 138:263–272Google Scholar
- ZoBell CE (1941) Studies on marine bacteria. J Mar Res 4:42–75Google Scholar
- Zobell CE, Johnson FH (1949) The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J Bacteriol 57:179–189PubMedGoogle Scholar