Advertisement

Root and Stem Nodule Bacteria of Legumes

Reference work entry

Abstract

Rhizobia are nitrogen-fixing bacteria that form root and sometimes stem nodules on leguminous plants and belong to many genera of alpha- and beta-proteobacteria. Formation of nitrogen-fixing nodules is dependent upon the exchange of a series of molecular signals between rhizobia and their host legumes. Within the nodules, rhizobia convert atmospheric dinitrogen gas into ammonia, and this fixed nitrogen is subsequently assimilated by the host plant resulting in improved plant growth and productively, even under N-limiting environmental conditions. While this has obvious importance for agricultural productivity, it also influences the global N cycle, is ecologically beneficial, and reduces the use of our limited fossil fuel resources. Because of the practical benefits of nodulation and nitrogen fixation, the rhizobia have been extensively studied, particularly with respect to the genetic basis for their symbiotic interactions, their host specificity, and nitrogen-fixation potential. In this chapter, we review the accumulated studies about the ecology, genetics, and application of root and stem bacteria of legumes and their importance to plant growth and productivity.

Keywords

Stem Nodule Bacteria Somasegaran Fast-growing Rhizobia Kondorosi Fredii 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Albareda M, Rodríguez-Navarro DN, Camacho M, Temprano FJ (2008) Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 40:2771–2779Google Scholar
  2. Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D, Carrère S, Cruveiller S, Dossat C, Lajus A, Marchetti M, Poinsot V, Rouy Z, Servin B, Saad M, Schenowitz C, Barbe V, Batut J, Médigue C, Masson-Boivin C (2008) Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 18:1472–1483Google Scholar
  3. Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006PubMedGoogle Scholar
  4. An DS, Im WT, Yang HC, Lee ST (2006) Shinella granuli gen. nov., sp. nov., and proposal of the reclassification of Zoogloea ramigera ATCC 19623 as Shinella zoogloeoides sp. nov. Int J Syst Evol Microbiol 56:443–444PubMedGoogle Scholar
  5. Anyango B, Wilson KJ, Beynon JL, Giller KE (1995) Diversity of rhizobia nodulating Phaseolus vulgaris L in two Kenyan soils with contrasting pHs. Appl Environ Microbiol 61:4016–4021PubMedGoogle Scholar
  6. Bachem CW, Banfalvi Z, Kondorosi E, Schell J, Kondorosi A (1986) Identification of host range determinants in the Rhizobium species MPIK3030. Mol Gen Genet 203:42–48Google Scholar
  7. Banfalvi Z, Kondorosi A (1989) Production of root hair deformation factors by Rhizobium meliloti nodulation genes in Escherichia coli: HsnD (nodH) is involved in plant host-specific modification of the nodABC factor. J Mol Biol 13:1–12Google Scholar
  8. Banfalvi Z, Nieuwkoop A, Schell M, Best L, Stacey G (1988) Regulation of nod expression in Bradyrhizobium japonicum. Mol Gen Genet 214:420–424PubMedGoogle Scholar
  9. Barber LE (1979) Use of selective agents for recovery of Rhizobium meliloti. Soil Sci Soc Am J 43:1145–1148Google Scholar
  10. Bassam BJ, Rolfe BG, Djordjevic MA (1986) Macroptilium atropurpureum (siratro) host specificity genes are linked to a nodD-like gene in the broad host range Rhizobium strain NGR234. Mol Gen Genet 203:49–57Google Scholar
  11. Becker A, Puhler A (1998) Production of exopolysaccharides. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae. Kluwer, Dordrecht, pp 97–118Google Scholar
  12. Berge O, Lodhi A, Brandelet G, Santaella C, Roncato M, Christen R, Heulin T, Achouak W (2009) Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int J Syst Evol Microbiol 59:367–372PubMedGoogle Scholar
  13. Beringer JE, Beynon JL, Buchanan-Wollaston AV, Johnston AWB (1978) Transfer of the drug-resistance transposon Tn5 to Rhizobium. Nature 276:633–634Google Scholar
  14. Bladergroen MR, Spaink HP (1998) Genes and signal molecules involved in the Rhizobia-leguminosae symbiosis. Curr Opin Plant Biol 1:353–359PubMedGoogle Scholar
  15. Bohlool BB, Schmidt EL (1973) Persistence and competition aspects of Rhizobium japonicum observed in soil by immunofluorescence microscopy. Soil Sci Soc Am Proc 37:561–564Google Scholar
  16. Boivin C, Ndoye I, Molouba F, Delajudie P, Dupuy N, Dreyfus B (1997) Stem nodulation in legumes–diversity, mechanisms, and unusual characteristics. Crit Rev Plant Sci 16:1–30Google Scholar
  17. Bonaldi K, Gourion B, Fardoux J, Hannibal L, Cartieaux F, Boursot M, Vallenet D, Chaintreuil C, Prin Y, Nouwen N, Giraud E (2010) Large-scale transposon mutagenesis of photosynthetic Bradyrhizobium sp. strain ORS278 reveals new genetic loci putatively important for Nod-independent symbiosis with Aeschynomene indica. Mol Plant Microbe Interact 23:760–770PubMedGoogle Scholar
  18. Boogerd FC, van Rossum D (1997) Nodulation of groundnut by Bradyrhizobium – a simple infection process by crack entry. FEMS Microbiol Rev 21:5–27Google Scholar
  19. Bottomley PJ (1992) Ecology of Bradyrhizobium and Rhizobium. In: Stacey G, Burris R, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, p 943Google Scholar
  20. Bottomley PJ, Cheng HH, Strain SR (1994) Genetic structure and symbiotic characteristics of a Bradyrhizobium population recovered from a pasture soil. Appl Environ Microbiol 60:1754–1761PubMedGoogle Scholar
  21. Boundy-Mills KL, Kosslak RM, Tully RE, Pueppke SG, Lohrke S, Sadowsky MJ (1994) Induction of the Rhizobium fredii nod box-independent nodulation gene nolJ requires a functional nodD1 gene. Mol Plant Microbe Interact 7:305–308Google Scholar
  22. Breedveld MW, Miller KJ (1998) Cell-surface γ-glycans. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae. Kluwer, Dordrecht, pp 81–96Google Scholar
  23. Brewin NJ, Beringer JE, Johnston AWB (1980) Plasmid mediated transfer of host range specificity between two strains of Rhizobium leguminosarum. J Gen Microbiol 120:413–420Google Scholar
  24. Brockwell J, Bottomley PJ (1995) Recent advances in inoculant technology and prospects for the future. Soil Biol Biochem 27:683–697Google Scholar
  25. Brockwell J, Gault RR, Zorin M, Roberts MJ (1982) Effects of environmental variables on the competition between inoculum strains and naturalized populations of Rhizobium trifolii for nodulation of Trifolium subterraneum L. and on rhizobia persistence in the soil. Aust J Agric Res 33:803–815Google Scholar
  26. Brockwell J, Pilka A, Holliday RA (1991) Soil pH is a major determinant of the numbers of naturally-occurring Rhizobium meliloti in non-cultivated soils in central New South Wales, Australia. Aust J Exp Agric 31:211–220Google Scholar
  27. Brom S, Girard L, Tun-Garrido C, Garcia SA de los, Bustos P, González V, Romero D (2004) Transfer of the symbiotic plasmid of Rhizobium etli CFN42 requires cointegration with p42a, which may be mediated by site-specific recombination. J Bacteriol 186:7538–7548PubMedGoogle Scholar
  28. Bromfield ESP, Barran LR, Wheatcroft R (1995) Relative genetic structure of a population of Rhizobium meliloti isolated directly from soil and from nodules of alfalfa (Medicago sativa) and sweet clover (Melilotus alba). Mol Ecol 4:183–188Google Scholar
  29. Broughton WJ, Heycke N, Meyer ZA, Pankhurst CE (1984) Plasmid linked nif and nod genes in fast-growing rhizobia that nodulate Glycine max, Psophocarpus tetragonolobus and Vigna unguiculata. Proc Natl Acad Sci USA 81:3093–3097PubMedGoogle Scholar
  30. Brunel B, Cleyet-Marel JC, Normand P, Bardin R (1988) Stability of Bradyrhizobium japonicum inoculants after introduction into soil. Appl Environ Microbiol 54:2636–2642PubMedGoogle Scholar
  31. Brunel B, Rome S, Ziani R, Cleyet-Marel JC (1996) Comparison of/nucleotide diversity and symbiotic diversity of Rhizobium meliloti populations from annual Medicago species. FEMS Microbiol Ecol 19:71–82Google Scholar
  32. Burdmann S, Sarig S, Kigel J, Okon Y (1996) Field inoculation of common bean (Phaseolus vulgaris L.) and chickpea (Cicer arietinum L.) with Azospirillum brasilense strain CD. Symbiosis 212:41–48Google Scholar
  33. Burton JC (1967) Rhizobium culture and use. In: Peppler HJ (ed) Microbial technology. Van Nostrand-Reinhold, New York, pp 1–33Google Scholar
  34. Burton JC (1980) Modern concepts in legume inoculation. In: Graham PH, Harris SC (eds) BNF technology for tropical agriculture. CIAT, Colombia, pp 105–114Google Scholar
  35. Bushby HVA (1990) The role of bacterial surface charge in the ecology of root nodule bacteria: An hypothesis. Soil Biol Biochem 22:1–9Google Scholar
  36. Caballero-Mellado J, Martinez-Romero E (1999) Soil fertilization limits the genetic diversity of Rhizobium in bean nodules. Symbiosis 26:111–121Google Scholar
  37. Caetano-Annoles G (1997) Molecular dissection and improvement of the nodule symbiosis in legumes. Field Crops Res 53:47–68Google Scholar
  38. Carlson RW, Kalembasa S, Turowski D, Pachori P, Noel KD (1987) Characterization of the lipopolysaccharide from a Rhizobium phaseoli mutant that is defective in infection thread development. J Bacteriol 169:4923–4928PubMedGoogle Scholar
  39. Carlson RW, Sanjuan J, Bhat UR, Glushka J, Spaink HP, Wijfjes AHM, van Brussel AAN, Stokkermans TJW, Peters NK, Stacey G (1993) The structures and biological activities of the lipo-oligosaccharide nodulation signals produced by type I and II strains of Bradyrhizobium japonicum. J Biol Chem 268:18372–18381PubMedGoogle Scholar
  40. Carlson RW, Price NPJ, Stacey G (1994) The biosynthesis of rhizobial lipo-oligosaccharide nodulation signal molecules. Mol Plant-Microbe Interact 7:684–695PubMedGoogle Scholar
  41. Casida LE Jr (1982) Ensifer adhaerens gen. nov., sp. nov.: A bacterial predator of bacteria in soil. Int J Syst Bacteriol 32:339–345Google Scholar
  42. Chabot R, Antoun H, Kloepper JW, Beauchamp CJ (1996) Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosarum biovar phaseoli. Appl Environ Microbiol 62:2767–2772PubMedGoogle Scholar
  43. Chatel DL, Greenwood RM, Parker CA (1968) Saprophytic competence as an important characteristic in the selection of Rhizobium for inoculation. In: Proceedings of the Ninth International Congress of Soil Science Transactions, Vol. 2 (pp. 65–73). Adelaide.Google Scholar
  44. Chaverra MH, Graham PH (1992) Cultivar variation in traits affecting early nodulation of common bean. Crop Sci 32:1432–1436Google Scholar
  45. Chen WX, Yan GH, Li JL (1988) Numeric taxonomic study of the fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–397Google Scholar
  46. Chen WX, Li GS, Qi YL, Wang ET, Yuan HL, Li JL (1991) Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int J Syst Bacteriol 41:275–280Google Scholar
  47. Chen W, Wang E, Wang S, Li Y, Chen X, Li Y (1995) Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People's Republic of China. Int J Syst Bacteriol 45:153–159PubMedGoogle Scholar
  48. Chen WX, Tan ZY, Gao JL, Li Y, Wang ET (1997) Rhizobium hainanense sp. nov., isolated from tropical legumes. Int J Syst Bacteriol 47:870–873PubMedGoogle Scholar
  49. Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735PubMedGoogle Scholar
  50. Chen WM, Moulin L, Bontemps C, Vandamme P, Bena G, Boivin-Masson C (2003) Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. J Bacteriol 185:7266–7272PubMedGoogle Scholar
  51. Chen WM, de Faria SM, Straliotto R, Pitard RM, Simoes-Araujo JL, Chou JH, Chou YJ, Barrios E, Prescott AR, Elliot GN, Sprent JI, Young JPW, James EK (2005) Proof that Burkholderia forms effective symbioses with legumes: A study of novel Mimosa-nodulating strains from South America. Appl Environ Microbiol 71:7461–7471PubMedGoogle Scholar
  52. Chen WM, James EK, Coenye T, Chou JH, Barrios E, de Faria SM, Elliott GN, Sheu SY, Sprent JI, Vandamme P (2006) Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 56:1847–1851PubMedGoogle Scholar
  53. Chen WM, de Faria SM, James EK, Elliott GN, Lin KY, Chou JH, Sheu SY, Cnockaert M, Sprent JI, Vandamme P (2007) Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 57:1055–1059PubMedGoogle Scholar
  54. Chen WM, de Faria SM, Chou JH, James EK, Elliott GN, Sprent JI, Bontemps C, Young JPW, Vandamme P (2008) Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia. Int J Syst Evol Microbiol 58:2174–2179PubMedGoogle Scholar
  55. Chen WM, Zhu WF, Bontemps C, Young JP, Wei GH (2010) Mesorhizobium alhagi sp. nov., isolated from root nodules of the wild legume Alhagi sparsifolia. Int J Syst Evol Microbiol 60:958–962PubMedGoogle Scholar
  56. Chen WM, Zhu WF, Bontemps C, Young JPW, Wei GH (2011) Mesorhizobium camelthorni sp. nov., isolated from Alhagi sparsifolia. Int J Syst Evol Microbiol 61:574–579PubMedGoogle Scholar
  57. Collins SL, Knapp AK, Briggs JM, Blair JM, Steinauer EM (1998) Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280:745–747PubMedGoogle Scholar
  58. Cregan PB, Keyser HH (1986) Host restriction of nodulation by Bradyrhizobium japonicum strain USDA 123 in soybean. Crop Sci 26:911–916Google Scholar
  59. Cubo MT, Buendia-Claveria AA, Beringer JE, Ruiz-Sainz JE (1988) Melanin production by Rhizobium strains. Appl Environ Microbiol 54:1812–1817PubMedGoogle Scholar
  60. Cytryn EJ, Sangurdekar DP, Streeter JG, Franck WL, Chang W-S, Stacey G, Emerich DW, Joshi T, Xu D, Sadowsk MJ (2007) Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress. J Bacteriol 189:6751–6762PubMedGoogle Scholar
  61. Dangeard PA (1926) Recherches sur les tubercles radicaux des Le ́gumineuses. Botaniste (Paris) 16:1–275Google Scholar
  62. Date RA (1982) Collection, isolation, characterization and conservation of Rhizobium. In: Vincent JM (ed) Nitrogen fixation in legumes. Academic, Sydney, pp 95–109Google Scholar
  63. Date RA (1991) Nodulation success and persistence of recommended inoculum strains for subtropical and tropical forage legumes in Northern Australia. Soil Biol Biochem 23:533–541Google Scholar
  64. Date RA (1997) The contribution of R and D on root nodule bacteria to future cultivars of tropical forage legumes. Trop Grassl 31:350–354Google Scholar
  65. Date RA, Halliday J (1987) Collection, isolation, cultivation and maintenance of rhizobia. In: Elkan GH (ed) Symbiotic nitrogen fixation technology. Marcel Dekker, New York, pp 1–27Google Scholar
  66. Davis EO, Evans IJ, Johnston AWB (1988) Identification of nodX, a gene that allows Rhizobium leguminosarum biovar viceae strain TOM to nodulate Afghanistan peas. Mol Gen Genet 212:531–535PubMedGoogle Scholar
  67. De Bruijn FJ (1992) Use of repetitive (repetitive extragenic element and enterobacterial repetitive intergenic consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol 58:2180–2187PubMedGoogle Scholar
  68. de Lajudie P, Willems A, Pot B, Dewettinck D, Maestrojuan G, Neyra M, Collins MD, Dreyfus B, Kersters K, Gillis M (1994) Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 44:715–733Google Scholar
  69. de Lajudie P, Laurent-Fulele E, Willems A, Torck U, Coopman R, Collins MD, Kersters K, Dreyfus B, Gillis M (1998a) Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 48:1277–1290PubMedGoogle Scholar
  70. de Lajudie P, Willems A, Nick G, Moreira F, Molouba F, Hoste B, Torck U, Neyra M, Collins MD, Lindstrom K, Dreyfus B, Gillis M (1998b) Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48:369–382PubMedGoogle Scholar
  71. de Lajudie P, Willems A, Nick G, Mohamed SH, Torck U, Coopman R, Filali-Maltouf A, Kersters K, Dreyfus B, Lindstrom K, Gillis M (1999) Agrobacterium bv. 1 strains isolated from nodules of tropical legumes. Syst Appl Microbiol 22:119–132Google Scholar
  72. De Ley J (1968) DNA base composition and hybridization in the taxonomy of phytopathogenic bacteria. Ann Rev Phytopathol 6:63–90Google Scholar
  73. De Ley J, Rassell A (1965) DNA base composition, flagellation and taxonomy of the genus Rhizobium. J Gen Microbiol 41:85–91PubMedGoogle Scholar
  74. Dean DR, Jacobson MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris B, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 763–834Google Scholar
  75. Demezas DH (1998) Fingerprinting bacterial genomes using restriction fragment length polymorphisms. In: de Bruijn FJ, Lupski JR, Weinstock GM (eds) Bacterial genomes: physical structure and analysis. Chapman and Hall, New York, pp 383–398Google Scholar
  76. Demezas DH, Reardon TB, Watson JM, Gibson AH (1991) Genetic diversity among Rhizobium leguminosarum bv trifolii strains revealed by allozyme and restriction length polymorphisms analyses. Appl Environ Microbiol 59:1702–1708Google Scholar
  77. Demezas DH, Reardon TB, Strain SR, Watson JM, Gibson AH (1995) Diversity and genetic structure of a natural population of Rhizobium leguminosarum bv trifolii isolated from Trifolium subterraneum. Mol Ecol 4:209–220Google Scholar
  78. Denarie J, Debelle F, Prome JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535PubMedGoogle Scholar
  79. Diatloff A (1977) Ecological studies of root nodule bacteria introduced into field environments. 6: antigenic and symbiotic stability in Lotononis rhizobia over a 12 year period. Soil Biol Biochem 9:85–88Google Scholar
  80. Djordjevic MA, Sargent CL, Innes RW, Kuempel PL, Rolfe BG (1985) Host-range genes also affect competitiveness in Rhizobium trifolii. In: Evans HJ, Bottomley PJ, Newton WE (eds) Nitrogen fixation research progress. Martinus Nijhoff, Dordrecht, p 117Google Scholar
  81. Djordjevic MA, Gabriel DW, Rolfe BG (1987a) Rhizobium – the refined parasite of legumes. Ann Rev Phytopathol 25:145–168Google Scholar
  82. Djordjevic MA, Redmond JW, Batley M, Rolfe BG (1987b) Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. EMBO J 6:173–1179Google Scholar
  83. Dobereiner J, Urquiaga S, Boddey RM (1995) Alternatives for nitrogen nutrition of crops in tropical agriculture. Fertilizer Res 42:339–346Google Scholar
  84. Dockendorff TC, Sanjuan J, Grob P, Stacey G (1994) NolA represses nod gene expression in Bradyrhizobium japonicum. Mol Plant-Microbe Interact 7:596–602Google Scholar
  85. Downie JA (1998) Functions of rhizobial nodulation genes. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae. Kluwer, Dordrecht, pp 387–402Google Scholar
  86. Downie JA (2005) Legume haemoglobins: Symbiotic nitrogen fixation needs bloody nodules. Curr Biol 15:196–198Google Scholar
  87. Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34:150–170PubMedGoogle Scholar
  88. Doyle JJ (1994) Phylogeny of the legume family: An approach to understanding the origins of nodulation. Annu Rev Ecol Syst 25:325–349Google Scholar
  89. Doyle JJ, Doyle JL (1997) In: Legocki A et al (eds) Biological fixation of nitrogen for ecology and sustainable agriculture, vol G39, NATO ASI series. Springer, New York, pp 307–312Google Scholar
  90. Dreyfus B, Garcia JL, Gillis M (1988) Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38:89–98Google Scholar
  91. Dudman WF (1977) Serological methods and their application to dinitrogen-fixing organisms. In: Treatise on dinitrogen-fixation, vol 4. Wiley, New York, pp 487–508Google Scholar
  92. Duodu S, Bhuvaneswari TV, Stokkermans TJW, Peters NK (1999) A positive role for Rhizobitoxine in Rhizobium-legume symbiosis. Mol Plant Microbe Interact 12:1082–1089Google Scholar
  93. Dupuy N, Willems A, Pot B, Dewettinck D, Vandenbruaene I, Maestrojuan G, Dreyfus B, Kersters K, Collins MD, Gillis M (1994) Phenotypic and genotypic characterization of bradyrhizobia nodulating the leguminous tree Acacia albida. Int J Syst Bacteriol 44:461–473PubMedGoogle Scholar
  94. Dye M, Skot L, Mytton LR, Harrison SP, Dooley JJ, Cresswell A (1995) A study of Rhizobium leguminosarum biovar trifolii populations from soil extracts using randomly amplified polymorphic DNA profiles. Can J Microbiol 41:336–344Google Scholar
  95. Eaglesham A, Seaman B, Ahmad H, Hassouna S, Ayanaba A, Mulongoy K (1981) High temperature tolerant “cowpea” rhizobia. In: Gibson AH, Newton WE (eds) Current perspectives in nitrogen fixation. Australian Academy of Science, Canberra, p 346Google Scholar
  96. Eardly BD, Materon LA, Smith NH, Johnson DA, Rumbaugh MD, Selander RK (1990) Genetic structure of natural populations of the nitrogen-fixing bacterium Rhizobium meliloti. Appl Environ Microbiol 56:187–194PubMedGoogle Scholar
  97. Elkan GH, Bunn CR (1994) The rhizobia. In: Balows A et al (eds) The prokaryotes. Springer, Berlin, pp 2197–2213, http://www.prokaryotes.com&rcubGoogle Scholar
  98. Ellis WR, Ham GE, Schmidt EL (1984) Persistence and recovery of Rhizobium japonicum inoculum in a field soil. Agron J 76:573–576Google Scholar
  99. Faucher C, Camut S, Denarie J, Truchet G (1989) The nodH and nodQ host range genes of Rhizobium meliloti behave as avirulence genes in R. leguminosarum bv viceae and determine changes in the production of plant-specific extracellular signals. Mol Plant-Microbe Interact 2:291–300Google Scholar
  100. Fellay R, Perret X, Viprey V, Broughton WJ (1995) Organization of host-inducible transcripts on the symbiotic plasmid of Rhizobium sp. NGR234. Mol Microbiol 16:657–667PubMedGoogle Scholar
  101. Finan TM, Wood JM, Jordon DC (1983) Symbiotic properties of C4-dicarboxylic acid transport mutants of Rhizobium leguminosarum. J Bacteriol 154:1403–1413PubMedGoogle Scholar
  102. Firmin JL, Wilson KE, Carlson RW, Davies AE, Downie JA (1993) Resistance to nodulation of cv. Afghanistan peas is overcome by nodX, which mediates an O-acetylation of the Rhizobium leguminosarum lipo-oligosaccharide nodulation factor. Mol Microbiol 10:351–360PubMedGoogle Scholar
  103. Fisher RF, Long SR (1989) DNA footprint analysis of the transcriptional activator proteins Nod-D1 and Nod-D3 on inducible nod gene promoters. J Bacteriol 171:5492–5502PubMedGoogle Scholar
  104. Frank B (1889) Über die Pariseten in den Wurzelanschwellungen der Papilionaceen. Botanische Zeitung 37:377–388, 393–400Google Scholar
  105. Franssen HJ, Nap J-P, Bisseling T (1992) Nodulins in root nodule development. In: Stacey G, Burris B, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 598–624Google Scholar
  106. Fred EB, Baldwin IL, McCoy E (1932) Root nodule bacteria and leguminous plants. University of Wisconsin, Madison, WI, p 343Google Scholar
  107. Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394–401PubMedGoogle Scholar
  108. Gage DJ, Bobo T, Long SR (1996) Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). J Bacteriol 178:7159–7166PubMedGoogle Scholar
  109. Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672PubMedGoogle Scholar
  110. Gao JL, Turner SL, Kan FL, Wang ET, Tan ZY, Qiu YH, Terefework Z, Young JPW, Lindstrom K, Chen WX (2004) Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. Int J Syst Evol Microbiol 54:2003–2012PubMedGoogle Scholar
  111. Garcia-Fraile P, Rivas R, Willems A, Peix A, Martens M, Martinez-Molina E, Mateos PF, Velazquez E (2007) Rhizobium cellulosilyticum sp. nov. isolated from sawdust of Populus alba. Int J Syst Evol Microbiol 57:844–848PubMedGoogle Scholar
  112. Gault RR, Schwinghamer EA (1993) Direct isolation of Bradyrhizobium japonicum from soil. Soil Biol Biochem 25:1161–1166Google Scholar
  113. Gherna RL (1994) Culture preservation. In: Gerhardt P et al (eds) Methods for general and molecular bacteriology. ASM Press, Washington, DCGoogle Scholar
  114. Gibson AH, Date RH, Ireland JA, Brockwell J (1976) A comparison of competitiveness and persistence among five strains of Rhizobium trifolii. Soil Biol Biochem 8:395–401Google Scholar
  115. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Verméglio A, Médigue C, Sadowsky M (2007) Legumes symbioses: Absence of Nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312PubMedGoogle Scholar
  116. Glazebrook J, Walker GC (1989) A novel exopolysaccharide can function in place of the calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell 56:661–672PubMedGoogle Scholar
  117. Glazebrook J, Ichige A, Walker GC (1993) A Rhizobium meliloti homolog of the Escherichia coli peptide-antibiotic transport protein SbmA is essential for bacteroid development. Genes Dev 7:1485–1497PubMedGoogle Scholar
  118. Glynn P, Higgins P, Squartini A, O’Gara F (1985) Strain identification in Rhizobium trifolii using DNA restriction analysis, plasmid DNA profiles, and intrinsic antibiotic resistances. FEMS Microbiol Lett 30:177–182Google Scholar
  119. Gomez M, Silva N, Hartman A, Sagardoy M, Catroux G (1997) Evaluation of commercial soybean inoculants from Argentina World. J Microbiol Biotechnol 13:167–173Google Scholar
  120. González V, Santamaría RI, Bustos P, Hernández-González I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramírez MA, Jiménez-Jacinto V, Collado-Vides J, Dávila G (2006) The partitioned Rhizobium etli genome: Genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci USA 103:3834–3839PubMedGoogle Scholar
  121. Göttfert M (1993) Regulation and function of rhizobial nodulation genes. FEMS Microbiol Lett 104:39–64Google Scholar
  122. Göttfert M, Horvath B, Kondorosi E, Putnoky P, Rodriguez-Quniones F, Kondorosi A (1986) At least two nodD genes are necessary for efficient nodulation of alfalfa by Rhizobium meliloti. J Mol Biol 191:411–420PubMedGoogle Scholar
  123. Göttfert M, Webber J, Hennecke H (1988) Induction of a nodA-lacZ fusion in Bradyrhizobium japonicum by an isoflavone. J Plant Physiol 132:394–397Google Scholar
  124. Göttfert M, Grob P, Hennecke H (1990) Proposed regulatory pathway encoded by the nodV and the nodW genes, determinants of host specificity in Bradyrhizobium japonicum. Proc Natl Acad Sci USA 87:2680–2684PubMedGoogle Scholar
  125. Göttfert M, Holzhäuser D, Bäni D, Hennecke H (1992) Structural and functional analysis of two different nodD genes in Bradyrhizobium japonicum USDA110. Mol Plant Microbe Interact 5:257–265PubMedGoogle Scholar
  126. Gotz R, Evans IJ, Downie JA, Johnston AWB (1985) Identification of host-range DNA which allows Rhizobium leguminosarum strain TOM to nodulate cv. Afghanistan peas. Mol Gen Genet 201:296–300Google Scholar
  127. Graham PH (1964) The application of computer techniques to the taxonomy of the root-nodule bacteria of legumes. J Gen Microbiol 35:511–517Google Scholar
  128. Graham PH (1976) Identification and classification of root nodule bacteria. In: Nutman PS (ed) Symbiotic nitrogen fixation in plants. Cambridge University Press, Cambridge, UK, pp 99–112Google Scholar
  129. Graham PH, Viteri SE, Mackie F, Vargas AAT, Palacios A (1982) Variation in acid soil tolerance among strains of Rhizobium phaseoli. Field Crops Res 5:121–128Google Scholar
  130. Graham PH, Sadowsky MJ, Keyser HH, Barnet YM, Bradley RS, Cooper JE, De Ley J, Jarvis BWD, Roslycky EB, Strijdom BW, Young JPW (1991) Proposed minimal standards for the description of new genera and species of root-and stem-nodulating bacteria. Int J Syst Bacteriol 41:582–587Google Scholar
  131. Graham PH, Draeger KJ, Ferrey ML, Conroy MJ, Hammer BE, Martinez E, Aarons SR, Quinto C (1994) Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for pH tolerance of Rhizobium tropici UMR1899. Can J Microbiol 40:198–207Google Scholar
  132. Graham PH, Sadowsky MJ, Tighe SW, Thompson JA, Date RA, Howieson JG, Thomas R (1995) Differences among strains of Bradyrhizobium in fatty acid–methyl ester analysis. Can J Microbiol 41:1038–1042Google Scholar
  133. Graham PH, Ballen KL, Montealegre C, Jones R, Fischer B, Luque E (1999) Characterization of rhizobia associated with Dalea spp. in natural prairies and revegetation areas in Minnesota. In: Martinez E, Hernandez G (eds) Highlights in nitrogen fixation research. Plenum Press, New YorkGoogle Scholar
  134. Gu CT, Wang ET, Tian CF, Han TX, Chen WF, Sui XH, Chen WX (2008) Rhizobium miluonense sp. nov., a symbiotic bacterium isolated from Lespedeza root nodules. Int J Syst Evol Microbiol 58:1364–1368PubMedGoogle Scholar
  135. Guan SH, Chen WF, Wang ET, Lu YL, Yan XR, Zhang XX, Chen WX (2008) Mesorhizobium caraganae sp. nov., a novel rhizobial species nodulated with Caragana spp. in China. Int J Syst Evol Microbiol 58:2646–2653PubMedGoogle Scholar
  136. Guar YD, Lowther WL (1980) Distribution, symbiotic effectiveness and fluorescent antibody reaction of naturalized populations of Rhizobium trifolii in Otago, New Zealand soils NZ. J Agric Res 23:529–532Google Scholar
  137. Hadri A-E, Spaink HP, Bisseling T, Brewin NJ (1998) Diversity of root nodulation and rhizobial infection processes. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae. Kluwer, Dordrecht, pp 348–360Google Scholar
  138. Hagen MJ, Hamrick JL (1996) Population level processes in Rhizobium leguminosarum bv trifolii: The role of founder effects. Mol Ecol 5:707–714Google Scholar
  139. Hahn M, Hennecke H (1988) Cloning and mapping of a novel nodulation region from Bradyrhizobium japonicum by genetic complementation of a deletion mutant. Appl Environ Microbiol 54:55–61PubMedGoogle Scholar
  140. Hall A, Clark N (1995) Coping with change, complexity and diversity in agriculture-the case of rhizobial inoculants in Thailand. World Dev 23:1601–1614Google Scholar
  141. Ham GE (1978) Interactions of Glycine max and Rhizobium japonicum. In: Summerfield RJ, Bunting AH (eds) Advances in legume science. Royal Botanic Gardens Kew, London, pp 289–296Google Scholar
  142. Han TX, Han LL, Wu LJ, Chen WF, Sui XH, Gu JG, Wang ET, Chen WX (2008a) Mesorhizobium gobiense sp. nov. and Mesorhizobium tarimense sp. nov., isolated from wild legumes growing in desert soils of Xinjiang, China. Int J Syst Evol Microbiol 58:2610–2618PubMedGoogle Scholar
  143. Han TX, Wang ET, Wu JL, Chen WF, Gu JG, Gu CT, Tian CF, Chen WX (2008b) Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. Int J Syst Evol Microbiol 58:1693–1699PubMedGoogle Scholar
  144. Heberlein GT, De Ley J, Tyjtgat R (1967) Deoxyribonucleic acid homology and taxonomy of Agrobacterium, Rhizobium and Chromobacterium. J Bacteriol 94:116–124PubMedGoogle Scholar
  145. Hellriegel H, Wilfarth H (1888) Untersuchungen ueber die stickstoffnahrung der Gramineen und Leguminsen. Beilageheft su der Zeitschrift des Verein Rubenzucker-Industrie Detchen Reichs Unknown, p 234Google Scholar
  146. Heron DS, Ersek T, Krishan HB, Pueppke SG (1989) Nodulation mutants of Rhizobium fredii USDA 257. Mol Plant Microbe Interact 2:4–10Google Scholar
  147. Herridge DF, Roughley RJ (1975) Variation in colony characteristics and symbiotic effectiveness of Rhizobium. J Appl Bacteriol 38:19–27PubMedGoogle Scholar
  148. Hirsch PR (1996) Population dynamics of indigenous and genetically modified rhizobia in the field. New Phytol 133:159–171Google Scholar
  149. Hofer AW (1941) A characterization of Bacterium radiobacter (Beijerinck and Van Delden) Lohnis. J Bacteriol 41:193–224PubMedGoogle Scholar
  150. Holmes B, Popoff M, Kiredjian M, Kersters K (1988) Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as group Vd. Int J Syst Bacteriol 38:406–416Google Scholar
  151. Hombrecher G, Brewin NJ, Johnston AWB (1981) Linkage of genes for nitrogenase and nodulation ability on plasmids in Rhizobium leguminosarum and R. phaseoli. Mol Gen Genet 182:133–136Google Scholar
  152. Hombrecher G, Gotz R, Dibb NJ, Downie JA, Johnston AWB, Brewin NJ (1984) Cloning and mutagenesis of nodulation genes from Rhizobium leguminosarum TOM, a strain with extended host range. Mol Gen Genet 194:293–298Google Scholar
  153. Hong G-F, Burn JE, Johnston AWB (1987) Evidence that DNA involved in the expression of nodulation (nod) genes in Rhizobium binds to the regulatory gene nodD. Nucleic Acids Res 15:9677–9690PubMedGoogle Scholar
  154. Honma MA, Ausubel FM (1987) Rhizobium meliloti has three functional copies of the nodD symbiotic regulatory element. Proc Natl Acad Sci USA 84:8558PubMedGoogle Scholar
  155. Horvath B, Kondorosi E, John M, Schmidt J, Torok I, Gyorgypal Z, Barabas I, Wieneke U, Schell J, Kondorosi A (1986) Organization, structure, and symbiotic function of Rhizobium meliloti nodulation genes determining host specificity for alfalfa. Cell 46:335–343PubMedGoogle Scholar
  156. Horvath B, Bachem CW, Schell J, Kondorosi A (1987) Host-specific regulation of nodulation genes in Rhizobium is mediated by a plant-signal, interacting with the nodD gene products. EMBO J 6:841–848PubMedGoogle Scholar
  157. Hou BC, Wang ET, Li Y, Jia RZ, Chen WF, Gao Y, Dong RJ, Chen WX (2009) Rhizobium tibeticum sp. nov., a symbiotic bacterium isolated from Trigonella archiducis-nicolai (Sirj.) Vassilcz. Int J Syst Evol Microbiol 59:3051–3057PubMedGoogle Scholar
  158. Howieson JG, Ewing MA (1989) Annual species of Medicago differ greatly in their ability to nodulate on acid soils. Aust J Agric Res 40:843–850Google Scholar
  159. Howieson JG, Ewing MA, Dantuono MF (1988) Selection for acid tolerance in Rhizobium meliloti. Plant Soil 105:179–188Google Scholar
  160. Hubber A, Vergunst AC, Sullivan JT, Hooykaas PJ, Ronson CW (2004) Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol Microbiol 54:561–574PubMedGoogle Scholar
  161. Humphrey BA, Vincent JM (1965) The effect of calcium nutrition on the production of diffusible antigens by Rhizobium trifolii. J Gen Microbiol 41:109–118PubMedGoogle Scholar
  162. Hungria M, Andrade DD, Colozzi A, Balota EL (1997) Interactions among soil microorganisms and bean and maize grown in monoculture or intercropped. Pesq Agropec Brasil 32:807–818Google Scholar
  163. Innes RW, Kuempel PL, Plazinski J, Canter-Cremers H, Rolfe BG, Djordjevic MA (1985) Plant factors induce expression of nodulation and host-range genes in R. trifolii. Mol Gen Genet 201:426–432Google Scholar
  164. Islam MS, Kawasaki H, Muramatsu Y, Nakagawa Y, Seki T (2008) Bradyrhizobium iriomotense sp. nov., isolated from a tumor-like root of the legume Entada koshunensis from Iriomote Island in Japan. Biosci Biotechnol Biochem 72:1416–1429PubMedGoogle Scholar
  165. Itakura M, Saeki K, Omori H, Yokoyama T, Kaneko T, Tabata S, Ohwada T, Tajima S, Uchiumi T, Honma K, Fujita K, Iwata H, Saeki Y, Hara Y, Ikeda S, Eda S, Mitsui H, Minamisawa K (2009) Genomic comparison of Bradyrhizobium japonicum strains with different symbiotic nitrogen-fixing capabilities and other Bradyrhizobiaceae members. ISME J 3:326–339PubMedGoogle Scholar
  166. Jarvis BDW, Tighe SW (1994) Rapid identification of Rhizobium species based on cellular fatty acid analysis. Plant Soil 161:31–41Google Scholar
  167. Jarvis BDW, Pankhurst CE, Patel JJ (1982) Rhizobium loti, a new species of legume root nodule bacteria. Int J Syst Bacteriol 32:378–380Google Scholar
  168. Jarvis BWD, Ward LJH, Slade EA (1989) Expression by soil bacteria of nodulation genes from Rhizobium leguminosarum bv. trifolii. Appl Environ Microbiol 55:1426–1434PubMedGoogle Scholar
  169. Jarvis BDW, Sivakumaran S, Tighe SW, Gillis M (1996) Identification of Agrobacterium and Rhizobium species based on cellular fatty acid composition. Plant Soil 184:143–158Google Scholar
  170. Jarvis BDW, van Berkum P, Chen WX, Nour SM, Fernandez M, Cleyet-Marel JC, Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium cicer,i Rhizobium mediterraneum and Rhizobium tianshansense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898Google Scholar
  171. Jiang J, Gu BH, Albright LM, Nixon BT (1989) Conservation between coding and regulatory elements of Rhizobium meliloti and Rhizobium leguminosarum dct genes. J Bacteriol 171:44–53Google Scholar
  172. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) Invasion of the plant host by symbiotic rhizobial bacteria: molecular clues from Sinorhizobium meliloti and the plant Medicago truncatula. Nat Rev Microbiol 5:619–633PubMedGoogle Scholar
  173. Jordan DC (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139Google Scholar
  174. Jordan DC (1984) Family III, Rhizobiaceae Conn 1938. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, 1st edn. Williams and Wilkins, Baltimore, pp 234–242, http://www.cme.msu.edu/bergeys/&rcub
  175. Josey DP, Beynon JL, Johnston AWB, Beringer JE (1979) Strain identification in Rhizobium using intrinsic antibiotic resistance. J Appl Bacteriol 46:343–350Google Scholar
  176. Jourand P, Giraud E, Bena G, Sy A, Willems A, Gillis M, Dreyfus B, de Lajudie P (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273PubMedGoogle Scholar
  177. Judd AK, Schneider M, Sadowsky MJ, de Bruijn FJ (1993) Use of repetitive sequences and the polymerase chain reaction technique to classify genetically related Bradyrhizobium japonicum serocluster 123 strains. Appl Environ Microbiol 59:1702–1708PubMedGoogle Scholar
  178. Kaminski PA, Batutu J, Boistard P (1998) A survey of symbiotic nitrogen fixation by Rhizobia. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae. Kluwer, Dordrecht, pp 432–460Google Scholar
  179. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338PubMedGoogle Scholar
  180. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197PubMedGoogle Scholar
  181. Keatinge JDH, Beck DP, Materon LA, Yurtsever N, Karuc K, Altuntas S (1995) The role of rhizobial diversity in legume crop productivity in the west Asian highlands. 4: Rhizobium ciceri. Expl Agric 31:501–507Google Scholar
  182. Kennedy C (1989) The genetics of nitrogen fixation. In: Hopwood DA, Chater KE (eds) Genetics of bacterial diversity. Academic, New York, pp 107–127Google Scholar
  183. Kijne JW (1992) The Rhizobium infection process. In: Stacey G, Burris B, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 349–398Google Scholar
  184. Kinkle BK, Schmidt EL (1991) Transfer of the pea symbiotic plasmid pJB5JI in non-sterile soil. Appl Environ Microbiol 57:3264–3269PubMedGoogle Scholar
  185. Kinzig AP, Socolow RH (1994) Is nitrogen fertilizer use nearing a balance? Reply Physics Today 47:24–35Google Scholar
  186. Kirchner O (1896) Die wurzelnollchen der sojabohne. Beitrage Biologie Pflanzen Cohn’s 7:213–223Google Scholar
  187. Kishinevsky BD, Jones DG (1987) Enzyme-linked immunosorbent assay (ELISA) for the detection and identification of Rhizobium strains. In: Elkan GH (ed) Symbiotic nitrogen fixation technology. Marcel Dekker, New York, pp 157–184Google Scholar
  188. Knosel D (1962) Prufung von Bakterien auf Fahigkeit zur Sternbildung. Zentralbl Bakteriol Parasitenkd Infedtionskr Hyg II Abt 116:79–100Google Scholar
  189. Kobayashi H, Broughton WJ (2008) Fine-tuning of symbiotic genes in rhizobia: flavonoid signal transduction cascade. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses. Springer, Dordrecht, pp 117–152Google Scholar
  190. Kondorosi E, Gyuris J, Schmidt J, John M, Duda E, Schell J, Kondorosi A (1988) Positive and negative control of nodulation genes in Rhizobium meliloti strain 41. In: Verma DPS, Palacios R (eds) Molecular microbe-plant interactions. APS Press, St. Paul, p 73Google Scholar
  191. Kondorosi E, Gyuris J, Schmidt J, John M, Duda E, Hoffman B, Schell J, Kondorosi A (1989) Positive and negative control of nod gene expression in Rhizobium meliloti is required for optimal nodulation. EMBO J 8:1331–1340PubMedGoogle Scholar
  192. Kondorosi E, Pierre M, Cren M, Haumann U, Buire M, Hoffman B, Schell J, Kondorosi A (1991) Identification of nolR, a negatively transacting factor controlling the nod regulon in Rhizobium meliloti. J Mol Biol 222:885–896PubMedGoogle Scholar
  193. Kosslak RM, Bookland R, Barkei J, Paaren HE, Applebaum ER (1987) Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max. Proc Natl Acad Sci USA 84:7428–7432PubMedGoogle Scholar
  194. Krause A, Doerfel A, Göttfert M (2002) Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. Mol Plant Microbe Interact 15:1228–1235PubMedGoogle Scholar
  195. Krishnan HB, Pueppke SG (1991) nolC, a Rhizobium fredii gene involved in cultivar-specific nodulation of soybean, shares homology with a heat-shock gene. Mol Microbiol 5:737–745PubMedGoogle Scholar
  196. Kucey RMN, Hynes MF (1989) Populations of Rhizobium leguminosarum biovars phaseoli and viciae in fields after bean or pea in rotation with nonlegumes. Can J Microbiol 35:661–667Google Scholar
  197. Kumar Rao JVDK, Dart PJ, Usha Khan M (1982) Cowpea group Rhizobium in soils of the semiarid tropics. In: Graham PH, Harris SC (eds) BNF technology for tropical agriculture. CIAT, Cali. Colombia, pp 291–295Google Scholar
  198. Kuykendall LD, Saxena B, Devine TE, Udell SE (1992) Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505Google Scholar
  199. Labes G, Ulrich A, Lentzch P (1996) Influence of bovine slurry deposition on the structure of nodulating Rhizobium leguminosarum bv viciae soil populations in a natural habitat. Appl Environ Microbiol 62:1717–1722PubMedGoogle Scholar
  200. Lange RT (1961) Nodule bacteria associated with the indigenous Leguminosae of South Western Australia. J Gen Microbiol 26:351–359PubMedGoogle Scholar
  201. Lee KB, De Backer P, Aono T, Liu CT, Suzuki S, Suzuki T, Kaneko T, Yamada M, Tabata S, Kupfer DM, Najar FZ, Wiley GB, Roe B, Binnewies TT, Ussery DW, D'Haeze W, Herder JD, Gevers D, Vereecke D, Holsters M, Oyaizu H (2008) The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571. BMC Genomics 9:271PubMedGoogle Scholar
  202. Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Prome JC, Denarie J (1990) Symbiotic host specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–784PubMedGoogle Scholar
  203. Leung K, Strain SR, de Bruijn FJ, Bottomley PJ (1994) Genotypic and phenotypic comparisons of chromosomal types within an indigenous soil population of Rhizobium leguminosarum bv. trifolii. Appl Environ Microbiol 60:416–426PubMedGoogle Scholar
  204. Lewin A, Rossenberg C, Meyer H, Wong ACH, Nelson L, Manen JF, Stanley J, Dowling DN, Denarie J, Broughton WJ (1987) Multiple host-specificity loci of the broad host-range Rhizobium sp. NGR234 selected using the widely compatible legume Vigna unguiculata. Plant Mol Biol 8:447–459Google Scholar
  205. Lewis-Henderson WR, Djordjevic MA (1991a) A cultivar specific interaction between Rhizobium leguminosarum bv. trifolii and subterranean clover is conditioned by nodM, other bacterial cultivar specificity genes and a single recessive host gene. J Bacteriol 173:2791–2799PubMedGoogle Scholar
  206. Lewis-Henderson WR, Djordjevic MA (1991b) nodT, a positively-acting cultivar specificity determinant controlling nodulation of Trifolium subterraneum by Rhizobium leguminosarum bv. trifolii. Plant Mol Biol 16:515–526PubMedGoogle Scholar
  207. Li LY, Chen WF, Li HL, Wang ET, Chen WX (2009) Rhizobium alkalisoli sp. nov., isolated from Caragana intermedia growing in saline-alkaline soils in the north of China. Int J Syst Evol Microbiol 59:3006–3011Google Scholar
  208. Li QQ, Wang ET, Chang YL, Zhang YZ, Zhang YM, Sui XH, Chen WF, Chen WX (2010) Ensifer (Sinorhizobium) sojae sp. nov., isolated from root nodules of Glycine max grown in saline-alkaline soils in Hebei province of China. Int J Syst Evol Microbiol 61(Pt 8):1981–1988PubMedGoogle Scholar
  209. Lie TA (1978) Symbiotic specialization in pea plants: The requirement of specific Rhizobium strains for peas from Afghanistan. Ann Appl Biol 88:462–465Google Scholar
  210. Lie TA, Winarno R, Timmermans PCJM (1978) Rhizobium strains isolated from wild and cultivated legumes: suppression of nodulation by a non-nodulating Rhizobium strain. In: Loutit MW, Miles JAR (eds) Microbial ecology. Springer, BerlinGoogle Scholar
  211. Lie TA, Goktan D, Pijnenborg J, Anlarsal E (1987) Co-evolution of the legume-Rhizobium association. Plant Soil 100:171–181Google Scholar
  212. Lin DX, Chen WF, Wang FQ, Hu D, Wang ET, Sui XH, Chen WX (2009) Rhizobium mesosinicum sp. nov., isolated from root nodules of three different legumes. Int J Syst Evol Microbiol 59:1919–1923PubMedGoogle Scholar
  213. Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, Chen WX (2008) Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 58:1409–1413PubMedGoogle Scholar
  214. Lindstrom K (1989) Rhizobium galegae, a new species of legume root nodule bacteria. Int J Syst Bacteriol 39:365–367Google Scholar
  215. Lindstrom K, Lipsanen P, Kaijalainen S (1990) Stability of markers used for identification of two Rhizobium galegae inoculant strains after five years in the field. Appl Environ Microbiol 56:444–450PubMedGoogle Scholar
  216. Lloret L, Ormeno-Orrillo E, Rincon R, Martinez-Romero J, Rogel-Hernandez MA, Martinez-Romero E (2007) Ensifer mexicanus sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuntze in Mexico. Syst Appl Microbiol 30:280–290PubMedGoogle Scholar
  217. Loh J, Stacey G (2003) Nodulation gene regulation in Bradyrhizobium japonicum: A unique integration of global regulatory circuits. Appl Environ Microbiol 69:10–17PubMedGoogle Scholar
  218. Lohrke SM, Orf JH, Martínez-Romero E, Sadowsky MJ (1995) Host-controlled restriction of nodulation by Bradyrhizobium japonicum strains in serogroup 110. Appl Environ Microbiol 61:2378–2383PubMedGoogle Scholar
  219. Long SR (1989) Rhizobium-legume nodulation: Life together in the underground. Cell 56:203–214PubMedGoogle Scholar
  220. Long SR, Egelhoff T, Fisher RF, Jacobs TW, Mulligan JT (1985) Fine structure studies of R. meliloti nodDABC genes. In: Evans HJ, Bottomley PJ, Newton WE (eds) Nitrogen fixation research progress. Martinus Nijhoff, Boston, pp 87–94Google Scholar
  221. Long S, Reed JW, Himawan J, Walker GC (1999) Genetic analsysis of a clsuter of genes required for synthesis of the calcofluor-binding exopolysaccharide of Rhizobium meliloti. J Bacteriol 170:4239–4248Google Scholar
  222. Lorda GS, Balatii A (1996) Production of high cell concentrations of Rhizobium and Bradyrhizobium. In: Balatti AP, Freire JR (eds) Legume inoculants: Selection and characterization of strains – production, use, and management. Editorial Kingraf Buenos Aires, ArgentinaGoogle Scholar
  223. Louvrier P, Laguerre G, Amarger N (1995) Semi selective medium for isolation of Rhizobium leguminosarum from soils. Soil Biol Biochem 27:919–924Google Scholar
  224. Lu YL, Chen WF, Han LL, Wang ET, Zhang XX, Chen WX, Han SZ (2009) Mesorhizobium shangrilense sp. nov., isolated from root nodules of Caragana spp. Int J Syst Evol Microbiol 59:3012–3018PubMedGoogle Scholar
  225. Lupwayi NZ, Olsen PE, Sande ES, Keyser HH, Collins MM, Singleton PW, Rice WA (2000) Inoculant quality and its evaluation. Field Crops Res 65:259–270Google Scholar
  226. Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402PubMedGoogle Scholar
  227. MacLean AM, Finan TM, Sadowsky MJ (2007) Genomes of the symbiotic nitrogen-fixing bacteria of legumes. Plant Physiol 144:615–622PubMedGoogle Scholar
  228. Madrzak CJ, Golinska B, Kroliczak J, Pudelko K, Lazewska D, Lampka B, Sadowsky MJ (1995) Diversity among field populations of Bradyrhizobium japonicum in Poland. Appl Environ Microbiol 61:1194–1200PubMedGoogle Scholar
  229. Maier RJ (1986) Biochemistry, regulation, and genetics of hydrogen oxidation in Rhizobium japonicum CRC. Crit Rev Biotechnol 3:17–38Google Scholar
  230. Makkar NS, Casida LE (1987) Cupriavidus necator gen. nov., sp. nov. – A nonobligate bacterial predator of bacteria in soil. Int J Syst Bacteriol 37:323–326Google Scholar
  231. Mantelin S, Fischer-Le Saux M, Zakhia F, Bena G, Bonneau S, Jeder H, de Lajudie P, Cleyet-Marel JC (2006) Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp. nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp. nov. and Phyllobacterium brassicacearum sp. nov. Int J Syst Evol Microbiol 56:827–839PubMedGoogle Scholar
  232. Marshall KC (1964) Survival of root nodule bacteria in dry soils exposed to high temperatures. Aust J Agric Res 15:273–281Google Scholar
  233. Martinez E, Romero D, Palacios R (1990) The Rhizobium genome. Crit Rev Plant Sci 9:59–93Google Scholar
  234. Martinez-Romero E, Caballero-Mellado J (1996) Rhizobium phylogenies and bacterial genetic diversity. Crit Rev Plant Sci 15:113–140Google Scholar
  235. Martinez-Romero E, Rosenblueth M (1990) Increased bean Phaseolus vulgaris L. nodulation competitiveness of genetically modified strains. Appl Environ Microbiol 56:2384–2388PubMedGoogle Scholar
  236. Martinez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426PubMedGoogle Scholar
  237. McDermott TR, Graham PH, Brandwein DM (1987) Viability of Bradyrhizobium japonicum bacteroids. Arch Microbiol 148:100–106Google Scholar
  238. McInnes A, Thies JE, Abbott LK, Howieson JG (2004) Structure and diversity among rhizobial strains, populations and communities–a review. Soil Biol Biochem 36:1295–1308Google Scholar
  239. Meinhardt LW, Krishnan HB, Balatti PA, Pueppke SG (1993) Molecular cloning and characterization of a Sym-plasmid locus that regulates cultivar-specific nodulation of soybean by Rhizobium fredii USDA 257. Mol Microbiol 9:17–27PubMedGoogle Scholar
  240. Mendes IC, Bottomley PJ (1998) Distribution of a population of Rhizobium leguminosarum bv trifolii among different size classes of soil aggregates. Appl Environ Microbiol 64:970–975PubMedGoogle Scholar
  241. Merabet C, Martens M, Mahdhi M, Zakhia F, Sy A, Le Roux C, Domergue O, Coopman R, Bekki A, Mars M, Willems A, de Lajudie P (2010) Multilocus sequence analysis of root nodule isolates from Lotus arabicus (Senegal), Lotus creticus, Argyrolobium uniflorum and Medicago sativa (Tunisia) and description of Ensifer numidicus sp. nov. and Ensifer garamanticus sp. nov. Int J Syst Evol Microbiol 60:664–674PubMedGoogle Scholar
  242. Mergaert P, van Montagu M, Prome J-C, Holsters M (1993) Three unusual modifications, a D-arabinosyl, an N-methyl, and a carbamoyl group, are present on the Nod factors of Azorhizobium caulinodans strain ORS571. Proc Natl Acad Sci USA 90:1551–1555PubMedGoogle Scholar
  243. Merrick MJ (1992) Regulation of nitrogen fixation genes in free-living and symbiotic bacteria. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 835–876Google Scholar
  244. Michiels J, Dombrecht B, Vermeiren N, Xi CW, Luyten E, Vanderleyden J (1998) Phaseolus vulgaris L. is a non-selective host for nodulation. FEMS Microbiol Ecol 26:193–205Google Scholar
  245. Moffett ML, Colwell RR (1968) Adansonian analysis of the Rhizobiaceae. J Gen Microbiol 51:245–266PubMedGoogle Scholar
  246. Moreira FMS, Cruz L, de Faria SM, Marsh T, Martinez-Romero E, de Oliveira Pedrosa F, Pitard RM, Young JPW (2006) Azorhizobium doebereinerae sp. nov. microsymbiont of Sesbania virgata (Caz.) Pers. Syst Appl Microbiol 29:197–206Google Scholar
  247. Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the β-subclass of Proteobacteria. Nature 411:948–950PubMedGoogle Scholar
  248. Mulligan JT, Long SR (1985) Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Proc Natl Acad Sci USA 82:6609–6613PubMedGoogle Scholar
  249. Murray JD (2011) Invasion by invitation: Rhizobial infection in legumes. Mol Plant Microbe Interact 24:631–639PubMedGoogle Scholar
  250. Naisbitt T, James E, Sprent JI (1992) The evolutionary significance of the legume genus Chamaecrista, as determined by nodule structure. New Phytol 122:487–492Google Scholar
  251. Nakagawa Y, Sakane T, Yokota A (1996) Transfer of ‘Pseudomonas riboflavina’ (Foster 1944), a gram-negative, motile rod with long-chain 3-hydroxy fatty acids, to Devosia riboflavina gen. nov., sp. nov., nom. rev. Int J Syst Bacteriol 46:16–22PubMedGoogle Scholar
  252. Nandasena KG, O'Hara GW, Tiwari RP, Willems A, Howieson JG (2009) Mesorhizobium australicum sp. nov. and Mesorhizobium opportunistum sp. nov. isolated from Biserrula pelecinus L. growing in Australia. Int J Syst Evol Microbiol 59:2140–2157PubMedGoogle Scholar
  253. Nick G, de Lajudie P, Eardly BD, Suomalainen S, Paulin L, Zhang X, Gillis M, Lindstrom K (1999) Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int J Syst Bacteriol 49:1359–1368PubMedGoogle Scholar
  254. Nieuwkoop AJ, Banfalvi Z, Deshmane N, Gerhold D, Schell M, Sirotkin K, Stacey G (1987) A locus encoding host range is linked to the common nodulation genes of Bradyrhizobium japonicum. J Bacteriol 169:2631–2638PubMedGoogle Scholar
  255. Niner BM, Hirsch AM (1998) How many Rhizobium genes, in addition to nod, nif/fix, and exo, are needed for nodule development and function. Symbiosis 24:51–102Google Scholar
  256. Noel KD, Diebold RJ, Cava JR, Brink BA (1988) Rhizobial purine and pyrimidine auxotrophs: nutrient supplementation, genetic analysis, and the symbiotic requirement for the novo purine biosynthesis. Arch Micobiol 149:499–506Google Scholar
  257. Nour SM, Fernandez MP, Normand P, Cleyet-Marel JC (1994) Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol 44:511–522PubMedGoogle Scholar
  258. Nuti MP, Lepidi AA, Prakash RK, Shilperoot RA, Cannon FC (1979) Evidence for nitrogen fixation (nif) genes on indigenous Rhizobium plasmids. Nature (London) 282:533–535Google Scholar
  259. Ogasawara M, Suzuki T, Mutoh I, Annapurna K, Arora NK, Nishimura Y, Maheshwari DK (2003) Sinorhizobium indiaense sp. nov. and Sinorhizobium abri sp. nov. isolated from tropical legumes, Sesbania rostrata and Abrus precatorius, respectively. Symbiosis 34:53–68Google Scholar
  260. Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nat Biotechnol 15:369–372PubMedGoogle Scholar
  261. Olson ER, Sadowsky MJ, Verma DPS (1985) Identification of genes involved in the Rhizobium-legume symbiosis by Mu-dI(kan, lac)-generated transcription fusions. Nat Biotechnol 3:143–149Google Scholar
  262. Paffetti G, Scotti C, Gnocchi S, Francelli S, Bazzicalupo M (1996) Genetic diversity of an Italian Rhizobium meliloti population from different Medicago sativa varieties. Appl Environ Microbiol 62:2279–2285PubMedGoogle Scholar
  263. Parke D, Ornston LN (1984) Nutritional diversity of Rhizobiaceae revealed by auxanography. J Gen Microbiol 130:1743–1750Google Scholar
  264. Parker CA (1957) Evolution of nitrogen-fixing symbiosis in higher plants. Nature 179:593–594Google Scholar
  265. Parker CA (1968) On the evolution of symbiosis in legumes. In: Jensen HL (ed) Festskrift til Hans Laurits Jensen. Gadgaard Nielsens Bogtrykkeri, Lemvig, pp 107–115Google Scholar
  266. Patt TE, Cole GC, Hanson RS (1976) Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 26:226–229Google Scholar
  267. Peng G, Yuan Q, Li H, Zhang W, Tan Z (2008) Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 58:2158–2163PubMedGoogle Scholar
  268. Pérez-Mendoza D, Domínguez-Ferreras A, Muñoz S, Soto MJ, Olivares J, Brom S, Girard L, Herrera-Cervera JA, Sanjuán J (2004) Identification of functional mob regions in Rhizobium etli: evidence for self-transmissibility of the symbiotic plasmid pRetCFN42d. J Bacteriol 186:5753–5761PubMedGoogle Scholar
  269. Perez-Ramirez NO, Rogel MA, Wang E, Castellanos JZ, Martinez-Romero E (1998) Seeds of Phaseolus vulgaris bean carry Rhizobium etli. FEMS Microbiol Ecol 26:289–296Google Scholar
  270. Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–979PubMedGoogle Scholar
  271. Phillips DA, Joseph CM, Yang GP, Martinez-Romero E, Sanborn JR, Volpin H (1999) Identification of lumichrome as a Sinorhizobium enhancer of alfalfa root respiration and shoot growth. Proc Natl Acad Sci USA 96:12275–12280PubMedGoogle Scholar
  272. Pinero D, Martinez E, Selander RK (1988) Genetic diversity and relationships among isolates of Rhizobium leguminosarum biovar phaseoli. Appl Environ Microbiol 54:2825–2832PubMedGoogle Scholar
  273. Postma J, Hok-a-Hin CH, van Veen JA (1990) Role of microniches in protecting introduced Rhizobium leguminosarum biovar trifolii against competition and predation in soil. Appl Environ Microbiol 56:495–502PubMedGoogle Scholar
  274. Prévost D, Bordeleau LM, Caudry-Reznick S, Schulman HM, Antoun H (1987) Characteristics of rhizobia isolated from three legumes indigenous to the high arctic: Astragalus alpinus, Oxytropis maydelliana, and Oxytropis arctobia. Plant Soil 98:313–324Google Scholar
  275. Price NJ, Relic B, Talmont F, Lewin A, Prome D, Pueppke SG, Maillet F, Denarie J, Broughton WJ (1992) Broad host range Rhizobium species strain NGR234 secretes a family of carbamoylated and fucosylated nodulation signals that are O-acetylated or sulphated. Mol Microbiol 6:3575–3584PubMedGoogle Scholar
  276. Pueppke SG (1996) The genetic and biochemical basis for nodulation of legumes by rhizobia. Crit Rev Biotechnol 16:1–51PubMedGoogle Scholar
  277. Pueppke SG, Broughton WJ (1999) Rhizobium strain NGR234 and R. fredii USDA257 share exceptionally broad nested host ranges. Mol Plant Microbe Interact 12:293–318PubMedGoogle Scholar
  278. Quan ZX, Bae HS, Baek JH, Chen WF, Im WT, Lee ST (2005) Rhizobium daejeonense sp. nov., isolated from a cyanide treatment bioreactor. Int J Syst Evol Microbiol 55:2543–2549PubMedGoogle Scholar
  279. Ramirez-Bahena MH, Garcia-Fraile P, Peix A, Valverde A, Rivas R, Igual JM, Mateos PF, Martinez-Molina E, Velazquez E (2008) Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 58:2484–2490PubMedGoogle Scholar
  280. Ramirez-Bahena MH, Peix A, Rivas P, Camacho M, Rodriguez-Navarro DN, Camacho P, Mateos PF, Martinez-Molina E, Velazquez E (2009) Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov. isolated from effective nodules of Pachyrhizus erosus. Int J Syst Evol Microbiol 59:1929–1934PubMedGoogle Scholar
  281. Rao JR, Fenton M, Jarvis BDW (1994) Symbiotic plasmid transfer in Rhizobium leguminosarum biovar trifolii and competition between the inoculant strain ICMP2163 and transconjugant soil bacteria. Soil Biol Biochem 26:339–351Google Scholar
  282. Rasolomampianina R, Bailly X, Fetiarison R, Rabevohitra R, Béna G, Ramaroson L, Raherimandimby M, Moulin L, De Lajudie P, Dreyfus B, Avarre JC (2005) Nitrogen-fixing nodules from rose wood legume trees (Dalbergia spp.) endemic to Madagascar host seven different genera belonging to alpha- and beta-Proteobacteria. Mol Ecol 14:4135–4146PubMedGoogle Scholar
  283. Ratcliff WC, Kadam SV, Denison RF (2008) Poly-3-hydroxybutyrate supports survival and reproduction in starving rhizobia. FEMS Microbiol Ecol 65:391–399PubMedGoogle Scholar
  284. Reeve W, Chain P, O'Hara G, Ardley J, Nandesena K, Bräu L, Tiwari R, Malfatti S, Kiss H, Lapidus A, Copeland A, Nolan M, Land M, Hauser L, Chang YJ, Ivanova N, Mavromatis K, Markowitz V, Kyrpides N, Gollagher M, Yates R, Dilworth M, Howieson J (2010) Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419. Stand Genomic Sci 28:77–86Google Scholar
  285. Relic B, Talmont F, Kopcinska J, Golinowski W, Prome J-C, Broughton WJ (1993) Biological activity of Rhizobium sp. NGR234 Nod factors on Macroptilium atropurpureum. Mol Plant Microbe Interact 6:764–774PubMedGoogle Scholar
  286. Ren DW, Chen WF, Sui XH, Wang ET, Chen WX (2011) Rhizobium vignae sp. nov., a symbiotic bacterium isolated from multiple legume species nov. Int J Syst Evol Microbiol 61:580–586Google Scholar
  287. Rice WA, Olsen PE, Leggett ME (1995) Co-culture of Rhizobium meliloti and a phosphorus solubilizing fungus (Penicillium bilaii) in sterile peat. Soil Biol Biochem 27:703–705Google Scholar
  288. Richardson AE, Simpson RJ (1989) Acid-tolerance and symbiotic effectiveness of Rhizobium trifolii associated with a Trifolium subterraneum L. based pasture growing in an acid soil. Soil Biol Biochem 21:87–95Google Scholar
  289. Richardson AE, Viccars LA, Watson JM, Gibson AH (1995) Differentiation of Rhizobium strains using the polymerase chain reaction with random and directed primers. Soil Biol Biochem 27:515–524Google Scholar
  290. Risal CP, Yokoyama T, Ohkama-Ohtsu N, Djedidi S, Sekimoto H (2010) Genetic diversity of native soybean bradyrhizobia from different topographical regions along the southern slopes of the Himalayan Mountains in Nepal. Syst Appl Mirobiol 33:416–425Google Scholar
  291. Rivas R, Velázquez E, Willems A, Vizcaíno N, Subba-Rao NS, Mateos PF, Gillis M, Dazzo FB, Martínez-Molina E (2002) A new species of Devosia that forms a unique nitrogen-fixing root nodule symbiosis with the aquatic legume Neptunia natans. Appl Environ Microbiol 68:5217–5222PubMedGoogle Scholar
  292. Rivas R, Willems A, Subba-Rao NS, Mateos PF, Dazzo FB, Kroppenstedt RM, Martinez-Molina E, Gillis M, Vizcaino N (2003) Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26:47–53PubMedGoogle Scholar
  293. Roberts GP, Leps WT, Silver LE, Brill WJ (1980) Use of two dimensional polyacrylamide gel electrophoresis to identify and classify Rhizobium strains. Appl Environ Microbiol 39:414–422PubMedGoogle Scholar
  294. Roche P, Debelle F, Maillet F, Lerouge P, Faucher C, Truchet G, Dénarié J, Prome JC (1991) Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharides. Cell 67:1131–1143PubMedGoogle Scholar
  295. Roest HP, Goosenderoo L, Wijffelman CA, de Maagd RA, Lugtenberg BJJ (1995) Outer membrane protein changes during bacteroid development are independent of nitrogen fixation and differ between indeterminate and determinate nodulating host plants of Rhizobium leguminosarum. Mol Plant Microbe Interact 8:14–22Google Scholar
  296. Rolfe BG, Innes RW, Schofield PR, Watson JW, Sargent CL, Kuempel PL, Plazinski J, Canter-Cremers H, Djordjevic MA (1985) Plant-secreted factors influence the expression of R. trifolii nodulation and host-range genes. In: Evans HJ, Bottomly PJ, Newton WE (eds) Nitrogen fixation research progress. Martinus Nijhoff Publishers, Boston, pp 79–85Google Scholar
  297. Rome S, Fernandez MP, Brunel B, Normand P, Cleyet-Marel JC (1996) Sinorhizobium medicae sp. nov. isolated from annual Medicago spp. Int J Syst Bacteriol 46:972–980PubMedGoogle Scholar
  298. Rossbach S, Kulpa DA, Rossbach U, De Bruijn FJ (1994) Molecular and genetic characterization of the rhizopine catabolism (mocabrc) genes of Rhizobium meliloti l5–30. Mol Gen Genet 245:11–24PubMedGoogle Scholar
  299. Rostas K, Kondorosi E, Horvath B, Simoncsits A, Kondorosi A (1986) Conservation of extended promoter regions of nodulation genes in Rhizobium. Proc Natl Acad Sci USA 83:1757–1761PubMedGoogle Scholar
  300. Ruvkin GB, Ausubel FM (1980) Interspecies homology of nitrogenase genes. Proc Natl Acad Sci USA 77:191–195Google Scholar
  301. Rynne FG, Glenn AR, Dilworth MJ (1994) Effect of mutations in aromatic catabolism on the persistence and competitiveness of Rhizobium leguminosarum bv. trifolii. Soil Biol Biochem 26:703–710Google Scholar
  302. Sadowsky MJ (1994) Microbial DNA fingerprinting and restriction fragment length polymorphism analysis. In: Weaver RW, Angle JS, Bottomley P (eds) Methods of soil analysis, chemical and microbiological properties of soils. ASA-SSSA, Madison, pp 647–664Google Scholar
  303. Sadowsky MJ, Graham PH (1998) Soil biology of the Rhizobiaceae. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiacea. Kluwer, Dordrecht, pp 155–172Google Scholar
  304. Sadowsky MJ, Hur HG (1998) Use of endogenous repeated sequences to fingerprint bacterial genomic DNA. In: Lupski JR, Weinstock G, de Bruijn FJ (eds) Bacterial genomes: structure and analysis. Chapman and Hall, New YorkGoogle Scholar
  305. Sadowsky MJ, Bohlool BB, Keyser HH (1987a) Serological relatedness of Rhizobium fredii to other rhizobia and to the bradyrhizobia. Appl Environ Microbiol 53:1785–1789PubMedGoogle Scholar
  306. Sadowsky MJ, Tully RE, Cregan PB, Keyser HH (1987b) Genetic diversity in Bradyrhizobium japonicum serogroup 123 and its relation to genotype specific nodulation of soybeans. Appl Environ Microbiol 53:2624–2630PubMedGoogle Scholar
  307. Sadowsky MJ, Olson ER, Foster VE, Kosslak RM, Verma DPS (1988) Two host-inducible genes of Rhizobium fredii and the characterization of the inducing compound. J Bacteriol 170:171–178PubMedGoogle Scholar
  308. Sadowsky MJ, Cregan PB, Rodriguez-Quinones F, Keyser HH (1990) Microbial influence on gene-for-gene interactions in legume-Rhizobium symbioses. Plant and Soil 129:53–60Google Scholar
  309. Sadowsky MJ, Cregan PB, Gottfert M, Sharma A, Gerhold D, Rodriguez-Quniones F, Keyser HH, Henneke H, Stacey G (1991) The Bradyrhizobium japonicum nolA gene and its involvement in the genotype-specific nodulation of soybeans. Proc Natl Acad Sci USA 88:637–641PubMedGoogle Scholar
  310. Sagan M, Gresshoff PM (1996) Developmental mapping of nodulation events in pea (Pisum sativum L.) using supernodulating plant genotypes and bacterial variability reveals both plant and Rhizobium control of nodulation regulation. Plant Sci 117:167–179Google Scholar
  311. Sanginga N, Danso SKA, Mulongoy K, Ojeifo AA (1994) Persistence and recovery of introduced Rhizobium 10 years after inoculation on Leucaena leucocephala grown on an alfisol in southwestern Nigeria. Plant Soil 159:199–204Google Scholar
  312. Sanjuan J, Olivares J (1989) Implication of nifA in regulation of genes located a Rhizobium meliloti cryptic plasmid that effect nodulation efficiency. J Bacteriol 171:4154–4161PubMedGoogle Scholar
  313. Sanjuan J, Carlson RW, Spaink HP, Bhat UP, Barbour WM, Glushka J, Stacey G (1992) A 2-O-methylfucose moiety is present in the lipo-oligosaccharide nodulation signal of Bradyrhizobium japonicum. Proc Natl Acad Sci USA 89:8789–8793PubMedGoogle Scholar
  314. Savka MA, Farrand SK (1997) Modification of rhizobacterial populations by engineering bacterium utilization of a novel plant source. Nat Biotechnol 15:363–368PubMedGoogle Scholar
  315. Sawada H, Ieki H, Oyaizu H, Matsumoto S (1993) Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. Int J Syst Bacteriol 43:694–702PubMedGoogle Scholar
  316. Sawada H, Kuykendall LD, Young JM (2003) Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J Gen Appl Microbiol 49:155–179PubMedGoogle Scholar
  317. Schlaman HRM, Phillips DA, Kondorosi E (1998) Genetic organization and transcriptional regulation of rhizobial nodulation genes. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiacea. Kluwer, Dordrecht, pp 351–386Google Scholar
  318. Schmeisser C, Liesegang H, Krysciak D, Bakkou N, Le Quéré A, Wollherr A, Heinemeyer I, Morgenstern B, Pommerening-Röser A, Flores M, Palacios R, Brenner S, Gottschalk G, Schmitz RA, Broughton WJ, Perret X, Strittmatter AW, Streit WR (2009) Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Appl Environ Microbiol 75:4035–4045PubMedGoogle Scholar
  319. Schmidt EL, Bankole RO, Bohlool BB (1968) Fluorescent antibody approach to study rhizobia in soil. J Bacteriol 95:1987–1992PubMedGoogle Scholar
  320. Scholla MH, Elkan GH (1984) Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int J Syst Bacteriol 34:484–486Google Scholar
  321. Schortemeyer M, Santruckova H, Sadowsky MJ (1997) Relationship between root length density and soil microorganisms in the rhizospheres of white clover and perennial ryegrass. Comm Soil Sci Plant Anal 28:1675–1682Google Scholar
  322. Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Ann Rev Genet 32:33–57PubMedGoogle Scholar
  323. Schultze M, Quiclet-Sire B, Kondorosi E, Virelizier H, Glushka N, Endre G, Gero D, Kondorosi A (1992) Rhizobium meliloti produces a family of sulphated lipooligosaccharides exhibiting different degrees of plant host specificity. Proc Natl Acad Sci USA 89:192–196PubMedGoogle Scholar
  324. Segovia L, Pinero D, Palacios R, Martinez-Romero E (1991) Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum. Appl Environ Microbiol 57:426–433PubMedGoogle Scholar
  325. Segovia L, Young JP, Martinez-Romero E (1993) Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 43:374–377PubMedGoogle Scholar
  326. Sen D, Weaver RW (1988) Nitrogenase acetylene activities of isolated peanut and cowpea bacteroids at optimal oxygen availability and comparison with whole nodule activities. J Exp Bot 35:785–789Google Scholar
  327. Shearman CA, Rossen L, Johnston AWB, Downie JA (1986) The Rhizobium leguminosarum nodulation gene nodF encodes a polypeptide similar to acyl carrier protein and is regulated by nodD plus a factor in pea root exudate. EMBO J 5:647PubMedGoogle Scholar
  328. Singleton PW, Stockinger KR (1983) Compensation against ineffective nodulation in soybean (Glycine max). Crop Sci 23:69–72Google Scholar
  329. Singleton PW, Tavares JW (1986) Inoculation response of legumes in relation to the number and effectiveness of indigenous Rhizobium populations. Appl Environ Microbiol 51:1013–1018PubMedGoogle Scholar
  330. Singleton P, Keyser HH, Sande E (2002) Development and evaluation of liquid inoculants. In: Herridge D (ed) Inoculants and nitrogen fixation of legumes in vietnam, ACIAR Proceedings 109e. ACIAR, Canberra, pp 52–66Google Scholar
  331. Slattery JF, Coventry DR (1993) Variation of soil populations of Rhizobium leguminosarum bv. trifolii and the occurrence of inoculant rhizobia in nodules of subterranean clover after pasture renovation in north eastern Victoria. Soil Biol Biochem 25:1725–1730Google Scholar
  332. Smith RS (1988) Nitragin bran inoculants technical bulletin. Lipha Tech, Milwaukee WI, p 9Google Scholar
  333. Smith RS (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492Google Scholar
  334. Smith RS, del Rio Escurra GA (1982) Soybean inoculant types and rates evaluated under dry and irrigated field conditions. J Agr Univ Puert Rico 66:241–249Google Scholar
  335. Smith RS, Ellis MA, Smith RE (1981) Effect of Rhizobium japonicum inoculation rates on soybean nodulation in a tropical soil. Agron J 73:505–508Google Scholar
  336. So RB, Ladha JK, Young JPW (1994) Photosynthetic symbionts of Aeschynomene form a cluster with bradyrhizobia on the basis of fatty acid and r RNA analysis. Int J Syst Bacteriol 44:392–403PubMedGoogle Scholar
  337. Somasegaran P, Hoben HJ (1994) Handbook for rhizobia. Springer, New York, p 450Google Scholar
  338. Souza V, Eguiarte L, Avila G, Cappello G, Gallardo C, Montoya J, Pinero D (1994) Genetic structure of Rhizobium etli biovar phaseoli associated with wild and cultivated bean plants (Phaseolus vulgaris and Phaseolus coccineus in Morelos Mexico). Appl Environ Microbiol 60:1260–1268PubMedGoogle Scholar
  339. Spaink HP (1995) The molecular basis of infection and nodulation by rhizobia – the ins and outs of sympathogenesis. Annu Rev Phytopathol 33:345–368PubMedGoogle Scholar
  340. Spaink HP, Wijffelman CA, Pees E, Okker RJH, Lugtenberg BJJ (1987) Rhizobium nodulation gene nodD as a determinant of host specificity. Nature 328:337–340Google Scholar
  341. Spaink HP, Sheeley DM, van Brussel AAN, Glushka J, York WS, Tak T, Geiger O, Kennedy EP, Reinholdt VN, Lugtenberg BJJ (1991) A novel highly unsaturated fatty acid moiety of lipooligosaccharide signals determines host specificity of Rhizobium. Nature 354:124–130Google Scholar
  342. Sparrow SD, Cochran VL, Sparrow EB (1995) Dinitrogen fixation by seven legume crops in Alaska. Agron J 87:34–41Google Scholar
  343. Squartini A, Struffi P, Doring H, Selenska-Pobell S, Tola E, Giacomini A, Vendramin E, Velazquez E, Mateos PF, Martínez-Molina E, Dazzo FB, Casella S, Nuti MP (2002) Rhizobium sullae sp. nov. (formerly ‘Rhizobium hedysari’), the root-nodule microsymbiont of Hedysarum coronarium L. Int J Syst Evol Microbiol 52:1267–1276PubMedGoogle Scholar
  344. Stephens JHG, Rask H (2000) Inoculant production and formulation. Field Crops Res 65:249–258Google Scholar
  345. Strain SR, Leung K, Whittam TS, de Bruijn FJ, Bottomley PJ (1994) Genetic structure of Rhizobium leguminosarum biovar trifolii and viciae populations found in two Oregon soils under different plant communities. Appl Environ Microbiol 60:2772–2778PubMedGoogle Scholar
  346. Strain SR, Whittam TS, Bottomley PJ (1995) Analysis of genetic structure in soil populations of Rhizobium leguminosarum recovered from the USA and UK. Mol Ecol 4:105–114Google Scholar
  347. Sugawara M, Okazaki S, Nukui N, Ezura H, Mitsui H, Minamisawa K (2006) Rhizobitoxine modulates plant-microbe interactions by ethylene inhibition. Biotechnol Adv 24:382–388PubMedGoogle Scholar
  348. Sullivan JT, Ronson CW (1998) Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci USA 95:5145–5149PubMedGoogle Scholar
  349. Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW (1995) Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci USA 92:8985–8989PubMedGoogle Scholar
  350. Sutton WD (1983) Nodule development and senescence. In: Broughton WJ (ed) Nitrogen fixation, vol 3, Legumes. Oxford University Press, Oxford, pp 144–212Google Scholar
  351. Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220PubMedGoogle Scholar
  352. Tan ZY, Kan FL, Peng GX, Wang ET, Reinhold-Hurek B, Chen WX (2001) Rhizobium yanglingense sp. nov., isolated from arid and semi-arid regions in China. Int J Syst Evol Microbiol 51:909–914PubMedGoogle Scholar
  353. Thies JE, Singleton PW, Bohlool BB (1991) Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field-grown legumes. Appl Environ Microbiol 57:19–28PubMedGoogle Scholar
  354. Thomas PM, Golly KF, Zyskind JW, Virginia RA (1994) Variation of clonal, mesquite-associated rhizobial and bradyrhizobial populations from surface and deep soils by symbiotic gene region restriction fragment length polymorphism and plasmid profile analysis. Appl Environ Microbiol 60:1146–1153PubMedGoogle Scholar
  355. Toledo I, Lloret L, Martinez-Romero E (2003) Sinorhizobium americanus sp. nov., a new Sinorhizobium species nodulating native Acacia spp. in Mexico. Syst Appl Microbiol 26:54–64PubMedGoogle Scholar
  356. Tong Z, Sadowsky MJ (1993) A selective medium for the isolation and quantification of Bradyrhizobium japonicum and Bradyrhizobium elkanii strains from soils and inoculants. Appl Environ Microbiol 60:581–586Google Scholar
  357. Truchet G, Roche P, Lerouge P, Vasse J, Camut S (1991) Sulphated lipo-oligosaccharide signals of the symbiotic prokaryote Rhizobium meliloti elicit root nodule organogenesis on the host plant Medicago sativa. Nature 351:670–673Google Scholar
  358. Trujillo ME, Willems A, Abril A, Planchuelo AM, Rivas R, Ludeña D, Mateos PF, Martínez-Molina E, Velázquez E (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318–1327PubMedGoogle Scholar
  359. Unkovich MJ, Pate JS, Sandford P (1997) Nitrogen fixation by annual legumes in Australian Mediterranean agriculture. Aust J Agric Res 48:267–293Google Scholar
  360. Valverde A, Velazquez E, Fernandez-Santos F, Vizcaino N, Rivas R, Mateos PF, Martinez-Molina E, Igual JM, Willems A (2005) Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989PubMedGoogle Scholar
  361. Valverde A, Igual JM, Peix A, Cervantes E, Velazquez E (2006) Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris. Int J Syst Evol Microbiol 56:2631–2637PubMedGoogle Scholar
  362. van Berkum P, Beyene D, Vera FT, Keyser HH (1995) Variability among Rhizobium strains originating from nodules of Vicia faba. Appl Environ Microbiol 61:2649–2653PubMedGoogle Scholar
  363. van Berkum P, Beyene D, Bao G, Campbell TA, Eardly BD (1998) Rhizobium mongolense sp. nov. is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(L.) Ledebour]. Int J Syst Bacteriol 48:13–22PubMedGoogle Scholar
  364. van Brussel A, Recourt K, Pees E, Spaink HP, Tak T, Wijffelman C, Kijne J, Lugtenberg BB (1990) A biovar specific signal of Rhizobium leguminosarum bv. viceae induces increased nodulation gene-inducing activity in root exudate of Vicia sativa sub-sp. nigra. J Bacteriol 172:5394–5401PubMedGoogle Scholar
  365. van der Drift KMGM, Olsthoorn MMA, Brull LP, Blok-Tip L, Thomas-Oates JE (1998) Mass spectrometric analysis of lipo-chitin oligosaccharides signal molecules mediating the host-specific legume-Rhizobium symbiosis. Mass Spectrom Rev 17:75–95PubMedGoogle Scholar
  366. Van Egaraat AWSM (1975) The possible role of homoserine in the development of Rhizobium leguminosarum in the rhizosphere of pea seedlings. Plant Soil 42:381–386Google Scholar
  367. van Rhijn P, Vanderleyden J (1995) The Rhizobium-plant symbiosis. Microbiol Rev 59:124–142PubMedGoogle Scholar
  368. Vance CP (1998) Legume symbiotic nitrogen fixation: agronomic aspects. In: Spaink HP et al (eds) The Rhizobiaceae. Kluwer, Dordrecht, pp 509–530Google Scholar
  369. Vandamme P, Goris J, Chen WM, de Vos P, Willems A (2002) Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512PubMedGoogle Scholar
  370. Velazquez E, Igual JM, Willems A, Fernandez MP, Munoz E, Mateos PF, Abril A, Toro N, Normand P, Cervantes E, Gillis M, Martinez-Molina E (2001) Mesorhizobium chacoense sp. nov. a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol 51:1011–1021PubMedGoogle Scholar
  371. Versalovic J, de Bruijn FJ, Lupksi JR (1998) Repetive sequence-based PCR (rep-PCR) DNA fingerprinting of bacterial genomes. In: de Bruijn FJ, Lupski JR, Weinstock GM (eds) Bacterial genomes: physical structure and analysis. Chapman and Hall, New York, pp 437–456Google Scholar
  372. Vidal C, Chaintreuil C, Berge O, Maure L, Escarre J, Bena G, Brunel B, Cleyet-Marel JC (2009) Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneria growing on metallicolous soil in Languedoc France. Int J Syst Evol Microbiol 59:850–855PubMedGoogle Scholar
  373. Vincent JM (1970) A manual for the practical study of root-nodule bacteria, vol 15, IBP handbook. Blackwell, Oxford, p 164Google Scholar
  374. Vinuesa P, Leon-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A, Perez-Galdona R, Werner D, Martinez-Romero E (2005) Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55:569–575PubMedGoogle Scholar
  375. Walley F, Clayton G, Gan Y, Lafond G (2004) Performance of rhizobial inoculant formulations in the field. Crop Manag. doi:10.1094/CM-2004-0301-03-RVGoogle Scholar
  376. Wang ET, van Berkum P, Beyene D, Sui XH, Dorado O, Chen WX, Martinez-Romero E (1998) Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int J Syst Bacteriol 48:687–699PubMedGoogle Scholar
  377. Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX, Martinez-Romero E (1999) Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49:51–65PubMedGoogle Scholar
  378. Wang ET, Tan ZY, Willems A, Fernandez-Lopez M, Reinhold-Hurek B, Martinez-Romero E (2002) Sinorhizobium morelense sp. nov., a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics. Int J Syst Evol Microbiol 52:1687–1693PubMedGoogle Scholar
  379. Wang FQ, Wang ET, Liu J, Chen Q, Sui XH, Chen WF, Chen WX (2007) Mesorhizobium albiziae sp. nov., a novel bacterium that nodulates Albizia kalkora in a subtropical region of China. Int J Syst Evol Microbiol 57:1192–1199PubMedGoogle Scholar
  380. Weaver RW, Frederick LR, Dumenil LC (1972) Effect of soybean cropping and soil properties on numbers of Rhizobium japonicum in Iowa soils. Soil Sci 114:137–141Google Scholar
  381. Wei GH, Wang ET, Tan ZY, Zhu ME, Chen WX (2002) Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera spp. and Kummerowia stipulacea. Int J Syst Evol Microbiol 52:2231–2239PubMedGoogle Scholar
  382. Wei GH, Tan ZY, Zhu ME, Wang ET, Han SZ, Chen WX (2003) Characterization of rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau region of China and description of Rhizobium loessense sp. nov. Int J Syst Evol Microbiol 53:1575–1583PubMedGoogle Scholar
  383. Weir BS (2011) The current taxonomy of rhizobia. New Zealand rhizobia website. http://www.rhizobia.co.nz/taxonomy/rhizobia.html. Last updated 13 March 2011
  384. Wheatcroft R, Watson RJ (1988) A positive strain identification method for Rhizobium meliloti. Appl Environ Microbiol 54:574–576PubMedGoogle Scholar
  385. Whitty PW, Powell W, Sprent JI (1994) Molecular separation of genera in Cassiinae (Leguminosae), and analysis of variation in the nodulating species of Chamaecrista. Mol Ecol 3:507–515PubMedGoogle Scholar
  386. Wijffelman CA, Pees E, van Brussel AA, Priem M, Okker R, Lugtenberg BJ (1985) Analysis of the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. In: Evans HJ, Bottomly PJ, Newton WE (eds) Nitrogen fixation research progress. Martinus Nijhoff, Boston, p 127Google Scholar
  387. Willems A (2006) The taxonomy of rhizobia: an overview. Plant Soil 287:3–14Google Scholar
  388. Wilson KJ, Sessitsch A, Corbo JC, Giller KE, Akkermans ADL, Jefferson RA (1995) B-glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other Gram-negative bacteria. Microbiology 141:1691–1705PubMedGoogle Scholar
  389. Wilson KJ, Parra A, Botero L (1999) Application of the GUS marker gene technique to high-throughput screening of rhizobial competition. Can J Microbiol 45:678–685Google Scholar
  390. Xi K, Stephens JHG, Verma PR (1996) Application of formulated rhizobacteria against root rot of field pea. Plant Path 45:1150–1158Google Scholar
  391. Xu LM, Ge C, Cui Z, Li J, Fan H (1995) Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int J Syst Bacteriol 45:706–711PubMedGoogle Scholar
  392. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36:1251–1275PubMedGoogle Scholar
  393. Yang S, Tang F, Gao M, Krishnan HB, Zhu H (2010) R-gene-controlled host specificity in the legume-rhizobia symbiosis. Proc Natl Acad Sci USA 107:18735–18740PubMedGoogle Scholar
  394. Yao ZY, Kan FL, Wang ET, Wei GH, Chen WX (2002) Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52:2219–2230PubMedGoogle Scholar
  395. Young JPW (1996) Phylogeny and taxonomy of rhizobia. Plant Soil 186:45–52Google Scholar
  396. Young JM (2003) The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen 1988, and Sinorhizobium morelense Wang et al. 2002 is a later synonym of Ensifer adhaerens Casida 1982. Is the combination ‘Sinorhizobium adhaerens’ (Casida 1982) Willems et al. legitimate? Request for an opinion. Int J Syst Evol Microbiol 53:2107–2110PubMedGoogle Scholar
  397. Young JM (2010) Sinorhizobium versus Ensifer: may a taxonomy subcommittee of the ICSP contradict the Judicial Commission? Int J Syst Evol Microbiol 60:1711–1713PubMedGoogle Scholar
  398. Young JPW, Haukka KE (1996) Diversity and phylogeny of rhizobia. New Phytol 133:87–94Google Scholar
  399. Young JPW, Wexler M (1988) Sym plasmid and chromosomal genotypes are correlated in field populations of Rhizobium leguminosarum. J Gen Microbiol 134:2731–2739Google Scholar
  400. Young JM, Kuykendall LD, Martinez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudieet al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103PubMedGoogle Scholar
  401. Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson AR, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34PubMedGoogle Scholar
  402. Zaat SAJ, Wijffelman CA, Spaink HP, van Brussel AAN, Okker RJH, Lugtenberg BJJ (1987) Induction of the nodA promoter of Rhizobium leguminosarum Sym plasmid pRL1JI by plant flavanones and flavones. J Bacteriol 169:198–204PubMedGoogle Scholar
  403. Zhang F, Dashti N, Hynes RK, Smith NL (1997) Plant growth promoting rhizobacteria and soybean (Glycine max (L.) Merr) growth and physiology at suboptimal root temperatures. Ann Bot 79:243–249Google Scholar
  404. Zhang RJ, Hou BC, Wang ET, Li Y, Zhang XX, Chen WX (2011) Rhizobium tubonense sp. nov., isolated from root nodules of Oxytropis glabra. Int J Syst Evol Microbiol 61:512–517PubMedGoogle Scholar
  405. Zhou PF, Chen WM, Wei GH (2010) Mesorhizobium robiniae sp. nov., isolated from root nodules of Robinia pseudoacacia. Int J Syst Evol Microbiol 60:2552–2556PubMedGoogle Scholar
  406. Zurdo-Piñeiro JL, Rivas R, Trujillo ME, Vizcaíno N, Carrasco JA, Chamber M, Palomares A, Mateos PF, Martínez-Molina E, Velázquez E (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Soil, Water, and ClimateUniversity of MinnesotaSaint PaulUSA

Personalised recommendations