Advertisement

Prokaryote Characterization and Identification

Reference work entry
  • 4.9k Downloads

Abstract

Systematics can be defined as the scientific study of organisms with the ultimate goal to characterize and arrange organisms in an orderly manner. Systematics also might be defined as “the study of organismal diversity and interrelationships.” As pointed out already by Cowan (1968), systematics includes taxonomy and aspects of ecology, biochemistry, microscopy, pathology, genetics, and molecular biology.

Keywords

Polar Lipid Mycolic Acid Average Nucleotide Identity Polar Lipid Profile Multilocus Sequence Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440PubMedGoogle Scholar
  2. Altenburger P, Kämpfer P, Akimov VN, Lubitz W, Busse H-J (1997) Polyamine distribution in actinomycetes with Group B peptidoglycan and species of the genera Brevibacterium, Corynebacterium, and Tsukamurella. Int J Syst Bacteriol 47:270–277Google Scholar
  3. Amann RI, Lin C, Key R, Montgomery L, Stahl DA (1992) Diversity among Fibrobacter isolates: towards a phylogenetic and habitat-based classification. Syst Appl Microbiol 15:23–31Google Scholar
  4. Anderson R (1983) Alkylamines: novel lipid constituents in Deinococcus radiodurans. Biochim Biophys Acta 753:266–268Google Scholar
  5. Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ, Oren A, Bejar V, Quesada V, Ventosa A (2007) Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol 57:2436–2446PubMedGoogle Scholar
  6. Austin B, Colwell RR (1977) Evaluation of some coefficients for use in numerical taxonomy of microorganisms. Int J Syst Bacteriol 27:204–210Google Scholar
  7. Bartual SG, Seifert H, Hippler C, Luzon MA, Wisplinghoff H, Rodriguez-Valera F (2005) Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J Clin Microbiol 43:4382–4390PubMedGoogle Scholar
  8. Beers RJ, Lockhard WR (1962) Experimental methods in computer taxonomy. J Gen Microbiol 28:633–640PubMedGoogle Scholar
  9. Bergey DH, Harrison FC, Breed RS, Hammer BW, Hantoon FM (eds) (1923) Bergey’s manual of determinative bacteriology, 1st edn. Williams and Wilkins, BaltimoreGoogle Scholar
  10. Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Bacteriol 52:1049–1070Google Scholar
  11. Breed RS, Murray EGD, Smith NR (eds) (1957) Bergey’s manual of determinative bacteriology, 7th edn. Williams & Wilkins, BaltimoreGoogle Scholar
  12. Brennan PJ (1988) Mycobacterium and other actinomycetes. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic, London, pp 203–298Google Scholar
  13. Brenner DJ (1973) Deoxyribonucleic acid reassociation in the taxonomy of enteric bacteria. Int J Syst Bacteriol 23:298–307Google Scholar
  14. Brenner DJ, Martin MA, Hoyer BH (1967) Deoxyribonucleic acid homologies among some bacteria. J Bacteriol 94:486–487PubMedGoogle Scholar
  15. Brenner DJ, Staley JT, Krieg NR (2001) Classification of prokaryotic organisms and the concept of bacterial speciation. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 27–31Google Scholar
  16. Brown DR, Whitcomb RF, Bradbury JM (2007) Revised minimal standards for description of new species of the class Mollicutes (division Tenericutes). Int J Syst Evol Microbiol 57:2703–2719PubMedGoogle Scholar
  17. Buchanan RE, Gibbons NE (eds) (1974) Bergey’s manual of determinative bacteriology, 8th edn. Williams & Wilkins, BaltimoreGoogle Scholar
  18. Busse H-J (2011) Polyamines. In: Rainey F, Oren A (eds) Taxonomy of prokaryotes, vol 38, Methods in microbiology. Elsevier, Amsterdam, pp 15–60Google Scholar
  19. Busse H-J, Auling G (1988) Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11:1–8Google Scholar
  20. Busse H-J, Schumann P (1999) Polyamine profiles within genera of the class Actinobacteria with LL-diaminopimelic acid in the peptidoglycan. Int J Syst Bacteriol 49:179–184PubMedGoogle Scholar
  21. Christensen H, Bisgaard M, Frederiksen W, Mutters R, Kuhnert P, Olsen JE (2001) Is characterization of a single isolate sufficient for valid publication of a new genus or species? Proposal to modify recommendation 30b of the bacteriological code (1990 revision). Int J Syst Evol Microbiol 51:2221–2225PubMedGoogle Scholar
  22. Christensen H, Kuhnert P, Busse H-J, Frederiksen WC, Bisgaard M (2007) Proposed minimal standards for the description of genera, species and subspecies of the Pasteurellaceae. Int J Syst Evol Microbiol 57:166–178PubMedGoogle Scholar
  23. Chun J, Lee J-H, Jung Y, Kim M, Kim S, Kim BK, Lim Y-W (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 5:2259–2261Google Scholar
  24. Cohn F (1875) Untersuchungen über Bacterien II. Beitr Biol Pflanz 1(3):141–208Google Scholar
  25. Cole JR, Konstandinidis K, Farris RJ, Tiedje JM (2010) Microbial diversity and phylogeny: extending from rRNAs to genomes. In: Liu W-T, Jackson JK (eds) Environmental molecular microbiology. Caister Academic Press, Norfolk, pp 1–19Google Scholar
  26. Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics, vol 20, SAB technical series. Academic, London, pp 267–287Google Scholar
  27. Collins MD (1994) Isoprenoid quinones. In: Goodfellow M, O’Donnell AG (eds) Chemical methods in prokaryotic systematics. Wiley, Chichester, pp 345–401Google Scholar
  28. Collins MD, Gilbart J (1983) New members of the coenzyme Q series from the Legionellaceae. FEMS Microbiol Lett 16:251–255Google Scholar
  29. Collins MD, Rodrigues U, Ash C, Aguirre M, Farrow JAE, Martinez-Murcia A, Phillips BA, Williams AM, Wallbanks S (1991) Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett 77:5–12Google Scholar
  30. Colwell RR (1970) Polyphasic taxonomy of bacteria. In: Iizuka H, Hasegawa T (eds) Culture collections of microorganisms. University of Tokyo Press, Tokyo, pp 421–436Google Scholar
  31. Cowan ST (1968) A dictionary of microbial taxonomic usage. Oliver & Boyd, EdinburghGoogle Scholar
  32. Cowan ST (1978) Hill LR (ed) Dictionary of microbial taxonomy. Cambridge University Press, CambridgeGoogle Scholar
  33. Cox AD, Wilkinson SG (1989) Polar lipids and fatty acids of Pseudomonas cepacia. Biochim Biophys Acta 1001:60–67PubMedGoogle Scholar
  34. Da Costa MS, Albuquerque L, Nobre MF, Wait R (2011) The extraction and identification of respiratory lipoquinones of prokaryotes and their sue in taxonomy. In: Rainey F, Oren A (eds) Taxonomy of prokaryotes, vol 38, Methods in microbiology. Elsevier, Amsterdam, pp 197–206Google Scholar
  35. Dagan T, Artzy-Randrup Y, Martin W (2008) Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci USA 105:10039–10044PubMedGoogle Scholar
  36. De Ley J, Park IW, Tijtgat R, van Ermengem J (1966) DNA homology and taxonomy of Pseudomonas and Xanthomonas. Microbiology 42:43–56Google Scholar
  37. De Vos P, Trüper HG (2000) Judicial Commission on the International Committee of Systematic Bacteriology. IXth International (IUMS) congress of bacteriology and applied microbiology. Minutes of the meetings, 14, 15, and 18 August 1999, Sydney, Australia. Int J Syst Evol Microbiol 50:2239–2244Google Scholar
  38. De Vos P, Trüper HG, Tindall BJ (2005) Judicial Commission of the International Committee on Systematics of Prokaryotes. Xth international (IUMS) congress of bacteriology and applied microbiology. Minutes of the Meetings. Int J Syst Evol Microbiol 55:525–532Google Scholar
  39. Deloger M, El Karoui M, Petit M-A (2009) A genomic distance based on MUM indicates discontinuity between most bacterial species and genera. J Bacteriol 191:91–99PubMedGoogle Scholar
  40. Dewhirst FE, Fox JG, On SLW (2000) Recommended minimal standards for describing new species of the genus Helicobacter. Int J Syst Evol Microbiol 50:2231–2237PubMedGoogle Scholar
  41. Diancourt L, Passet V, Nemec A, Dijkshoorn L, Brisse S (2010) The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One 5:e10034PubMedGoogle Scholar
  42. Dobson G, Minnikin DE, Minnikin SM, Parlett JH, Goodfellow M (1985) Systematic analysis of complex mycobacterial lipids. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics, vol 20, SAB technical series. Academic, London, pp 237–266Google Scholar
  43. Edwards JG (1978) Computer-assisted identification of unknown. In: Sharpe AN, Clark DS (eds) Mechanizing microbiology. Charles C. Thomas, Springfield, pp 280–292Google Scholar
  44. Eraso JM, Kaplan S (2009) Regulation of gene expression by PrrA in Rhodobacter sphaeroides 2.4.1: role of polyamines and DNA topology. J Bacteriol 191(13):4341–4352PubMedGoogle Scholar
  45. Faller AM, Schleifer KH (1981) Effect of growth phase and oxygen supply on cytochrome composition and morphology of Arthrobacter crystallopoietes. Curr Microbiol 6:253–258Google Scholar
  46. Faller AM, Götz F, Schleifer KH (1980) Cytochrome patterns of staphylococci and micrococci and their taxonomic implications Zentralbl. Bakteriol Mikrobiol Hyg Abt I Orig C1:26–39Google Scholar
  47. Felis GE, Dellaglio F (2007) On species descriptions based on a single strain: proposal to introduce the status species proponenda (sp. pr.). Int J Syst Evol Microbiol 57:2185–2187PubMedGoogle Scholar
  48. Feuerstein BG, Williams LD, Basu HS, Marton LJ (1991) Implications and concepts of polyamine-nucleic acid interactions. J Cell Biochem 46(1):37–47PubMedGoogle Scholar
  49. Fischer W (1988) Physiology of lipoteichoic acids in bacteria. Adv Microb Physiol 29:233–302PubMedGoogle Scholar
  50. Fox GE, Pechman KR, Woese CR (1977) Comparative cataloging of 16S ribosomal ribonucleic acid: molecular approach to prokaryotic systematics. Int J Syst Bacteriol 27:44–57Google Scholar
  51. Fox GE, Wisotzkey JD, Jurtshuk P Jr (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170PubMedGoogle Scholar
  52. Freney J, Kloos WE, Hajek V, Webster JA, Bes M, Brun Y, Vernozy-Rozand C (1999) Recommended minimal standards for description of new staphylococcal species. Int J Syst Bacteriol 49:489–502PubMedGoogle Scholar
  53. Fujita Y, Naka N, Doi T, Yano I (2005a) Direct molecular mass determination of trehalose monomycolate from 11 species of mycobacteria by MALDI-TOF mass spectrometry. Microbiology 151:1443–1452PubMedGoogle Scholar
  54. Fujita Y, Naka N, McNeil MR, Yano I (2005b) Intact molecular characterization of cord factor (trehalose 6,6′-dimycolate) from nine species of mycobacteria by MALDI-TOF mass spectrometry. Microbiology 151:3403–3416PubMedGoogle Scholar
  55. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ et al (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739PubMedGoogle Scholar
  56. Godchaux W, Leadbetter ER (1984) Sulfonolipids of gliding bacteria. Structure of the N-acylaminosulfonates. J Biol Chem 259:2982–2990PubMedGoogle Scholar
  57. Goodfellow M (1977) Numerical taxonomy. In: Laskin AI, Lechevalier HA (eds) CRC handbook of microbiology, vol 1, 2nd edn. CRC Press, Cleveland, pp 579–596Google Scholar
  58. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91PubMedGoogle Scholar
  59. Gram C (1884) Ueber die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpärparaten. Forschitte Med 2:185–189Google Scholar
  60. Grimont PAD, Popoff MY, Grimont F, Coynault C, Lemelin M (1980) Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr Microbiol 4:325–330Google Scholar
  61. Gyllenberg HG (1965) A model for computer identification of microorganisms. J Gen Microbiol 39:401–405PubMedGoogle Scholar
  62. Hamana K, Matsuzaki S (1992) Polyamines as a chemotaxonomic marker in bacterial systematics. Crit Rev Microbiol 18:261–283PubMedGoogle Scholar
  63. Hancock IC (1994) Analysis of cell wall constituents of Gram-positive bacteria. In: Goodfellow M, O’Donnell AG (eds) Chemical methods in prokaryotic systematics. Wiley, Chichester, pp 63–84Google Scholar
  64. Hase S, Rietschel ET (1976) Isolation and analysis of the lipid A backbone. Lipid A structure of lipopolysaccharides from various bacterial groups. Eur J Biochem 63:101–107PubMedGoogle Scholar
  65. Helander IM, Haikara A (1995) Cellular fatty acyl and alkenyl residues in Megasphaera and Pectinatus species: contrasting profiles and detection of beer spoilage. Microbiol 141:1131–1137Google Scholar
  66. Hill LR (1974) Theoretical aspects of numerical identification. Int J Syst Bacteriol 24:494–499Google Scholar
  67. Hirao T, Sato M, Shirahata AY, Kamio Y (2000) Covalent linkage of polyamines to peptidoglycan in Anaerovibrio lipolytica. J Bacteriol 182:1154–1157PubMedGoogle Scholar
  68. Holmes B, Hill LR (1985) Computers in diagnostic bacteriology, including identification. In: Goodfellow M, Jones D, Priest FG (eds) Computer assisted bacterial systematics. Academic, London, pp 265–287Google Scholar
  69. International Committee on Systematic Bacteriology Subcommittee on the Taxonomy of Mycoplasmatales (1972) Proposal for minimal standards for descriptions of new species of the order Mycoplasmatales. Int J Syst Bacteriol 22:184–188Google Scholar
  70. Johnson JL (1973) Use of nucleic-acid homologies in the taxonomy of anaerobic bacteria. Int J Syst Bacteriol 23:308–315Google Scholar
  71. Johnson JL (1984) Nucleic acids in bacterial classification. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 8–11Google Scholar
  72. Johnson JL, Ordal EJ (1968) Deoxyribonucleic acid homology in bacterial taxonomy. The effect of incubation temperature and reaction specificity. J Bacteriol 95:893–900PubMedGoogle Scholar
  73. Jolley KA, Maiden MC (2010) BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11:595PubMedGoogle Scholar
  74. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM et al (2012) Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology 158:1005–1015PubMedGoogle Scholar
  75. Jones CW, Poole RK (1985) The analysis of cytochromes. In: Gottschalk G (ed) Methods in microbiology, vol 18. Academic, London, pp 285–328Google Scholar
  76. Kamio Y, Nakamura K (1987) Putrescine and cadaverine are constituents of peptidoglycan in Veillonella alcalescens and Veillonella parvula. J Bacteriol 169:2881–2884PubMedGoogle Scholar
  77. Kamio Y, Itoh Y, Terawaki Y (1981a) Chemical structure of peptidoglycan in Selenomonas ruminantium: cadaverine links covalently to the d-glutamic acid residue of peptidoglycan. J Bacteriol 146:49–53PubMedGoogle Scholar
  78. Kamio Y, Itoh Y, Terawaki Y, Kusano T (1981b) Cadaverine is covalently linked to peptidoglycan in Selenomonas ruminantium. J Bacteriol 145:122–128PubMedGoogle Scholar
  79. Kämpfer P (2010) The importance of phenotype for bacterial systematics. Bull BISMiS 1(1):7–15Google Scholar
  80. Kämpfer P (2012) Systematics of prokaryotes: the state of the art. Antonie Van Leeuwenhoek 101(1):3–11PubMedGoogle Scholar
  81. Kämpfer P, Glaeser SP (2012) Prokaryotic taxonomy in the sequencing era—the polyphasic approach revisited. Environ Microbiol 14:291–317PubMedGoogle Scholar
  82. Kandler O, Hippe H (1977) Lack of peptidoglycan in the cell walls of Methanosarcina barkeri. Arch Microbiol 113:57–60PubMedGoogle Scholar
  83. Kaneko T (1979) Correlative similarity coefficient: new criterion for forming dendrograms. Int J Syst Bacteriol 29:188–193Google Scholar
  84. Karr DE, Bibb WF, Moss CW (1982) Isoprenoid quinones of the genus Legionella. J Clin Microbiol 15:1044–1048PubMedGoogle Scholar
  85. Kellogg ST (1979) MICRID: a computer-assisted microbial identification system. Appl Environ Microbiol 38:559–563PubMedGoogle Scholar
  86. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721PubMedGoogle Scholar
  87. Klenk H-P, Göker M (2010) En route to a genome-based classification of archaea and bacteria? Syst Appl Microbiol 33(4):175–182PubMedGoogle Scholar
  88. Koeppel A, Perry EB, Sikorski J, Krizanc D, Warner A, Ward DM et al (2008) Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc Natl Acad Sci USA 105:2504–2509PubMedGoogle Scholar
  89. König H (1994) Analysis of archaeal cell envelopes. In: Goodfellow M, O’Donnell AG (eds) Chemical methods in prokaryotic systematics. Wiley, Chichester, pp 85–119Google Scholar
  90. König H, Kralik R, Kandler O (1982) Structure and modifications of pseudomurein in Methanobacteriales. Zbl Bakt Hyg I Abt Orig C 3:179–191Google Scholar
  91. König H, Kandler O, Jensen M, Rietschel ET (1983) The primary structure of the glycan moiety of the pseudomurein from Methanobacterium thermoautotrophicum. Hoppe-Seyler’s Z Physiol Chem 364:627–636PubMedGoogle Scholar
  92. Konstantinidis KT, Tiedje JM (2005) Genomic insights into the species definition for prokaryotes. Proc Natl Acad Sci USA 102:2567–2572PubMedGoogle Scholar
  93. Konstantinidis KT, Ramette A, Tiedje JM (2006) The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 361:1929–1940PubMedGoogle Scholar
  94. Krieg NR, Padgett PJ (2011) Phenotypic and physiological characterization methods. In: Rainey F, Oren A (eds) Taxonomy of prokaryotes, vol 38, Methods in microbiology. Elsevier, Amsterdam, pp 15–60Google Scholar
  95. Kroppenstedt RM, Goodfellow M (1991) The family Thermomonosporaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, New York, pp 1085–1114Google Scholar
  96. Kroppenstedt RM, Stackebrandt E, Goodfellow M (1990) Taxonomic revision of the actinomycete genera Actinomadura and Microtetraspora. Syst Appl Microbiol 13:148–160Google Scholar
  97. Labeda DP (2000) International Committee on Systematic Bacteriology. IXth international (IUMS) congress of bacteriology and applied microbiology. Minutes of the meetings, 14 an 17 August 1999, Sydney, Australia. Int J Syst Evol Microbiol 50:2245–2247Google Scholar
  98. Langworthy TA, Holzer G, Zeikus JG, Tornabene TG (1983) Iso- and anteiso-branched glycerol diethers of the thermophilic anaerobes Thermodesulfobacterium commune. Syst Appl Microbiol 4:1–17PubMedGoogle Scholar
  99. Lapage SP, Bascomb B, Willcox WR, Curtis MA (1970) Computer identification of bacteria. In: Baillie A, Gilbert RJ (eds) Automation, mechanization, and data handling in microbiology. Academic, London, pp 1–22Google Scholar
  100. Lapage SP, Bascomb B, Willcox WR, Curtis MA (1973) Identification of bacteria by computer: general aspects and perspectives. J Gen Microbiol 77:273–299PubMedGoogle Scholar
  101. Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeliger HPR, Clark WA (1992) International code of nomenclature of bacteria (1990 revision). American Society for Microbiology, Washington, DCGoogle Scholar
  102. Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443Google Scholar
  103. Lévy-Frébault VV, Portaels F (1992) Proposed minimal standards for the genus Mycobacterium and for description of new slowly growing Mycobacterium species. Int J Syst Bacteriol 42:315–323PubMedGoogle Scholar
  104. Lienau EK, DeSalle R (2009) Evidence, content and corroboration and the tree of life. Acta Biotheor 57:187–199PubMedGoogle Scholar
  105. Logan NA, Berge O, Bishop AH, Busse H-J, De Vos P, Fritze D, Heyndrickx M, Kämpfer P, Rabinovitch L, Salkinoja-Salonen MS, Seldin L, Ventosa A (2009) Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121PubMedGoogle Scholar
  106. Ludwig W (2010) Molecular phylogeny of microorganisms: is rRNA still a useful marker? In: Oren A, Papke RT (eds) Molecular phylogeny of microorganisms. Caister Academic Press, NorfolkGoogle Scholar
  107. Ludwig W, Klenk H-P (2001) Overview: a phylogenetic backbone and taxonomic framework of prokaryotes. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 49–65Google Scholar
  108. Maiden MC, Bygraves JA, Feil E, Morelli G, Russel JE, Urwin R et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95:3140–3145PubMedGoogle Scholar
  109. Martinez-Murcia AJ, Collins MD (1990) A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett 70:73–84Google Scholar
  110. Martinez-Murcia AJ, Benlloch S, Collins MD (1992) Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA-DNA hybridisations. Int J Syst Bacteriol 42:412–421PubMedGoogle Scholar
  111. McCarthy BJ, Bolton ET (1963) An approach to the measurement of genetic relatedness among organisms. Proc Natl Acad Sci USA 50:156–164PubMedGoogle Scholar
  112. Miller LT (1982) A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 16:584–586PubMedGoogle Scholar
  113. Moore ERB, Rosselló-Móra R (2011) MALDI-TOF MS: a return to phenotyping in microbial identification? Syst Appl Microbiol 34:1PubMedGoogle Scholar
  114. Moore LVH, Bourne DM, Moore WEC (1994) Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic Gram-negative bacilli. Int J Syst Bacteriol 44:338–347PubMedGoogle Scholar
  115. Moore ERB, Mihaylova SA, Vandamme P, Krichevsky MI, Dijkshoorn L (2010) Microbial systematics and taxonomy: relevance for a microbial commons. Res Microbiol 161:430–438PubMedGoogle Scholar
  116. Müller K-D, Schmid EN, Kroppenstedt RM (1998) Improved identification of mycobacteria by using the microbial identification system in combination with additional trimethylsulfonium hydroxide pyrolysis. J Clin Microbiol 36:2477–2480PubMedGoogle Scholar
  117. Murray RGE, Schleifer KH (1994) Taxonomic notes: a proposal for recording the properties of putative taxa of prokaryotes. Int J Syst Bacteriol 44:174–176PubMedGoogle Scholar
  118. Murray RGE, Stackebrandt E (1995) Taxonomic note: implementation of the provisional status Candidatus for incompletely described prokaryotes. Int J Syst Bacteriol 45:186–187PubMedGoogle Scholar
  119. Murray RGE, Brenner DJ, Colwell RR, De Vos P, Goodfellow M, Grimont PAD, Pfennig N, Stackebrandt E, Zavarzin GA (1990) Report of the ad hoc committee on approaches to taxonomy within the Proteobacteria. Int J Syst Bacteriol 40:213–215Google Scholar
  120. Naka T, Fujiwaraa N, Yanoc I, Maedaa S, Doed M, Minaminob M, Ikedab N, Katob Y, Watabee K, Kumazawaf Y, Tomiyasug I, Kobayashia K (2003) Structural analysis of sphingophospholipids derived from Sphingobacterium spiritivorum, the type species of genus Sphingobacterium. Biochim Biophys Acta 1635:83–92PubMedGoogle Scholar
  121. Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev 67:686–723PubMedGoogle Scholar
  122. Oelze J (1985) Analysis of bacteriochlorophylls. In: Gottschalk G (ed) Methods in microbiology, vol 18. Academic, London, pp 257–284Google Scholar
  123. Oren A, Ventosa A, Grant WD (1997) Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Evol Microbiol 47:233–238Google Scholar
  124. Ourisson G, Rohmer M, Poralla K (1987) Prokaryotic hopanoides and other polyterpenoidsterol surrogates. Annu Rev Microbiol 41:301–333PubMedGoogle Scholar
  125. Pace B, Campbell LL (1971) Homology of ribosomal ribonucleic acid of diverse bacterial species with Escherichia coli and Bacillus stearothermophilus. J Bacteriol 107:543–547PubMedGoogle Scholar
  126. Palleroni NJ, Kunisawa R, Contopoulou R, Doudoroff M (1973) Nucleic acid homologies in the genus Pseudomonas. Int J Syst Bacteriol 23:333–339Google Scholar
  127. Peplies J, Kottmann R, Ludwig W, Glöckner F-O (2008) A standard operating procedure for phylogenetic inference (SOPPI) using (rRNA) marker genes. Syst Appl Microbiol 31:251–257PubMedGoogle Scholar
  128. Pfennig N, Wagener S (1986) An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Methods 4:303–306Google Scholar
  129. Rahman O, Dover LG, Sutcliffe IC (2009a) Lipoteichoic acid biosynthesis: two steps forwards, one step sideways? Trends Microbiol 17:219–225PubMedGoogle Scholar
  130. Rahman O, Pfitzenmaier M, Pester O, Morath S, Cummings SP, Hartung T, Sutcliffe IC (2009b) Macroamphiphilic components of thermophilic actinomycetes: identification of lipoteichoic acid in Thermobifida fusca. J Bacteriol 191:152–160PubMedGoogle Scholar
  131. Rainey FA, Klatte S, Kroppenstedt RM, Stackebrandt E (1995) Dietzia, new genus including Dietzia maris comb. nov., formerly Rhodococcus maris. Int J Syst Bacteriol 45:32–36PubMedGoogle Scholar
  132. Rainey FA, Oren A (2012) Taxonomy of prokaryotes – introduction. Methods Microbiol 38:1–5Google Scholar
  133. Ratledge C, Wilkinson SG (1988) Microbial lipids, vol 1. Academic, LondonGoogle Scholar
  134. Rhodes ME (1965) Flagellation as a criterion for the classification of bacteria. Bacteriol Rev 29:442–465PubMedGoogle Scholar
  135. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131PubMedGoogle Scholar
  136. Rosselló-Móra R (2006) DNA-DNA reassociation methods applied to microbial taxonomy and their critical evaluation. In: Stackebrandt E (ed) Molecular identification, systematics, and population structure of prokaryotes. Springer, Heidelberg/Berlin, pp 23–50Google Scholar
  137. Rosselló-Móra R (2012) Towards a taxonomy of bacteria and archaea based on interactive and cumulative data repositories. Environ Microbiol 14:318–334PubMedGoogle Scholar
  138. Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67PubMedGoogle Scholar
  139. Rütters H, Sass H, Cypionka H, Rullkötter J (2001) Monalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina vaiabilis and Desulforhabdus aminigenus. Arch Microbiol 176:435–442PubMedGoogle Scholar
  140. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491PubMedGoogle Scholar
  141. Scherer P, Kneifel H (1983) Distribution of polyamines in methanogenic bacteria. J Bacteriol 154:1315–1322PubMedGoogle Scholar
  142. Schindler J, Duben J, Lysenko O (1979) Computer-aided numerical identification of Gram-negative fermentative rods on a desk-top computer. J Appl Bacteriol 47:45–51PubMedGoogle Scholar
  143. Schleifer K-H (2009) Classification of bacteria and archaea: past, present and future. Syst Appl Microbiol 32:533–542PubMedGoogle Scholar
  144. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477PubMedGoogle Scholar
  145. Schleifer KH, Ludwig W (1989) Phylogenetic relationships among bacteria. In: Fernholm B, Bremer K, Jörnvall H (eds) The hierarchy of life. Elsevier, Amsterdam, pp 103–117Google Scholar
  146. Schleifer KH, Hammes WP, Kandler O (1976) Effect of endogenous and exogenous factors on the primary structures of bacterial peptidoglycan. Adv Microb Physiol 13:245–292PubMedGoogle Scholar
  147. Schleifer K-H, Steber J, Mayer H (1982) Chemical composition and structure of the cell wall of Halococcus morrhuae. Zbl Bakt Hyg I Abt Orig C 3:171–178Google Scholar
  148. Schumann P, Kämpfer P, Busse H-J, Evtushenko LI, For the Subcommittee on the Taxonomy of the suborder Micrococcineae of the International Committee on Systematics of Prokaryotes (2009) Proposed minimal standards for describing new genera and species of the suborder Micrococcineae. Int J Syst Bacteriol 59:1823–1849Google Scholar
  149. Shively JM (1974) Inclusion bodies of prokaryotes. Annu Rev Microbiol 28:167–187PubMedGoogle Scholar
  150. Simpson GG (1961) Principles of animal taxonomy. Columbia University Press, New YorkGoogle Scholar
  151. Skerman VBD (1967) A guide to the identification of the genera of bacteria, 2nd edn. Williams & Wilkins, BaltimoreGoogle Scholar
  152. Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420Google Scholar
  153. Skerman VDB, McGowan V, Sneath PHA (1989) The approved lists of bacterial names. Int J Syst Bacteriol 30:225–420Google Scholar
  154. Sneath PHA (1971) Theoretical aspects of microbiological taxonomy. In: Pérez-Miravete A, Peláez D (eds) Recent advances in microbiology. Asociacióon Mexicana de Microbiología, Mexico City, pp 581–586Google Scholar
  155. Sneath PHA (1972) Computer taxonomy. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 7A. Academic, London, pp 29–98Google Scholar
  156. Sneath PHA (1977) The maintenance of large numbers of strains of microorganisms, and the implications for culture collections. FEMS Microbiol Lett 1:333–334Google Scholar
  157. Sneath PHA (1979a) BASIC program for a significance test for two clusters in Euclidian space as measured by their overlap. Comput Geosci 5:143–155Google Scholar
  158. Sneath PHA (1979b) BASIC program for identification of an unknown with presence-absence data against an identification matrix of percent positive characters. Comput Geosci 5:195–213Google Scholar
  159. Sneath PHA (1979c) BASIC program for character separation indices from an identification matrix of percent positive characters. Comput Geosci 5:349–357Google Scholar
  160. Sneath PHA (1980a) BASIC program for the most diagnostic properties of groups from an identification matrix of percent positive characters. Comput Geosci 6:21–26Google Scholar
  161. Sneath PHA (1980b) BASIC program for determining the best identification scores possible for the most typical example when compared with an identification matrix of percent positive characters. Comput Geosci 6:27–34Google Scholar
  162. Sneath PHA (1980c) BASIC program for determining overlap between groups in an identification matrix of percent positive characters. Comput Geosci 6:267–278Google Scholar
  163. Sneath PHA (1989) Analysis and interpretation of sequence data for bacterial systematics—the view of a numerical taxonomist. Syst Appl Microbiol 12:15–31Google Scholar
  164. Sneath PHA (2001) Bacterial nomenclature. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 83–88Google Scholar
  165. Sneath PHA (2005) The preparation of the approved lists of bacterial names. Int J Syst Evol Microbiol 55:2247–2249PubMedGoogle Scholar
  166. Sneath PHA, Sokal RR (1973) Numerical taxonomy, the principles and practice of numerical classification. Freeman, San FranciscoGoogle Scholar
  167. Sokal RR, Sneath PHA (1963) Numerical taxonomy. Freeman, San FranciscoGoogle Scholar
  168. Soria-Carrasco V, Valens-Vadell M, Peña A, Antón J, Amann R, Castresana J, Rosselló-Móra R (2007) Phylogenetic position of Salinibacter ruber based on concatenated protein alignments. Syst Appl Microbiol 30:171–179PubMedGoogle Scholar
  169. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 8:6–9Google Scholar
  170. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849Google Scholar
  171. Stackebrandt E, Woese CR (1981) Towards a phylogeny of the Actinomycetes and related organism. Curr Microbiol 5:197–202Google Scholar
  172. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kämpfer P, Maiden MCJ et al (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047PubMedGoogle Scholar
  173. Staehelin LA, Golecki JR, Fuller RC, Drews G (1978) Visualization of the supramolecular architecture of chlorosomes (chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus. Arch Microbiol 119:269–277Google Scholar
  174. Staley JT, Krieg NR (1984) Classification of prokaryotic organisms: an overview. In: Murray RG, Brenner DJ, Bryant MP, Holt JG, Krieg NR, Moulder JW, Pfennig N, Sneath PHA, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 1–4Google Scholar
  175. Stanier RY, Van Niel CB (1962) The concept of a bacterium. Arch Microbiol 42:7–35Google Scholar
  176. Stanier RY, Ingraham JL, Wheelis ML, Paintes PR (1986) The microbial world, 5th edn. Prentice-Hall, Englewood CliffsGoogle Scholar
  177. Tindall BJ (1999) Misunderstanding the bacteriological code. Int J Syst Bacteriol 49:1313–1316PubMedGoogle Scholar
  178. Tindall BJ (2005) Respiratory lipoquinones as biomarkers. In: Akkermans A, de Bruijn F, van Elsas D (eds) Molecular microbial ecology manual, 2nd edn. Kluwer, Dordrecht, Section 4.1.5, Supplement 1Google Scholar
  179. Tindall BJ (2008) Confirmation of deposit, but confirmation of what? Int J Syst Evol Microbiol 58:1785–1787PubMedGoogle Scholar
  180. Tindall BJ, Garrity GM (2008) Proposals to clarify how type strains are deposited and made available to the scientific community for the purpose of systematic research. Int J Syst Evol Microbiol 58:1987–1990PubMedGoogle Scholar
  181. Tindall BJ, Kämpfer P, Euzéby JP, Oren A (2006) Valid publication of names of prokaryotes according to the rules of nomenclature: past history and current practice. Int J Syst Evol Microbiol 56:2715–2720PubMedGoogle Scholar
  182. Tindall BJ, Sikorski J, Smibert RM, Krieg NR (2007) Phenotypic characterization and the principles of comparative systematics. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM, Snyder LR (eds) Methods for general and molecular microbiology. ASM Press, Washington, DC, pp 330–393Google Scholar
  183. Tindall BJ, Rosselló-Mora R, Busse H-J, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266PubMedGoogle Scholar
  184. Torkko P, Katila M-L, Kontro M (2003) Gas-chromatographic lipid profiles in identification of currently known slowly growing environmental mycobacteria. J Med Microbiol 52:315–323PubMedGoogle Scholar
  185. Tornabene TG (1985) Lipid analysis and the relationship to chemotaxonomy. In: Gottschalk G (ed) Methods in microbiology, vol 18. Academic, London, pp 209–234Google Scholar
  186. Trüper HG, Euzéby JP (2009) International code of nomenclature of prokaryotes. Appendix 9: orthography. Int J Syst Evol Microbiol 59(Pt 8):2107–2113PubMedGoogle Scholar
  187. Trüper HG, Schleifer KH (2006) Prokaryote characterization and identification. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria, vol 1, 3rd edn. Springer, New York, pp 58–79Google Scholar
  188. Ursing J, Rosselló-Mora RA, Garcia-Valdez E, Lalucat J (1995) Taxonomic note: a pragmatic approach to the nomenclature of phenotypically similar genomic groups. Int J Syst Bacteriol 45:604Google Scholar
  189. Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438PubMedGoogle Scholar
  190. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464Google Scholar
  191. Weckesser J, Mayer H (1988) Different lipid A types in lipopolysaccharides of phototrophic and related non-phototrophic bacteria. FEMS Microbiol Rev 54:1431–1454Google Scholar
  192. Welker M, Moore ER (2011) Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol 34:2–11Google Scholar
  193. Willumsen P, Karlson U, Stackebrandt E, Kroppenstedt RM (2001) Mycobacterium frederiksbergense sp. nov., a novel polycyclic aromatic hydrocarbon-degrading Mycobacterium species. Int J Syst Evol Microbiol 51:1715–1722PubMedGoogle Scholar
  194. Wisplinghoff H, Hippler C, Bartual SG, Haefs C, Stefanik D, Higgins PG, Seifert H (2008) Molecular epidemiology of clinical Acinetobacter baumannii and Acinetobacter genomic species 13TU isolates using a multilocus sequencing typing scheme. Clin Microbiol Infect 14:708–715PubMedGoogle Scholar
  195. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedGoogle Scholar
  196. Woese CR, Fox G (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090PubMedGoogle Scholar
  197. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposla for the domains: archaea. Bacteria and Eucarya. Proc Natl Acad Sci USA 87:4576–4579PubMedGoogle Scholar
  198. Wolf Y, Rogozin I, Grishin N, Tatusov R, Koonin E (2001) Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol Biol 1:8PubMedGoogle Scholar
  199. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glöckner FO, Rossello-Mora R (2008) The all-species living tree project: A 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für Angewandte MikrobiologieJustus-Liebig-University GiessenGießenGermany

Personalised recommendations