Marine Chemosynthetic Symbioses

  • Colleen M. Cavanaugh
  • Zoe P. McKiness
  • Irene L. G. Newton
  • Frank J. Stewart


Bacteria and marine eukaryotes often coexist in symbioses that significantly influence the ecology, physiology, and evolution of both partners. De Bary (1879) defined symbiosis as “the living together of differently named organisms,” implying that the term encompasses both positive (e.g., mutualism) and negative (e.g., parasitism) associations. Many researchers now view symbiotic interactions as those that persist over the majority of the lifespan of the organisms involved and that provide benefits to each partner beyond those obtained in the absence of association. This chapter describes such symbioses, specifically those between marine invertebrate and protist hosts and chemosynthetic bacterial symbionts.


Dissolve Inorganic Carbon Dissolve Inorganic Nitrogen Hydrothermal Vent Bacterial Symbiont Ridge Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank our colleagues and collaborators for active discussions on chemosynthetic symbioses and for their scientific contributions. Without the chief scientists, captains, and crews of the research vessels (including R/V Atlantis II, R/V Atlantis, and R/V Knorr), and the expedition leaders and crews of Deep Submergence Vehicle (DSV) Alvin and the remotely operated vehicles, we could not explore the vast unknown deep sea—to them we are grateful. Research in my laboratory (CMC) on chemosynthetic symbioses has been supported by grants from NSF (Biological Oceanography, RIDGE, Cell Biology), the Office of Naval Research, NOAA National Undersea Research Center for the West Coast and Polar Regions, and NASA (Exobiology) and by graduate fellowships from the NIH, NSF (IGERT), and Howard Hughes Medical Institute, which we gratefully acknowledge.


  1. Alt JC (1995) Subseafloor processes in mid-ocean ridge hydrothermal systems. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. American Geophysical Union, Geophysical Monograph 91Google Scholar
  2. Anderson A, Childress J, Favuzzi J (1987) Net uptake of CO2 driven by sulfide and thiosulfite oxidation in the bacterial symbiont-containing clam Solemya reidi. J Exp Biol 133:1–131Google Scholar
  3. Anthony C (1982) The biochemistry of methylotrophs. Academic, LondonGoogle Scholar
  4. Arp AJ, Childress JJ, Fisher CRJ (1984) Metabolic and blood gas transport characteristics of the hydrothermal vent bivalve Calyptogena magnifica. Physiol Zool 57:648–662Google Scholar
  5. Arp AJ, Childress JJ, Fisher CR (1985) Blood gas transport in Riftia pachyptila. Bull Biol Soc Wash 6:289–300Google Scholar
  6. Arp AJ, Childress JJ, Vetter RD (1987) The sulphide-binding protein in the blood of the vestimentiferan tube-worm, Riftia Pachyptila, is the extracellular haemoglobin. J Exp Biol 128:139–158Google Scholar
  7. Bailly X, Jollivet D, Vanin S, Deutsch J, Zal F, Lallier F, Toulmond A (2002) Evolution of the sulfide-binding function within the globin multigenic family of the deep-sea hydrothermal vent tubeworm Riftia pachyptila. Mol Biol Evol 19:1421–1433PubMedGoogle Scholar
  8. Bailly X, Leroy R, Carney S, Collin O, Zal F, Toulmond A, Jollivet D (2003) The loss of the hemoglobin H2S-binding function in annelids from sulfide-free habitats reveals molecular adaptation driven by Darwinian positive selection. Proc Natl Acad Sci USA 100:5885–5890PubMedGoogle Scholar
  9. Barry JP, Buck KR, Kochevar RK, Nelson DC, Fujiwara Y, Goffredi SK, Hashimoto J (2002) Methane-based symbiosis in a mussel, Bathymodiolus platifrons, from cold seeps in Sagami Bay, Japan Invertebr. Biol 121:47–54Google Scholar
  10. Bauer-Nebelsick M, Bardele CF, Ott JA (1996) Electron microscopic studies on Zoothamnium niveum (Hemprich & Ehrenberg, 1831) Ehrenberg 1838 (Oligohymenophora, Peritrichida), a ciliate with ectosymbiotic, chemoautotrophic bacteria. Eur J Protistol 32:202–215Google Scholar
  11. Bennett BA, Smith CR, Glaser B, Maybaum HL (1994) Faunal community structure of a chemoautotrophic assemblage on whale bones in the deep northeast Pacific Ocean. Mar Ecol Progr Ser 108:205–223Google Scholar
  12. Bergquist DC, Ward T, Cordes EE, McNelis T, Howlett S, Kosoff R, Hourdez S, Carney R, Fisher CR (2003) Community structure of vestimentiferan-generated habitat islands from Gulf of Mexico cold seeps. J Exp Mar Biol Ecol 289:197–222Google Scholar
  13. Bilyard GR, Carey AG (1980) Zoogeography of Western Beaufort Sea Polychaeta (Annelida). Sarsia 65:19–25Google Scholar
  14. Black MB, Lutz RA, Vrifenhoek RC (1994) Gene flow among vestimentiferan tube worm (Riftia pachyptila) populations from hydrothermal vents of the Eastern Pacific. Mar Biol 120:33–39Google Scholar
  15. Black MB, Trivedi A, Maas PAY, Lutz RA, Vrijenhoek RC (1998) Population genetics and biogeography of vestimentiferan tube worms. Deep Sea Res Pt II Top Stud Oceanogr 45:365–382Google Scholar
  16. Boetius A, Felbeck H (1995) Digestive enzymes in marine-invertebrates from hydrothermal vents and other reducing environments. Mar Biol 122:105–113Google Scholar
  17. Bosch C, Grassé PP (1984) Cycle partiel des bactéries chimioautotrophes symbiotiques et eurs rapports avec les bacteriocytes chez Riftia pachyptila Jones (Pogonophore Vestimentifére). II: L’evolution des bactéries symbotiques et des bacteriocytes. Comptes Rendus L’Acad. Sci Ser III: Sciences de la Vie—Life Sciences 299:413–319Google Scholar
  18. Boss KJ, Turner RD (1980) The giant white clam from the Galapagos Rift, Calyptogena magnifica species novum. Malacologia 20:161–194Google Scholar
  19. Bright M, Keckeis H, Fisher CR (2000) An autoradiographic examination of carbon fixation, transfer and utilization in the Riftia pachyptila symbiosis. Mar Biol 136:621–632Google Scholar
  20. Brigmon RL, De Ridder C (1998) Symbiotic relationship of Thiothrix spp. with an echinoderm. Appl Environ Microbiol 64:3491–3495PubMedGoogle Scholar
  21. Brooks JM, Kennicutt MC 2nd, Fisher CR, Macko SA, Cole K, Childress JJ, Bidigare RR, Vetter RD (1987) Deep-sea hydrocarbon seep communities: evidence for energy and nutritional carbon sources. Science 238:1138–1142PubMedGoogle Scholar
  22. Buck KR, Barry JP, Simpson AGB (2000) Monterey Bay cold seep biota: Euglenozoa with chemoautotrophic bacterial epibionts. Eur J Protistol 36:117–126Google Scholar
  23. Campbell BJ, Stein JL, Cary SC (2003) Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana, a hydrothermal vent polychaete. Appl Environ Microbiol 69:5070–5078PubMedGoogle Scholar
  24. Cary SC, Giovannoni SJ (1993) Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps. Proc Natl Acad Sci USA 90:5695–5699PubMedGoogle Scholar
  25. Cary SC, Warren W, Anderson E, Giovannoni SJ (1993) Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques. Mol Mar Biol Biotechnol 2:51–62PubMedGoogle Scholar
  26. Cary SC (1994) Vertical transmission of a chemoautotrophic aymbiont in the protobranch bivalve, Solemya reidi. Mol Mar Biol Biotechnol 3:121–130PubMedGoogle Scholar
  27. Cary SC, Cottrell MT, Stein JL, Camacho F, Desbruyères D (1997) Molecular identification and localization of filamentous symbiotic bacteria associated with the hydrothermal vent annelid Alvinella pompejana. Appl Environ Microbiol 63:1124–1130PubMedGoogle Scholar
  28. Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340–342PubMedGoogle Scholar
  29. Cavanaugh CM (1983) Symbiotic chemoautotrophic bacteria in marine invertebrates from sulfide-rich habitats. Nature 302:58–61Google Scholar
  30. Cavanaugh CM (1985) Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Biol Soc Wash Bull 6:373–388Google Scholar
  31. Cavanaugh CM, Levering PR, Maki JS, Mitchell R, Lidstrom ME (1987) Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature 325:346–348Google Scholar
  32. Cavanaugh CM, Abbott MS, Veenhuis M (1988) Immunochemical localization of ribulose-1,5-bisphosphate carboxylase in the symbiont-containing gills of Solemya velum (Bivalvia:Mollusca). Proc Natl Acad Sci USA 85:7786–7789PubMedGoogle Scholar
  33. Cavanaugh CM, Wirsen C, Jannasch HJ (1992) Evidence for methylotrophic symbionts in a hydrothermal vent mussel (Bivalvia:Mytilidae) from the Mid-Atlantic ridge. Appl Environ Microbiol 58:3799–3803PubMedGoogle Scholar
  34. Cavanaugh CM (1993) Methanotroph-invertebrate symbioses in the marine environment: ultrastructural, biochemical, and molecular studies. In: Murrell JC, Kelly DP (eds) Microbial growth on C1 compounds interceptGoogle Scholar
  35. Cavanaugh CM (1994) Microbial symbiosis: patterns of diversity in the marine environment. Am Zool 34:79–89Google Scholar
  36. Cavanaugh CM, Robinson JJ (1996) CO2 fixation in chemoautotroph-invertebrate symbioses: expression of form I and form II RuBisCO. In: Lidstrom ME, Tabita FR (eds) Microbial growth on C1 compounds. Kluwer, The NetherlandsGoogle Scholar
  37. Chen XA, Li S, Aksoy S (1999) Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia. J Mol Evol 48:49–58PubMedGoogle Scholar
  38. Childress JJ, Fisher CR, Brooks JM, Kennicutt MC 2nd, Bidigare R, Anderson AE (1986) A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas. Science 233:1306–1308PubMedGoogle Scholar
  39. Childress JJ, Fisher CR, Favuzzi JA, Kochevar RE, Sanders NK, Alayse AM (1991) Sulfide-driven autotrophic balance in the bacterial symbiont-containing hydrothermal vent tubeworm, Riftia pachyptila Jones. Biol Bull 180:135–153Google Scholar
  40. Childress JJ, Fisher CR (1992) The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses. Oceanogr Mar Biol Annu Rev 30:337–441Google Scholar
  41. Childress JJ, Lee RW, Sanders NK, Felbeck H, Oros DR, Toulmond A, Desbruyères D, Kennicutt MC, Brooks J (1993) Inorganic carbon uptake in hydrothermal vent tubeworms facilitated by high environmental pCO2. Nature 362:147–169Google Scholar
  42. CoBabe EA (1991) Lucinid Bivalve evolution and the detection of chemosymbiosis in the fossil record (Ph.D. thesis). Harvard University, Cambridge, MAGoogle Scholar
  43. Colaco A, Dehairs F, Desbruyères D (2002) Nutritional relations of deep-sea hydrothermal fields at the Mid-Atlantic ridge: a stable isotope approach. Deep Sea Res Pt I Oceanogr Res Pap 49:395–412Google Scholar
  44. Conway N, Capuzzo J, Fry B (1989) The role of endosymbiotic bacteria in the nutrition of Solemya velum: evidence from a stable isotope analysis of endosymbionts and hosts. Limnol Oceanogr 34:249–255Google Scholar
  45. Conway N, Capuzzo JM (1991) Incorporation and utilization of bacterial lipids in the Solemya velum symbiosis. Mar Biol 108:277–292Google Scholar
  46. Conway NM, McDowell Capuzzo JE (1992) High taurine levels in the Solemya velum symbiosis. Comp Biochem Physiol B 102:175–185PubMedGoogle Scholar
  47. Conway N, Kennicutt MC, Van Dover CL (1992) Stable isotopes in the study of marine chemosynthesis-based ecosystems. In: Lajtha K, Michener R (eds) Stable isotopes in ecology. Blackwell, Oxford, UKGoogle Scholar
  48. Corliss JB, Dymond J, Gordon LI, Edmond JM, Herzen RPV, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, Van Andel TH (1979) Submarine thermal springs on the Galapagos Rift. Science 203:1073–1083PubMedGoogle Scholar
  49. Craddock C, Hoeh WR, Lutz RA, Vrijenhoek RC (1995) Extensive gene flow among mytilid (Bathymodiolis thermophilus) populations from hydrothermal vents of the Eastern Pacific. Mar Biol 124:137–146Google Scholar
  50. Dale C, Wang B, Moran N, Ochman H (2003) Loss of DNA recombinational repair enzymes in the initial stages of genome degeneration. Mol Biol Evol 20:1188–1194PubMedGoogle Scholar
  51. Dando PR, Southward AJ (1986) Chemoautotrophy in the bivalve molluscs of the genus Thyasira. J Mar Biol Assoc UK 66:915–929Google Scholar
  52. Dando PR, Spiro B (1993) Varying nutritional dependence of the thyasirid bivalves Thyasira sarsi and T equalis on chemoautotrophic symbiotic bacteria, demonstrated by isotope ratios of tissue carbon and shell carbonate. Mar Ecol Progr Ser 92:151–158Google Scholar
  53. De Bary A (1879) Die Erscheinung der Symbiose. Verlag von Karl J Trubner, StrasburgGoogle Scholar
  54. de Burgh ME, Singla CL (1984) Bacterial colonization and endocytosis on the gill of a new limpet species from a hydrothermal vent. Mar Biol 84:1–6Google Scholar
  55. de Burgh ME, Juniper SK, Singla CL (1989) Bacterial symbiosis in northeast Pacific vestimentifera—a TEM study. Mar Biol 101:97–105Google Scholar
  56. De Cian MC, Andersen AC, Bailly X, Lallier FH (2003a) Expression and localization of carbonic anhydrase and ATPases in the symbiotic tubeworm Riftia pachyptila. J Exp Biol 206:399–409PubMedGoogle Scholar
  57. De Cian MC, Bailly X, Morales J, Strub JM, Van Dorsselaer A, Lallier FH (2003b) Characterization of carbonic anhydrases from Riftia pachyptila, a symbiotic invertebrate from deep-sea hydrothermal vents. Prot Struct Funct Genet 51:327–339Google Scholar
  58. Degnan PH, Lazarus AB, Brock CD, Wernegreen JJ (2004) Host-symbiont stability and fast evolutionary rates in an ant-bacterium association: cospeciation of Camponotus species and their endosymbionts, Candidatus blochmannia. System Biol 53:95–110Google Scholar
  59. DeNiro MJ, Epstein S (1979) Relationship between the oxygen isotope ratios of terrestrial plant cellulose, carbon dioxide, and water. Science 204:51–53PubMedGoogle Scholar
  60. Desbruyères D, Gaill F, Laubier L, Prieur D, Rau GH (1983) Unusual nutrition of the “Pompeii worm” Alvinella pompejana (polychaetous annelid) from a hydrothermal vent environment: SEM, TEM, 13C and 15 N evidence. Mar Biol 75:201–205Google Scholar
  61. Desbruyères D, Gaill F, Laubier L, Fouquet Y (1985) Polychaetous annelids from hydrothermal vent ecosystems: an ecological overview. Biol Soc Wash Bull 6:103–116Google Scholar
  62. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Pt A Oceanogr Res Pap 34:1733–1743Google Scholar
  63. Di Meo CA, Wilbur AE, Holben WE, Feldman RA, Vrijenhoek RC, Cary SC (2000) Genetic variation among endosymbionts of widely distributed vestimentiferan tubeworms. Appl Environ Microbiol 66:651–658PubMedGoogle Scholar
  64. Distel DL, Cavanaugh CM (1994) Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves. J Bacteriol 176:1932–1938PubMedGoogle Scholar
  65. Distel DL, Lee HKW, Cavanaugh CM (1995) Intracellular coexistence of methano-and thioautotrophic bacteria in a hydrothermal vent mussel. Proc Natl Acad Sci USA 92:9598–9602PubMedGoogle Scholar
  66. Distel D (1998) Evolution of chemoautotrophic endosymbioses in bivalves. Bioscience 48:277–286Google Scholar
  67. Dubilier N, Giere O, Grieshaber MK (1995) Morphological and ecophysiological adaptations of the marine oligochaete Tubificoides benedii to sulfidic sediments. Am Zool 35:163–173Google Scholar
  68. Dubilier N, Windoffer R, Giere O (1998) Ultrastructure and stable carbon isotope composition of the hydrothermal vent mussels Bathymodiolus brevior and B. sp. affinis brevior from the North Fiji Basin, western Pacific. Mar Ecol Progr Ser 165:187–193Google Scholar
  69. Dubilier N, Amann R, Erseus C, Muyzer G, Park SY, Giere O, Cavanaugh CM (1999) Phylogenetic diversity of bacterial endosymbionts in the gutless marine oligochete Olavius loisae (Annelida). Mar Ecol Progr Ser 178:271–280Google Scholar
  70. Dubilier N, Mulders C, Ferdelman T, de Beer D, Pernthaler A, Klein M, Wagner M, Erseus C, Thiermann F, Krieger J, Giere O, Amann R (2001) Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature 411:298–302PubMedGoogle Scholar
  71. Dufour SC, Felbeck H (2003) Sulphide mining by the superextensile foot of symbiotic thyasirid bivalves. Nature 426:65–67PubMedGoogle Scholar
  72. Dunton K (1992) Arctic biogeography: the paradox of the marine benthic fauna and flora. Trends Ecol Evol 7:183–189PubMedGoogle Scholar
  73. Duperron S, Nadalig T, Caprais J, Sibuet M, Fiala-Medioni A, Amann R, Dubilier N (2004) Dual symbiosis in a Bathymodiolus mussel from a methane seep on the Gabon continental margin (South East Atlantic): 16S rRNA phylogeny and distribution of the symbionts in the gills. Appl Environ Microbiol 71(4):1694–1700Google Scholar
  74. Durand P, Gros O (1996) Bacterial host specificity of Lucinacea endosymbionts: interspecific variation in 16S rRNA sequences. FEMS Microbiol Lett 140:193–198PubMedGoogle Scholar
  75. Durand P, Gros O, Frenkiel L, Prieur D (1996) Phylogenetic characterization of sulfur-oxidizing bacterial endosymbionts in three tropical Lucinidae by 16S rDNA sequence analysis. Mol Mar Biol Biotechnol 5:37–42Google Scholar
  76. Dykhuizen DE, Green L (1991) Recombination in Escherichia coli and the definition of biological species. J Bacteriol 173:7257–7268PubMedGoogle Scholar
  77. Elderfield H, Schultz A (1996) Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci 24:191–224Google Scholar
  78. Elsaied H, Kimura H, Naganuma T (2002) Molecular characterization and endosymbiotic localization of the gene encoding d-ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO) form II in the deep-sea vestimentiferan trophosome. Microbiology 148:1947–1957PubMedGoogle Scholar
  79. Endow K, Ohta S (1989) The symbiotic relationship between bacteria and the mesogastropod snail, Alviniconcha hessleri, collected from hydrothermal vents of the Mariana back-arc basin. Bull Jpn Soc Microb Ecol 3:73–82Google Scholar
  80. Endow K, Ohta S (1990) Occurrence of bacteria in the primary oocytes of vesicomyid clam Calyptogena soyoae. Mar Ecol Progr Ser 64:309–311Google Scholar
  81. Felbeck H (1981) Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science 213:336–338PubMedGoogle Scholar
  82. Felbeck H, Childress JJ, Somero GN (1981) Calvin-Benson cycle and sulfide oxidation enzymes in animals from sulfide-rich habitats. Nature 293:291–293Google Scholar
  83. Felbeck H (1983) Sulfide oxidation and carbon fixation by the gutless clam Solemya reidi: an animal-bacteria symbiosis. J Comp Physiol 152:3–11Google Scholar
  84. Felbeck H, Liebezeit G, Dawson R, Giere O (1983) CO2 fixation in tissues of marine oligochaetes (Phallodrilus leukodermatus and P. planus) containing symbiotic, chemoautotrophic bacteria. Mar Biol 75:187–191Google Scholar
  85. Felbeck H (1985) CO2 fixation in the hydrothermal vent tube worm Riftia pachyptila (Jones). Physiol Zool 58:272–281Google Scholar
  86. Felbeck H, Distel DL (1991) Prokaryotic symbionts of marine invertebrates. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. Springer, New YorkGoogle Scholar
  87. Felbeck H, Turner PJ (1995) CO2 transport in catheterized hydrothermal vent tubeworms, Riftia pachyptila (Vestimentifera). J Exp Zool 272:95–102Google Scholar
  88. Felbeck H, Jarchow J (1998) Carbon release from purified chemoautotrophic bacterial symbionts of the hydrothermal vent tubeworm Riftia pachyptila. Physiol Zool 71:294–302PubMedGoogle Scholar
  89. Felbeck H, Arndt C, Hentschel U, Childress JJ (2004) Experimental application of vascular and coelomic catheterization to identify vascular transport mechanisms for inorganic carbon in the vent tubeworm, Riftia pachyptila. Deep Sea Res Pt I Oceanogr Res Pap 51:401–411Google Scholar
  90. Feldman R, Black M, Cary C, Lutz R, Vrijenhoek R (1997) Molecular phylogenetics of bacterial endosymbionts and their vestimentiferan hosts. Mol Mar Biol Biotechnol 6:268–277PubMedGoogle Scholar
  91. Fenchel T, Finlay BJ (1989) Kentrophoros—a mouthless ciliate with a symbiotic kitchen garden. Ophelia 30:75–93Google Scholar
  92. Fiala-Médioni A (1984) Ultrastructural evidence of abundance of intracellular symbiotic bacteria in the gill of bivalve mollusks of deep hydrothermal vents. Comptes Rendus L’Acad Sci Ser III Sciences de la Vie—Life Sciences 298:487–492Google Scholar
  93. Fiala-Médioni A, Boulègue J, Ohta S, Felbeck H, Mariotti A (1993) Source of energy sustaining the Calyptogena populations from deep trenches in subduction zones off Japan. Deep Sea Res 40:1241–1258Google Scholar
  94. Fiala-Médioni A, Michalski J-C, Jollès J, Alonso C, Montreuil J (1994) Lysosomic and lysozyme activities in the gill of bivalves from deep hydrothermal vents. Comptes Rendus L’Acad Sci Ser III Sciences de la Vie—Life Sciences 317:239–244Google Scholar
  95. Fiala-Médioni A, McKiness ZP, Dando P, Boulegue J, Mariotti A, Alayse-Danet AM, Robinson JJ, Cavanaugh CM (2002) Ultrastructural, biochemical, and immunological characterization of two populations of the mytilid mussel Bathymodiolus azoricus from the Mid-Atlantic Ridge: evidence for a dual symbiosis. Mar Biol 141:1035–1043Google Scholar
  96. Fisher CR, Childress JJ (1986) Translocation of fixed carbon from symbiotic bacteria to host tissues in the gutless bivalve, Solemya reidi. Mar Biol 93:59–68Google Scholar
  97. Fisher C, Childress J, Arp A, Brooks J, Distel D, Favuzzi J, Felbeck H, Hessler R, Johnson K, Kennicut M 2nd, Macko S, Newton A, Powell M, Somero G, Soto T (1988) Microhabitat variation in the hydrothermal vent mussel, Bathymodiolus thermophilus, at the Rose Garden vent on the Galapagos Rift. Deep Sea Res 35:1769–1791Google Scholar
  98. Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev Aquat Sci 2:399–436Google Scholar
  99. Fisher CR, Childress JJ (1992) Organic carbon transfer from methanotrophic symbionts to the host hydrocarbon seep mussel. Symbiosis 12:221–235Google Scholar
  100. Fisher CR (1993) Oxidation of methane by deep-sea mytilids in the Gulf of Mexico. In: Oremland RS (ed) Biogeochemistry of global change: radiatively active trace gases. Chapman and Hall, New YorkGoogle Scholar
  101. Fisher CR, Brooks JM, Vodenichar JS, Zande JM, Childress JJ, Burke RA Jr (1993) The co-occurrence of methanotrophic and chemoautotrophic sulfur-oxidizing bacterial symbionts in a deep-sea mussel. Marine Ecology 14:277–289, Pubblicazioni Della Stazione Zoologica Di Napoli IGoogle Scholar
  102. Fisher CR, Childress JJ, Macko SA, Brooks JM (1994) Nutritional interactions in Galapagos Rift hydrothermal vent communities: inferences from stable carbon and nitrogen isotope analyses. Mar Ecol Progr Ser 103:45–55Google Scholar
  103. Fisher CR (1995) Toward an appreciation of hydrothermal vent animals: their environment, physiological ecology, and tissue stable isotope values. In: Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. American Geophysical UnionGoogle Scholar
  104. Fisher CR (1996) Ecophysiology of primary production at deep-sea vents and seeps. Biosystem Ecol Ser 11:313–336Google Scholar
  105. Fox M, Juniper SK, Vali H (2002) Chemoautotrophy as a possible nutritional source in the hydrothermal vent limpet Lepetodrilus fucensis. Cahiers Biol Mar 43:371–376Google Scholar
  106. Freytag JK, Girguis PR, Bergquist DC, Andras JP, Childress JJ, Fisher CR (2001) A paradox resolved: sulfide acquisition by roots of seep tubeworms sustains net chemoautotrophy. Proc Natl Acad Sci USA 98:13408–13413PubMedGoogle Scholar
  107. Fry B, Gest H, Hayes JM (1983) Sulfur isotopic compositions of deep-sea hydrothermal vent animals. Nature 306:51–52Google Scholar
  108. Fry B, Sherr EB (1984) δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib Mar Sci 27:13–47Google Scholar
  109. Fujio SZ, Imasato N (1991) Diagnostic calculation for circulation and water mass movement in the deep Pacific. J Geophys Res Oceans 96:759–774Google Scholar
  110. Fujiwara Y, Kato C, Masui N, Fujikura K, Kojima S (2001) Dual symbiosis in the cold-seep thyasirid clam Maorithyas hadalis from the hadal zone in the Japan Trench, western Pacific. Mar Ecol Progr Ser 214:151–159Google Scholar
  111. Fujiwara Y, Uematsu K (2002) Microdistribution of two endosymbionts in gill tissue from a hadal thyasirid clam Maorithyas hadalis. Cahiers Biol Mar 43:341–343Google Scholar
  112. Fustec A, Desbruyères D, Juniper SK (1987) Deep-sea hydrothermal vent communities at 13°N on the East Pacific Rise: microdistribution and temporal variations. Biol Oceanogr 4:121–164Google Scholar
  113. Gearing JN, Gearing PJ, Rudnick DT, Requejo AG, Hutchins MJ (1984) Isotopic variability of organic-carbon in a phytoplankton-based, temperate estuary. Geochim Cosmochim Acta 48:1089–1098Google Scholar
  114. Giere O (1981) The gutless marine oligochaete Phallodrilus leukodermatus: structural studies on an aberrant tubificid associated with bacteria. Mar Ecol Progr Ser 5:353–357Google Scholar
  115. Giere O (1985) The gutless marine tubificid Phallodrilus planus, a flattened oligochaete with symbiotic bacteria. Zool Scripta 14:279–286Google Scholar
  116. Giere O, Langheld C (1987) Structural organization, transfer and biological fate of endosymbiotic bacteria in gutless oligochaetes. Mar Biol 93:641–650Google Scholar
  117. Giere O, Krieger J (2001) A triple bacterial endosymbiosis in a gutless oligochaete (Annelida): ultrastructural and immunocytochemical evidence. Invertebr Biol 120:41–49Google Scholar
  118. Girguis PR, Lee RW, Desaulniers N, Childress JJ, Pospesel M, Felbeck H, Zal F (2000) Fate of nitrate acquired by the tubeworm Riftia pachyptila. Appl Environ Microbiol 66:2783–2790PubMedGoogle Scholar
  119. Girguis PR, Childress JJ, Freytag JK, Klose K, Stuber R (2002) Effects of metabolite uptake on proton-equivalent elimination by two species of deep-sea vestimentiferan tubeworm, Riftia pachyptila and Lamellibrachia cf luymesi: proton elimination is a necessary adaptation to sulfide-oxidizing chemoautotrophic symbionts. J Exp Biol 205:3055–3066PubMedGoogle Scholar
  120. Glockner FO, Babenzien HD, Wulf J, Amann R (1999) Phylogeny and diversity of Achromatium oxaliferum system. Appl Microbiol 22:28–38Google Scholar
  121. Goericke R, Montoya JP, Fry B (1994) Physiology of isotopic fractionation in algae and cyanobacteria. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell, Oxford, UKGoogle Scholar
  122. Goffredi SK, Childress JJ, Desaulniers NT, Lallier FH (1997a) Sulfide acquisition by the hydrothermal vent tubeworm Riftia pachyptila appears to be via uptake of HS, rather than H2S. J Exp Biol 200:2069–2616Google Scholar
  123. Goffredi SK, Childress JJ, Desaulniers NT, Lee RW, Lallier FH, Hammond D (1997b) Inorganic carbon acquisition by the hydrothermal vent tubeworm Riftia pachyptila depends upon high external pCO2 and upon proton-equivalent ion transport by the worm. J Exp Biol 200:883–896PubMedGoogle Scholar
  124. Goffredi SK, Childress JJ, Lallier FH, Desaulniers NT (1999) The ionic composition of the hydrothermal vent tube worm Riftia pachyptila: evidence for the elimination of SO42− and H+ and for a Cl/HCO3− shift. Physiol Biochem Zool 72:296–306PubMedGoogle Scholar
  125. Goffredi SK, Childress JJ (2001) Activity and inhibitor sensitivity of ATPases in the hydrothermal vent tubeworm Riftia pachyptila: a comparative approach. Mar Biol 138:259–265Google Scholar
  126. Grassle JF (1985) Hydrothermal vent animals: distribution and biology. Science 229:713–717PubMedGoogle Scholar
  127. Gray ND, Howarth R, Rowan A, Pickup RW, Jones JG, Head IM (1999) Natural communities of Achromatium oxaliferum comprise genetically, morphologically, and ecologically distinct subpopulations. Appl Environ Microbiol 65:5089–5099PubMedGoogle Scholar
  128. Grieshaber MK, Volkel S (1998) Animal adaptations for tolerance and exploitation of poisonous sulfide. Annu Rev Physiol 60:33–53PubMedGoogle Scholar
  129. Gros O, Darrasse A, Durand P, Frenkiel L, Moueza M (1996) Environmental transmission of a sulfur-oxidizing bacterial gill endosymbiont in the tropical lucinid bivalve Codakia orbicularis. Appl Environ Microbiol 62:2324–2330PubMedGoogle Scholar
  130. Gros O, De Wulf-Durand P, Frenkiel L, Moueza M (1998) Putative environmental transmission of sulfur-oxidizing bacterial symbionts in tropical lucinid bivalves inhabiting various environments. FEMS Microbiol Lett 160:257–262Google Scholar
  131. Gros O, Liberge M, Felbeck H (2003a) Interspecific infection of aposymbiotic juveniles of Codakia orbicularis by various tropical lucinid gill endosymbionts. Mar Biol 142:57–66Google Scholar
  132. Gros O, Liberge M, Heddi A, Khatchadourian C, Felbeck H (2003b) Detection of the free-living forms of sulfide-oxidizing gill endosymbionts in the lucinid habitat (Thalassia testudinum environment). Appl Environ Microbiol 69:6264–6267PubMedGoogle Scholar
  133. Gustafson RG, Reid RGB (1988) Association of bacteria with larvae of the gutless protobranch bivalve Solemya reidi (Cryptodonta, Solemyidae). Mar Biol 97:389–401Google Scholar
  134. Hand SC (1987) Trophosome ultrastructure and the characterization of isolated bacteriocytes from invertebrate-sulfur bacteria symbioses. Biol Bull 173:260–276Google Scholar
  135. Head IM, Gray ND, Clarke KJ, Pickup RW, Jones JG (1996) The phylogenetic position and ultrastructure of the uncultured bacterium Achromatium oxaliferum. Microbiol SGM 142:2341–2354Google Scholar
  136. Hentschel U, Felbeck H (1993) Nitrate respiration in the hydrothermal vent tubeworm Riftia pachyptila. Nature 366:338–340Google Scholar
  137. Hentschel U, Cary SC, Felbeck H (1993) Nitrate respiration in chemoautotrophic symbionts of the bivalve Lucinoma aequizonata. Mar Ecol Progr Ser 94:35–41Google Scholar
  138. Herry A, Le Pennec M (1987) Endosymbiotic bacteria in the gills of the littoral bivalve molluscs Thyasira flexuosa (Thyasiridae) and Lucinella divaricata (Lucinidae). Symbiosis 4:25–36Google Scholar
  139. Hughes DS, Felbeck H, Stein JL (1997) A histidine protein kinase homolog from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Appl Environ Microbiol 63:3494–3498PubMedGoogle Scholar
  140. Hughes DS, Felbeck H, Stein JL (1998) Signal transduction and motility genes from the bacterial endosymbionts of Riftia pachyptila. Cahiers Biol Mar 39:305–308Google Scholar
  141. Humes AG, Lutz RA (1994) Aphotopontius acanthinus, new species (Copepoda, Siphonostomatoida), from deep-sea hydrothermal vents on the East Pacific Rise. J Crustac Biol 14:337–345Google Scholar
  142. Hunt S (1992) Structure and composition of the shell of the archaeogastropod limpet Lepetodrilus elevatus-elevatus (Mclean, 1988). Malacologia 34:129–141Google Scholar
  143. Hurtado LA (2002) Evolution and biogeography of hydrothermal vent organisms in the Eastern Pacific Ocean, PhD thesis, Rutgers University, New BrunswickGoogle Scholar
  144. Hurtado LA, Mateos M, Lutz RA, Vrijenhoek RC (2003) Coupling of bacterial endosymbiont and host mitochondrial genomes in the hydrothermal vent clam Calyptogena magnifica. Appl Environ Microbiol 69:2058–2064PubMedGoogle Scholar
  145. Jacobs DK, Lindberg DR (1998) Oxygen and evolutionary patterns in the sea: onshore/offshore trends and recent recruitment of deep-sea faunas. Proc Natl Acad Sci USA 95:9396–9401PubMedGoogle Scholar
  146. Johnson KS, Childress JJ, Hessler RR, Sakamoto-Arnold CM, Beehler CL (1988) Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galapagos spreading center. Deep Sea Res 35:1723–1744Google Scholar
  147. Johnson M, Diouris M, Le Pennec M (1994) Endosymbiotic bacterial contribution in the carbon nutrition of Loripes lucinalis (Mollusca: Bivalvia). Symbiosis 17:1–13Google Scholar
  148. Jones ML (1981) Riftia pachyptila Jones: observations on the vestimentiferan worm from the Galapagos Rift. Science 213:333–336PubMedGoogle Scholar
  149. Jones JL, Gardiner SL (1985) Light and scanning electron microscope studies of spermatogenesis in the vestimentiferan tube worm Riftia pachyptila (Pogonophora: Obturata). Trans Am Microscop Soc 104:1–18Google Scholar
  150. Jørgensen BB, Postgate JR (1982) Ecology of the bacteria of the sulfur cycle with special reference to anoxic oxic interface environments. Philos Trans R Soc Lond Ser B Biol Sci 298:543–561Google Scholar
  151. Joyner JL, Peyer SM, Lee RW (2003) Possible roles of sulfur-containing amino acids in a chemoautotrophic bacterium-mollusc symbiosis. Biol Bull 205:331–338PubMedGoogle Scholar
  152. Julian D, Gaill F, Wood E, Arp AJ, Fisher CR (1999) Roots as a site of hydrogen sulfide uptake in the hydrocarbon seep vestimentiferan Lamellibrachia sp. J Exp Biol 202:2245–2257PubMedGoogle Scholar
  153. Karl SA, Schutz S, Desbruyères D, Lutz R, Vrijenhoek RC (1996) Molecular analysis of gene flow in the hydrothermal vent clam (Calyptogena magnifica). Mol Mar Biol Biotechnol 5:193–202Google Scholar
  154. Kennicutt MC, Burke RA, MacDonald IR, Brooks JM, Denoux GJ, Macko SA (1992) Stable isotope partitioning in seep and vent organisms: chemical and ecological significance. Chem Geol 101:293–310Google Scholar
  155. Kennish MJ, Lutz RA (1999) Calcium carbonate dissolution rates in deep-sea bivalve shells on the East Pacific Rise at 21°N: results of an 8-year in situ experiment. Palaeogeogr Palaeoclimatol Palaeoecol 154:293–299Google Scholar
  156. Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49:561–576PubMedGoogle Scholar
  157. Kochevar RE, Childress JJ (1996) Carbonic anhydrase in deep-sea chemoautotrophic symbioses. Mar Biol 125:375–383Google Scholar
  158. Krieger J, Giere O, Dubilier N (2000) Localization of RubisCO and sulfur in endosymbiotic bacteria of the gutless marine oligochaete Inanidrilus leukodermatus (Annelida). Mar Biol 137:239–244Google Scholar
  159. Krueger DM (1996a) Ecology and evolution of Solemya spp., marine bivalves living in symbiosis with chemoautotrophic bacteria, PhD thesis, Harvard University Cambridge, MAGoogle Scholar
  160. Krueger DM, Dubilier N, Cavanaugh CM (1996) Chemoautotrophic symbiosis in the tropical solemyid Solemya occidentalis (Bivalvia: Protobranchia): ultrastructural and phylogenetic analysis. Mar Biol 126:55–64Google Scholar
  161. Krueger DM, Cavanaugh CM (1997) Phylogenetic diversity of bacterial symbionts of Solemya hosts based on comparative sequence analysis of 16S rRNA genes. Appl Environ Microbiol 63:91–98PubMedGoogle Scholar
  162. Lalou C, Brichet E (1982) Ages and implications of East Pacific Rise sulfide deposits at 21°N. Nature 300:169–171Google Scholar
  163. Laubier L (1989) Ecosystèmes benthiques profonds et chimiosynthèse bactérienne: Sources hydrothermales et suintement froids (Deep benthic ecosystems and bacterial chemosynthesys: hydrothermal wells and cold seepages). In: Denis M (ed) Oceanology: today and in the near futureGoogle Scholar
  164. Laue BE, Nelson DC (1994) Characterization of the gene encoding the autotrophic ATP sulfurylase from the bacterial endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. J Bacteriol 176:3723–3729PubMedGoogle Scholar
  165. Laue BE, Nelson DC (1997) Sulfur-oxidizing symbionts have not co-evolved with their hydrothermal vent tubeworm hosts: an RFLP analysis. Mol Mar Biol Biotechnol 6:180–188PubMedGoogle Scholar
  166. Lee R, Childress J (1994) Assimilation of inorganic nitrogen by marine invertebrates and their chemoautotrophic and methanotrophic symbionts. Appl Environ Microbiol 60:1852–1858PubMedGoogle Scholar
  167. Lee RW, Childress JJ, Desaulniers NT (1997) The effects of exposure to ammonia on ammonia and taurine pools of the symbiotic clam Solemya reidi. J Exp Biol 200:2797–2805PubMedGoogle Scholar
  168. Lee RW, Robinson JJ, Cavanaugh CM (1999) Pathways of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses: expression of host and symbiont glutamine synthetase. J Exp Biol 202:289–300PubMedGoogle Scholar
  169. Le Pennec M, Hily A (1984) Anatomy, structure and ultrastructure of the gill of a deep-sea hydrothermal vent mytilid. Oceanol Acta 7:517–523Google Scholar
  170. Levin BR, Bergstrom CT (2000) Bacteria are different: observations, interpretations, speculations, and opinions about the mechanisms of adaptive evolution in prokaryotes. Proc Natl Acad Sci USA 97:6981–6985PubMedGoogle Scholar
  171. Levin LA, Michener RH (2002) Isotopic evidence for chemosynthesis-based nutrition of macrobenthos: the lightness of being at Pacific methane seeps. Limnol Oceanogr 47:1336–1345Google Scholar
  172. Li L, Kato C, Horikoshi K (1999) Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench. Mar Biotechnol 1:391–400PubMedGoogle Scholar
  173. Lilley MD, Butterfield DA, Olson EJ, Lupton JE, Macko SA, McDuff RE (1993) Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature 364:45–47Google Scholar
  174. Little CTS, Herrington RJ, Maslennikov VV, Morris NJ, Zaykov VV (1997) Silurian hydrothermal-vent community from the southern Urals Russia. Nature 385:146–148Google Scholar
  175. Little CL (2002) The fossil record of hydrothermal vent communities. Cahiers Biol Mar 43:313–316Google Scholar
  176. Little CTS, Thorseth IH (2002) Hydrothermal vent microbial communities: a fossil perspective. Cahiers Biol Mar 43:317–319Google Scholar
  177. Little CTS, Vrijenhoek RC (2003) Are hydrothermal vent animals living fossils? Trends Ecol Evol 18:582–588Google Scholar
  178. Little CTS, Danelian T, Herrington RJ, Haymon RM (2004) Early Jurassic hydrothermal vent community from the Franciscan Complex, California. J Paleontol 78:542–559Google Scholar
  179. Lonsdale P (1977) Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep Sea Res 24:857Google Scholar
  180. Lopez-Garcia P, Gaill F, Moreira D (2002) Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila. Environ Microbiol 4:204–215PubMedGoogle Scholar
  181. Luther GWI, Rozan TF, Taillefert M, Nuzzio DB, Di Meo C, Shank TM, Lutz RA, Cary SC (2001) Chemical speciation drives hydrothermal vent ecology. Nature 410:813–816PubMedGoogle Scholar
  182. Lutz RA, Jablonski D, Rhoads DC, Turner RD (1980) Larval dispersal of a deep-sea hydrothermal vent bivalve from the Galapagos Rift. Mar Biol 57:127–133Google Scholar
  183. MacAvoy SE, Macko SA, Joye SB (2002) Fatty acid carbon isotope signatures in chemosynthetic mussels and tubeworms from Gulf of Mexico hydrocarbon seep communities. Chem Geol 185:1–8Google Scholar
  184. Marsh AG, Mullineaux LS, Young CM, Manahan DT (2001) Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents. Nature 411:77–80PubMedGoogle Scholar
  185. McArthur AG, Tunnicliffe V (1998) Relics and antiquity revisited in the modern vent fauna. In: Mills R, Harrison K (eds) Modern ocean floor processes and the geological record. Geological Society of London, LondonGoogle Scholar
  186. McKiness ZP (2004) Evolution of endosymbioses in deep-sea bathymodioline mussels (Mollusca:Bivalvia) (Ph.D. thesis). Harvard University, Cambridge, MAGoogle Scholar
  187. McMullin ER, Hourdez S, Schaeffer SW, Fisher CR (2003) Phylogeny and biogeography of deep-sea vestimentiferan tubeworms and their bacterial symbionts. Symbiosis 34:1–41Google Scholar
  188. Metivier B, Voncosel R (1993) Acharax alinae n sp., a giant solemyid (Mollusca, Bivalvia) from the Lau Basin. Comptes Rendus L’Acad Sci Ser III Sciences de la Vie—Life Sciences 316:229–237Google Scholar
  189. Michener RH, Schell DM (1994) Stable isotope ratios as tracers in marine aquatic food webs. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell, Oxford, UKGoogle Scholar
  190. Millero FJ, Plese T, Fernandez M (1987) The dissociation of hydrogen-sulfide in seawater. Limnol Oceanogr 33:269–274Google Scholar
  191. Millikan DS, Felbeck H, Stein JL (1999) Identification and characterization of a flagellin gene from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Appl Environ Microbiol 65:3129–3133PubMedGoogle Scholar
  192. Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains—further evidence and the relationship between delta 15N and animal age. Geochim Cosmochim Acta 48:1135–1140Google Scholar
  193. Minic Z, Simon V, Penverne B, Gaill F, Herve G (2001) Contribution of the bacterial endosymbiont to the biosynthesis of pyrimidine nucleotides in the deep-sea tubeworm Riftia pachyptila. J Biol Chem 276:23777–23784PubMedGoogle Scholar
  194. Minic Z, Herve G (2003) Arginine metabolism in the deep-sea tube worm Riftia pachyptila and its bacterial endosymbiont. J Biol Chem 278:40527–40533PubMedGoogle Scholar
  195. Mira A, Moran NA (2002) Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Microb Ecol 44:137–143PubMedGoogle Scholar
  196. Miura T, Nedachi M, Hashimoto A (2002) Sulphur sources for chemoautotrophic nutrition of shallow water vestimentiferan tubeworms in Kagoshima Bay. J Mar Biol Assoc UK 82:537–540Google Scholar
  197. Moran N, Baumann P (1994) Phylogenetics of cytoplasmically inherited microorganisms of arthropods. Trends Ecol Evol 9:15–20PubMedGoogle Scholar
  198. Moran NA (1996) Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci USA 93:2873–2878PubMedGoogle Scholar
  199. Moran NA (2003) Tracing the evolution of gene loss in obligate bacterial symbionts. Curr Opin Microbiol 6:512–518PubMedGoogle Scholar
  200. Muller HJ (1964) The relation of recombination to mutational advance. Mut Res 1:2–9Google Scholar
  201. Mullineaux LS, Wiebe PH, Baker ET (1995) Larvae of benthic invertebrates in hydrothermal vent plumes over Juan de Fuca Ridge. Mar Biol 122:585–596Google Scholar
  202. Mullineaux LS, Speer KG, Thurnherr AM, Maltrud ME, Vangriesheim A (2002) Implications of cross-axis flow for larval dispersal along mid-ocean ridges. Cahiers Biol Mar 43:281–284Google Scholar
  203. Nelson D, Fisher C (1995) Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps. In: Karl D (ed) Microbiology of deep-sea hydrothermal vents. CRC Press, Boca RatonGoogle Scholar
  204. Nelson DC, Hagen KD, Edwards DB (1995) The gill symbiont of the hydrothermal vent mussel Bathymodiolus thermophilus is a psychrophilic, chemo-autotrophic, sulfur bacterium. Mar Biol 121:487–495Google Scholar
  205. Nelson K, Fisher CR (2000) Absence of cospeciation in deep-sea vestimentiferan tubeworms and their bacterial endosymbionts. Symbiosis 28:1–15Google Scholar
  206. Niemczuk K, Kondracki M (2004) Q fever as zoonosis. Med Weter 60:129–131Google Scholar
  207. O’Brien J, Vetter RD (1990) Production of thiosulphate during sulphide oxidation by mitochondria of the symbiont-containing bivalve Solemya reidi. J Exp Biol 149:133–148PubMedGoogle Scholar
  208. Ohta T (1973) Slightly deleterious mutant substitutions in evolution. Nature 246:96–98PubMedGoogle Scholar
  209. Ott JA, Novak R, Schiemer F, Hentschel U, Nebelsick M, Polz M (1991) Tackling the sulfide gradient: a novel strategy involving marine nematodes and chemoautotrophic ectosymbionts. Mar Ecol 12:261–279, Pubblicazioni Della Stazione Zoologica Di Napoli IGoogle Scholar
  210. Ott JA, Bright M, Schiemer F (1998) The ecology of a novel symbiosis between a marine peritrich ciliate and chemoautotrophic bacteria. Mar Ecol 19:229–243, Pubblicazioni Della Stazione Zoologica Di Napoli IGoogle Scholar
  211. Peek AS, Vrijenhoek RC, Gaut BS (1998) Accelerated evolutionary rate in sulfur-oxidizing endosymbiotic bacteria associated with the mode of symbiont transmission. Mol Biol Evol 15:1514–1523PubMedGoogle Scholar
  212. Pimenov NV, Kalyuzhnaya MG, Khmelenina VN, Mityushina LL, Trotsenko YA (2002) Utilization of methane and carbon dioxide by symbiotrophic bacteria in gills of mytilidae (Bathymodiolus) from the rainbow and Logachev hydrothermal fields on the Mid-Atlantic Ridge. Microbiology 71:587–594Google Scholar
  213. Podar M, Mullineaux L, Huang HR, Perlman PS, Sogin ML (2002) Bacterial group II introns in a deep-sea hydrothermal vent environment. Appl Environ Microbiol 68:6392–6398PubMedGoogle Scholar
  214. Polz MF, Felbeck H, Novak R, Nebelsick M, Ott JA (1992) Chemoautotrophic, sulfur-oxidizing symbiotic bacteria on marine nematodes: morphological and biochemical characterization. Microb Ecol 24:313–329Google Scholar
  215. Polz MF, Distel DL, Zarda B, Amann R, Felbeck H, Ott JA, Cavanaugh CM (1994) Phylogenetic analysis of a highly specific association between ectosymbiotic, sulfur-oxidizing bacteria and a marine nematode. Appl Environ Microbiol 60:4461–4467PubMedGoogle Scholar
  216. Polz MF, Cavanaugh CM (1995) Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc Natl Acad Sci USA 92:7232–7236PubMedGoogle Scholar
  217. Polz MF, Robinson JJ, Cavanaugh CM, Van Dover CL (1998) Trophic ecology of massive shrimp aggregations at a Mid-Atlantic Ridge hydrothermal vent site. Limnol Oceanogr 43:1631–1638Google Scholar
  218. Polz MF, Harbison C, Cavanaugh CM (1999) Diversity and heterogeneity of epibiotic bacterial communities on the marine nematode Eubostrichus dianae. Appl Environ Microbiol 65:4271–4275PubMedGoogle Scholar
  219. Polz MF, Ott JA, Bright M, Cavanaugh CM (2000) When bacteria hitch a ride. ASM News 66:531–539Google Scholar
  220. Poulin E, von Boletzky S, Feral JP (2001) Combined ecological factors permit classification of developmental patterns in benthic marine invertebrates: a discussion note. J Exp Mar Biol Ecol 257:109–115PubMedGoogle Scholar
  221. Powell MA, Somero GN (1986) Adaptations to sulfide by hydrothermal vent animals: sites and mechanisms of detoxification and metabolism. Biol Bull 171:274–290Google Scholar
  222. Pradillon F, Shillito B, Young CM, Gaill F (2001) Deep-sea ecology: developmental arrest in vent worm embryos. Nature 413:698–699PubMedGoogle Scholar
  223. Prior SD, Dalton H (1985) The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath). J Gen Microbiol 131:155–163Google Scholar
  224. Pruski AM, Fiala-Médioni A, Fisher CR, Colomines JC (2000a) Composition of free amino acids and related compounds in invertebrates with symbiotic bacteria at hydrocarbon seeps in the Gulf of Mexico. Mar Biol 136:411–420Google Scholar
  225. Pruski AM, Fiala-Médioni A, Prodon R, Colomines JC (2000b) Thiotaurine is a biomarker of sulfide-based symbiosis in deep-sea bivalves. Limnol Oceanogr 45:1860–1867Google Scholar
  226. Pruski AM, Fiala-Médioni A (2003) Stimulatory effect of sulphide on thiotaurine synthesis in three hydrothermal vent species from the East Pacific Rise. J Exp Biol 206:2923–2930PubMedGoogle Scholar
  227. Rau GA, Hedges JI (1979) Carbon-13 depletion in a hydrothermal vent mussel: suggestion of a chemosynthetic food source. Science 203:648–649PubMedGoogle Scholar
  228. Rau GH (1981) Hydrothermal vent clam and tube worm 13C/12C: further evidence of non photosynthetic food sources. Science 213:338–340PubMedGoogle Scholar
  229. Robinson JJ, Cavanaugh CM (1995) Expressions of form I and form II RubisCO in chemoautotrophic symbioses: implications for the interpretation of stable carbon isotope values. Limnol Oceanogr 40:1496–1502Google Scholar
  230. Robinson JJ, Polz MF, Fiala-Medioni A, Cavanaugh CM (1998) Physiological and immunological evidence for two distinct C-1-utilizing pathways in Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), a dual endosymbiotic mussel from the Mid-Atlantic Ridge. Mar Biol 132:625–633Google Scholar
  231. Robinson JJ, Scott KM, Swanson ST, O’Leary MH, Horken K, Tabita FR (2003) Kinetic isotope effect and characterization of form II RubisCO from the chemoautotrophic endosymbionts of the hydrothermal vent tubeworm Riftia pachyptila. Limnol Oceanogr 48:48–54Google Scholar
  232. Rouxel O, Fouquet Y, Ludden JN (2004) Subsurface processes at the lucky strike hydrothermal field, Mid-Atlantic Ridge: evidence from sulfur, selenium, and iron isotopes. Geochim Cosmochim Acta 68:2295–2311Google Scholar
  233. Sarrazin J, Juniper SK (1999) Biological characteristics of a hydrothermal edifice mosaic community. Mar Ecol Progr Ser 185:1–19Google Scholar
  234. Schiemer F, Novak R, Ott J (1990) Metabolic studies on thiobiotic free-living nematodes and their symbiotic microorganisms. Mar Biol 106:129–137Google Scholar
  235. Schmaljohann R, Flügel HJ (1987) Methane-oxidizing bacteria in pogonophora. Sarsia 72:91–98Google Scholar
  236. Schweimanns M, Felbeck H (1985) Significance of the occurrence of chemoautotrophic bacterial endosymbionts in lucinid clams from Bermuda. Mar Ecol Progr Ser 24:113–120Google Scholar
  237. Scott KM (2003) A d13C-based carbon flux model for the hydrothermal vent chemoautotrophic symbiosis Riftia pachyptila predicts sizeable CO2 gradients at the host-symbiont interface. Environ Microbiol 5:424–432PubMedGoogle Scholar
  238. Scott KM, Schwedock J, Schrag DP, Cavanaugh CM (2004) Influence of form IA RubisCO and environmental dissolved inorganic carbon on the delta 13C of the clam-chemoautotroph symbiosis Solemya velum. Environ Microbiol 6(12):1210–1219PubMedGoogle Scholar
  239. Searcy DG (1992) Origins of mitochondria and chloroplasts from sulfur-based symbioses. In: Hartman H, Matsuno K (eds) The origin and evolution of the cell world. Scientific Press, SingaporeGoogle Scholar
  240. Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res II 45:517–567Google Scholar
  241. Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol 41:311–354Google Scholar
  242. Southward AJ, Southward EC, Dando PR, Rau GH, Felbeck H, Flugel H (1981) Bacterial symbionts and low 13C/12C ratios in tissues of Pogonophora indicate unusual nutrition and metabolism. Nature 293:616–620Google Scholar
  243. Southward EC (1982) Bacterial symbionts in Pogonophora. J Mar Biol Assoc UK 62:889–906Google Scholar
  244. Southward AJ, Southward EC (1988) Pogonophora: tube worms dependent on endosymbiotic bacteria ISI Atlas of science. Animal & Plant Sciences 1:203–207Google Scholar
  245. Southward EC, Tunnicliffe V, Black M (1995) Revision of the species of Ridgeia from North-East Pacific hydrothermal vents, with a redescription of Ridgeia piscesae Jones (Pogonophora: Obturata = Vestimentifera). Can J Zool 73:282–295Google Scholar
  246. Spiro B, Greenwood PB, Southward AJ, Dando PR (1986) 13C/12C ratios in marine invertebrates from reducing sediments: confirmation of nutritional importance of chemoautotrophic endosymbiotic bacteria. Mar Ecol Progr Ser 28:233–240Google Scholar
  247. Stanley SM (1970) Shell form and life habits of the Bivalvia. Geol Soc Am Mem 125:119–121Google Scholar
  248. Stein J, Cary S, Hessler R, Ohta S, Vetter R, Childress J, Felbeck H (1988) Chemoautotrophic symbiosis in a hydrothermal vent gastropod. Biol Bull 174:373–378Google Scholar
  249. Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley-Interscience, New YorkGoogle Scholar
  250. Svavarsson J, Stromberg JO, Brattegard T (1993) The deep-sea asellote (Isopoda, Crustacea) fauna of the Northern Seas: species composition, distributional patterns and origin. J Biogeogr 20:537–555Google Scholar
  251. Temara A, de Ridder C, Kuenen JG, Robertson LA (1993) Sulfide-oxidizing bacteria in the burrowing echinoid, Echinocardium cordatum (Echinodermata). Mar Biol 115:179–185Google Scholar
  252. Thao M, Moran N, Abbot P, Brennan E, Burckhardt D, Baumann P (2000) Cospeciation of psyllids and their primary prokaryotic endosymbionts. Appl Environ Microbiol 66:2898–2905PubMedGoogle Scholar
  253. Trask JL, Van Dover CL (1999) Site-specific and ontogenetic variations in nutrition of mussels (Bathymodiolus sp.) from the Lucky Strike hydrothermal vent field, Mid-Atlantic Ridge. Limnol Oceanogr 44:334–343Google Scholar
  254. Tunnicliffe V (1988) Biogeography and evolution of hydrothermal-vent fauna in the eastern Pacific Ocean. Proc R Soc Lond B 233:347–366Google Scholar
  255. Tunnicliffe V (1991) The biology of hydrothermal vents: ecology and evolution. Oceanogr Mar Biol 29:319–407Google Scholar
  256. Tunnicliffe V, Fowler C (1996) Influence of sea-floor spreading on the global hydrothermal vent fauna. Nature 379:531–533Google Scholar
  257. Turner RD, Lutz RA, Jablonski D (1985) Modes of molluscan larval development at deep-sea hydrothermal vents. Biol Soc Wash Bull 6:167–184Google Scholar
  258. Tyler PA, Young CM (2003) Dispersal at hydrothermal vents: a summary of recent progress. Hydrobiologia 503:9–19Google Scholar
  259. Vacelet J, Boury-Esnault N, Fiala-Medioni A, Fisher CR (1995) A methanotrophic carnivorous sponge. Nature 377:296Google Scholar
  260. Vacelet J, Fiala-Médioni A, Fisher CR, Boury-Esnault N (1996) Symbiosis between methane-oxidizing bacteria and a deep-sea carnivorous cladorhizid sponge. Mar Ecol Progr Ser 145:77–85Google Scholar
  261. Van Dover CL, Fry B, Grassle JF, Humphris S, Rona PA (1988) Feeding biology of the shrimp Rimicaris exoculata at hydrothermal vents on the Mid-Atlantic Ridge. Mar Biol 98:209–216Google Scholar
  262. Van Dover CL, Fry B (1994) Microorganisms as food resources at deep-sea hydrothermal vents. Limnol Oceanogr 39:51–57Google Scholar
  263. Van Dover C (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, PrincetonGoogle Scholar
  264. Van Dover CL, Humphris SE, Fornari D, Cavanaugh CM, Collier R, Goffredi SK, Hashimoto J, Lilley M, Reysenbach AL, Shank TM, Von Damm KL, Banta A, Gallant RM, Götz D, Green D, Hall J, Harmer TL, Hurtado LA, Johnson P, McKiness ZP, Meredith C, Olson E, Pan IL, Turnipseed M, Won Y, Young CR 3rd, Vrijenhoek RC (2001) Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294:818–822PubMedGoogle Scholar
  265. Van Dover C (2002) Trophic relationships among invertebrates at the Kairei hydrothermal vent field (Central Indian Ridge). Mar Biol 141:761–772Google Scholar
  266. Van Dover CL, German CR, Speer KG, Parson LM, Vrijenhoek RC (2002) Marine biology: evolution and biogeography of deep-sea vent and seep invertebrates. Science 295:1253–1257PubMedGoogle Scholar
  267. Vereshchaka AL, Vinogradov GM, Lein AY, Dalton S, Dehairs F (2000) Carbon and nitrogen isotopic composition of the fauna from the Broken Spur hydrothermal vent field. Mar Biol 136:11–17Google Scholar
  268. Vrijenhoek R, Shank T, Lutz R (1998) Gene flow and dispersal in deep-sea hydrothermal vent animals. Cahiers Biol Mar 39:363–366Google Scholar
  269. Waser NAD, Harrison PJ, Nielsen B, Calvert SE, Turpin DH (1998) Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, and urea by a marine diatom. Limnol Oceanogr 43:215–224Google Scholar
  270. Watanabe A (2004) Various clinical types of Q-fever disease. Int Med 43:12Google Scholar
  271. Weber RE, Vinogradov SN (2001) Nonvertebrate hemoglobins: functions and molecular adaptations. Physiol Rev 81:569–628PubMedGoogle Scholar
  272. Weiser W (1959) Eine ungewöhnliche Assoziation zwischen Blaualagen und freilebenden marinen. Nematoden Österr Bot Zeitschr 106:81–87Google Scholar
  273. Wernegreen JJ (2002) Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 3:850–861PubMedGoogle Scholar
  274. Windoffer R, Giere O (1997) Symbiosis of the hydrothermal vent gastropod Ifremeria nautilei (Provannidae) with endobacteria: structural analyses and ecological considerations. Biol Bull 193:381–392Google Scholar
  275. Wirsen CO, Sievert SM, Cavanaugh CM, Molyneaux SJ, Ahmad A, Taylor LT, DeLong EF, Taylor CD (2002) Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl Environ Microbiol 68:316–325PubMedGoogle Scholar
  276. Woldehiwet Z (2004) Q fever (coxiellosis): epidemiology and pathogenesis. Res Vet Sci 77:93–100PubMedGoogle Scholar
  277. Won YJ, Hallam SJ, O’Mullan GD, Pan IL, Buck KR, Vrijenhoek RC (2003a) Environmental acquisition of thiotrophic endosymbionts by deep-sea mussels of the genus Bathymodiolus. Appl Environ Microbiol 69:6785–6792PubMedGoogle Scholar
  278. Won Y, Young CR, Lutz RA, Vrijenhoek RC (2003b) Dispersal barriers and isolation among deep-sea mussel populations (Mytilidae:Bathymodiolus) from eastern Pacific hydrothermal vents. Mol Ecol 12:169–184PubMedGoogle Scholar
  279. Yamamoto H, Fujikura K, Hiraishi A, Kato K, Maki Y (2002) Phylogenetic characterization and biomass estimation of bacterial endosymbionts associated with invertebrates dwelling in chemosynthetic communities of hydrothermal vent and cold seep fields. Mar Ecol Progr Ser 245:61–67Google Scholar
  280. Yamanaka T, Mizota C, Satake H, Kouzuma F, Gamo T, Tsunogai U, Miwa T, Fujioka K (2003) Stable isotope evidence for a putative endosymbiont-based lithotrophic Bathymodiolus sp. mussel community atop a serpentine seamount. Geomicrobiol J 20:185–197Google Scholar
  281. Yong R, Searcy DG (2001) Sulfide oxidation coupled to ATP synthesis in chicken liver mitochondria. Comp Biochem Physiol Pt B 129:129–137Google Scholar
  282. Young CM, Vazquez E, Metaxas A, Tyler PA (1996) Embryology of vestimentiferan tube worms from deep-sea methane/sulphide seeps. Nature 381:514–516Google Scholar
  283. Zal F, Lallier FH, Wall JS, Vinogradov SN, Toulmond A (1996) The multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila. 1: reexamination of the number and masses of its constituents. J Biol Chem 271:8869–8874PubMedGoogle Scholar
  284. Zal F, Green BN, Lallier FH, Toulmond A (1997) Investigation by electrospray ionization mass spectrometry of the extracellular hemoglobin from the polychaete annelid Alvinella pompejana: an unusual hexagonal bilayer hemoglobin. Biochemistry 36:11777–11786PubMedGoogle Scholar
  285. Zal F, Leize E, Lallier FH, Toulmond A, Van Dorsselaer A, Childress JJ (1998) S-sulfohemoglobin and disulfide exchange: the mechanisms of sulfide binding by Riftia pachyptila hemoglobins. Proc Natl Acad Sci USA 95:8997–9002PubMedGoogle Scholar
  286. Zal F, Leize E, Oros DR, Hourdez S, Van Dorsselaer A, Childress JJ (2000) Haemoglobin structure and biochemical characteristics of the sulphide-binding component from the deep-sea clam Calyptogena magnifica. Cahiers Biol Mar 41:413–423Google Scholar
  287. Zhang JZ, Millero FJ (1993) The products from the oxidation of H2S in seawater. Geochim Cosmochim Acta 57:1705–1718Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Colleen M. Cavanaugh
    • 1
  • Zoe P. McKiness
    • 2
  • Irene L. G. Newton
    • 3
  • Frank J. Stewart
    • 4
  1. 1.Biological Laboratories 4081CambridgeUSA
  2. 2.WildwoodUSA
  3. 3.Department of BiologyIndiana University BloomingtonBloomingtonUSA
  4. 4.School of BiologyGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations