Bacteriocyte-Associated Endosymbionts of Insects

  • Paul Baumann
  • Nancy A. Moran
  • Linda C. Baumann


Intracellular associations between bacteria and insects are widespread in nature (Baumann and Moran 1997; Buchner 1965; Dasch et al. 1984; Douglas 1989; Houk and Griffiths 1980). Extensive studies of the natural history of such associations have led to the conclusion that they are commonly found in insects that utilize diets containing an excess of one class of compounds but a deficiency of some essential nutrients (Buchner 1965; Dadd 1985). It was thought that the function of the endosymbionts was to rectify this imbalance by the synthesis of these essential nutrients for the host. Extensive compilations of the occurrence of endosymbionts in different groups of insects are found in Buchner (1965) and Dasch et al. (1984). Because most of the prokaryotes involved in such associations are not cultivable on common laboratory media, their characterization had to await the development of recombinant DNA methodology. The past 10 years have witnessed the initiation of studies on the intracellular association of prokaryotes with a variety of insect hosts. In this chapter, we will provide an overview of the evolution and, where possible, genetics and physiology of such recently studied associations. A summary of some of their features is presented in Table 19.1, and the phylogeny of the endosymbionts based on 16S rDNA is presented in Fig. 19.1.


Essential Amino Acid Aphid Species Aphid Host Replicon Type Endosymbiont Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akhtar S, van Emden HF (1994) Ultrastructure of the symbionts and mycetocytes of bird cherry aphid (Rhopalosiphum padi). Tissue Cell 26:513–522PubMedGoogle Scholar
  2. Aksoy S (1995a) Molecular analysis of the endosymbionts of tsetse flies: 16S rDNA locus and over-expression of a chaperonin. Insect Mol Biol 4:23–29PubMedGoogle Scholar
  3. Aksoy S (1995b) Wigglesworthia gen. nov. and Wigglesworthia glossinidia sp. nov., taxa consisting of the mycetocyte-associated, primary endosymbionts of tsetse flies. Int J Syst Bacteriol 45:848–851PubMedGoogle Scholar
  4. Aksoy S, Pourhosseini AA, Chow A (1995) Mycetome endosymbionts of tsetse flies constitute a distinct lineage related to the Enterobacteriaceae. Insect Mol Biol 4:15–22PubMedGoogle Scholar
  5. Aksoy S, Chen X, Hypsa V (1997) Phylogeny and potential transmission routes of midgut-associated endosymbionts of tsetse (Diptera: Glossinidae). Insect Mol Biol 6:183–190PubMedGoogle Scholar
  6. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  7. Andersson SGE, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark UCM, Podowski RM, Naslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140PubMedGoogle Scholar
  8. Baker JE (1975) Vitamin requirements of larvae of Sitophilus oryzae. J Insect Physiol 21:1337–1342Google Scholar
  9. Baker JE (1979) Requirements for the essential dietary amino acids of larvae of the rice weevil. Environ Entomol 8:451–453Google Scholar
  10. Baker JE, Lum PTM (1973) Development of aposymbiosis in larvae of Sitophilus oryzae by dietary treatment with antibiotics. J Stored Prod Res 9:241–245Google Scholar
  11. Bandi C, Damiani G, Magrassi L, Grigolo A, Fani R, Sacchi L (1994) Flavobacteria as intracellular symbionts in cockroaches. Proc R Soc Lond B Biol Sci 257:43–48Google Scholar
  12. Bandi C, Sironi M, Damiani G, Magrassi L, Nalepa CA, Laudani U, Sacchi L (1995) The establishment of intracellular symbiosis in an ancestor of cockroaches and termites. Proc R Soc Lond B Biol Sci 259:293–299Google Scholar
  13. Bandi C, Sironi M, Nalepa CA, Corona S, Sacchi L (1997) Phylogenetically distant intracellular symbionts in termites. Parassitologia 39:71–75PubMedGoogle Scholar
  14. Bandi C, Anderson TJC, Genchi C, Blaxter ML (1998) Phylogeny of Wolbachia in filarial nematodes. Proc R Soc Lond B Biol Sci 265:2407–2414Google Scholar
  15. Bandi C, McCall JW, Genchi C, Corona S, Venco L, Sacchi L (1999) Effects of tetracycline on the filarial worms Brugia pahangi and Dirofilaria immitis and their bacterial endosymbionts Wolbachia. Int J Parasitol 29:357–364PubMedGoogle Scholar
  16. Bandi C, Sacchi L. Intracellular symbiosis. In: Abe T, Higashi M, Bignel D (eds) Termites: their symbiosis, behavior, and global diversification. Kluwer, Dordrecht (in press)Google Scholar
  17. Barancin CE, Smoot JC, Findlay RH, Actis LA (1998) Plasmid-mediated histamine biosynthesis in the bacterial fish pathogen Vibrio anguillarum. Plasmid 39:235–244PubMedGoogle Scholar
  18. Baumann L, Baumann P (1994) Growth kinetics of the endosymbiont Buchnera aphidicola in the aphid Schizaphis graminum. Appl Environ Microbiol 60:3440–3443PubMedGoogle Scholar
  19. Baumann L, Baumann P (1998) Characterization of ftsZ, the cell division gene of Buchnera aphidicola (endosymbiont of aphids) and detection of the product. Curr Microbiol 36:85–89PubMedGoogle Scholar
  20. Baumann P, Moran NA (1997) Non-cultivable microorganisms from symbiotic associations of insects and other hosts. Antonie Van Leeuwenhoek 72:39–48PubMedGoogle Scholar
  21. Baumann P, Baumann L, Lai CY, Roubakhsh D, Moran NA, Clark MA (1995) Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu Rev Microbiol 49:55–94PubMedGoogle Scholar
  22. Baumann P, Baumann L, Clark MA (1996) Levels of Buchnera aphidicola chaperonin GroEL during growth of the aphid Schizaphis graminum. Curr Microbiol 32:279–285Google Scholar
  23. Baumann P, Moran NA, Baumann L (1997a) The evolution and genetics of aphid endosymbionts. Bioscience 47:12–20Google Scholar
  24. Baumann L, Clark MA, Rouhbakhsh D, Baumann P, Moran NA, Voegtlin DJ (1997b) Endosymbionts (Buchnera) of the aphid Uroleucon sonchi contain plasmids with trpEG and remnants of trpE pseudogenes. Curr Microbiol 35:18–21Google Scholar
  25. Baumann L, Baumann P, Moran NA (1998a) The endosymbiont (Buchnera) of the aphid Diuraphis noxia contains all the genes of the tryptophan biosynthetic pathway. Curr Microbiol 37:58–59PubMedGoogle Scholar
  26. Baumann P, Baumann L, Clark MA, Thao ML (1998b) Buchnera aphidicola: the endosymbiont of aphids. ASM News 64:203–209Google Scholar
  27. Baumann L, Baumann P, Thao ML (1999a) Detection of messenger RNA transcribed from genes encoding enzymes of amino acid biosynthesis in Buchnera aphidicola (endosymbiont of aphids). Curr Microbiol 38:135–136PubMedGoogle Scholar
  28. Baumann L, Baumann P, Moran MA, Sandström J, Thao ML (1999b) Genetic characterization of plasmids containing genes encoding enzymes of leucine biosynthesis in endosymbionts (Buchnera) of aphids. J Mol Evol 48:77–85PubMedGoogle Scholar
  29. Beard CB, O’Neill SL, Tesh RB, Richards FF, Aksoy S (1993a) Modification of arthropod vector competence via symbiotic bacteria. Parasitol Today 9:179–183PubMedGoogle Scholar
  30. Beard CB, O’Neill SK, Mason P, Mandelco L, Woese CR, Tesh RB, Richards FF, Aksoy S (1993b) Genetic transformation and phylogeny of bacterial symbionts from tsetse. Insect Mol Biol 1:123–131PubMedGoogle Scholar
  31. Bensaadi-Merchermek N, Salvado JC, Cagnon C, Karama S, Mouches C (1995) Characterization of the unlinked 16S rDNA and 23S-5S rRNA operon of Wolbachia pipientis, a prokaryotic parasite of insect gonads. Gene 165:81–86PubMedGoogle Scholar
  32. Berlyn MKB (1998) Linkage map of Escherichia coli K-12, edition 10: the traditional map. Microbiol Mol Biol Rev 62:814–984PubMedGoogle Scholar
  33. Bigliardi E, Selmi MG, Corona S, Bandi CA, Sacchi L (1995) Membrane systems in endocytobiosis. III. Ultrastructural features of symbionts and vacuolar membrane in bacteriocytes of the wood-eating cockroach Cryptocercus punctulatus (Dictyoptera, Cryptocercidae). Boll Zool 62:235–238Google Scholar
  34. Blackman RL (1984) Reproduction, cytogenetics and development. In: Minks AK, Harrewijn P (eds) Aphids: their biology, natural enemies and control, vol 2A. Elsevier Biomedical Press, Amsterdam, pp 163–195Google Scholar
  35. Blackman RL, Eastop VF (1984) Aphids on the world’s crops. Wiley, Chichester, UKGoogle Scholar
  36. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, ColladoVides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462PubMedGoogle Scholar
  37. Blua MJ, Perring TM, Madore MA (1994) Plant virus-induced changes in aphid population development and temporal fluctuations in plant nutrients. J Chem Ecol 20:691–707Google Scholar
  38. Boman HG, Hultmark D (1987) Cell-free immunity in insects. Annu Rev Microbiol 41:103–126PubMedGoogle Scholar
  39. Borror DJ, Triplehorn CA, Johnson NF (1989) An introduction to the study of insects. Harcourt Brace College, Fort WorthGoogle Scholar
  40. Bracho AM, Martínez-Torres D, Moya A, Latorre A (1995) Discovery and molecular characterization of a plasmid localized in Buchnera sp., bacterial endosymbiont of the aphid Rhopalosiphum padi. J Mol Evol 41:67–73PubMedGoogle Scholar
  41. Brenner DJ (1984) Enterobacteriaceae. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 408–506Google Scholar
  42. Brough CN, Dixon AFG (1990) Ultrastructural features of egg development in oviparae of vetch aphid, Megoura viciae. Tissue Cell 22:51–63PubMedGoogle Scholar
  43. Brown JK, Frohlich DR, Rosell RC (1995) The sweetpotato or silverleaf whiteflies—biotypes of Bemisia tabaci or a species complex. Annu Rev Entomol 40:511–534Google Scholar
  44. Brynnel EU, Kurland CG, Moran NA, Andersson SGE (1998) Evolutionary rates for tuf genes in endosymbionts of aphids. Mol Biol Evol 15:574–582PubMedGoogle Scholar
  45. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience, New YorkGoogle Scholar
  46. Campbell BC, Bragg TS, Turner CE (1992) Phylogeny of symbiotic bacteria of four weevil species (Coleoptera, Curculionidae) based on analysis of 16S ribosomal DNA. Insect Biochem Mol Biol 22:415–421Google Scholar
  47. Campbell BC, Stefen-Campbell JD, Gill RJ (1994) Evolutionary origin of whiteflies (Hemiptera: Sternorrhyncha: Aleyrodidae) inferred from 18S rDNA sequences. Insect Mol Biol 3:73–88PubMedGoogle Scholar
  48. Chang KP, Musgrave AJ (1969) Histochemistry and ultrastructure of the mycetome and its “symbiotes” in the pear psylla, Psylla pyricola Foerster (Homoptera). Tissue Cell 1:597–606PubMedGoogle Scholar
  49. Charles H, Ishikawa H (1999) Physical and genetic map of the genome of Buchnera, the primary endosymbiont of the pea aphid Acyrthosiphon pisum. J Mol Evol 48:142–150PubMedGoogle Scholar
  50. Charles H, Ishikawa H, Nardon P (1995) Presence of a protein specific of endocytobiosis (symbionin) in the weevil Sitophilus. C R Acad Sci Paris Ser III 318:35–41Google Scholar
  51. Charles H, Condemine G, Nardon C, Nardon P (1997a) Genome size characterization of the principal endocellular symbiotic bacteria of the weevil Sitophilus oryzae, using pulsed field gel electrophoresis. Insect Biochem Mol Biol 27:345–350Google Scholar
  52. Charles H, Heddi A, Guillaud J, Nardon C, Nardon P (1997b) A molecular aspect of symbiotic interactions between the weevil Sitophilus oryzae and its endosymbiotic bacteria: over-expression of a chaperonin. Biochem Biophys Res Commun 239:769–774PubMedGoogle Scholar
  53. Chen D-Q, Purcell AH (1997) Occurrence and transmission of facultative endosymbionts in aphids. Curr Microbiol 34:220–225PubMedGoogle Scholar
  54. Chen DQ, Campbell BC, Purcell AH (1996) A new rickettsia from a herbivorous insect, the pea aphid Acyrthosiphon pisum (Harris). Curr Microbiol 33:123–128PubMedGoogle Scholar
  55. Chen XA, Li S, Aksoy S (1999) Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia. J Mol Evol 48:49–58PubMedGoogle Scholar
  56. Cheng Q, Aksoy S (1999) Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbionts of tsetse flies. Insect Mol Biol 8:125–132PubMedGoogle Scholar
  57. Clark MA, Baumann L, Munson MA, Baumann P, Campbell BC, Duffus JE, Osborne LS, Moran NA (1992) The eubacterial endosymbionts of whiteflies (Homoptera, Aleyrodoidea) constitute a lineage distinct from the endosymbionts of aphids and mealybugs. Curr Microbiol 25:119–123Google Scholar
  58. Clark MA, Baumann L, Baumann P, Rouhbakhsh D (1996) Ribosomal protein S1(RpsA) of Buchnera aphidicola, the endosymbiont of aphids: characterization of the gene and detection of the product. Curr Microbiol 32:89–94PubMedGoogle Scholar
  59. Clark MA, Baumann L, Baumann P (1998a) Sequence analysis of a 34.7-kb DNA segment from the genome of Buchnera aphidicola (endosymbiont of aphids) containing groEL, dnaA, the atp operon, gidA, and rho. Curr Microbiol 36:158–163PubMedGoogle Scholar
  60. Clark MA, Baumann L, Baumann P (1998b) Buchnera aphidicola (aphid endosymbiont) contains genes encoding enzymes of histidine biosynthesis. Curr Microbiol 37:356–358PubMedGoogle Scholar
  61. Clark MA, Baumann P, Moran MA (1999a) Buchnera plasmid-associated trpEG probably originated from a chromosomal location between hslU and fpr. Curr Microbiol 38:309–311Google Scholar
  62. Clark MA, Moran NA, Baumann P (1999b) Sequence evolution in bacterial endosymbionts having extreme base compositions. Mol Biol Evol 16:1586–1598PubMedGoogle Scholar
  63. Clark MA, Moran NA, Baumann P (2000) Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution 54(2):517–525PubMedGoogle Scholar
  64. Cochoran DG (1985) Nitrogen excretion in cockroaches. Annu Rev Entomol 30:29–49Google Scholar
  65. Costa HS, Ullman DE, Johnson MW, Tabashnik BE (1993a) Antibiotic oxytetracycline interferes with Bemisia tabaci (Homoptera, Aleyrodidae) oviposition, development, and ability to induce squash silverleaf. Ann Entomol Soc Am 86:740–748Google Scholar
  66. Costa HS, Westcot DM, Ullman DE, Johnson MW (1993b) Ultrastructure of the endosymbionts of the whitefly, Bemisia tabaci and Trialeurodes vaporariorum. Protoplasma 176:106–115Google Scholar
  67. Costa HS, Westcot DM, Ullman DE, Rosell R, Brown JK, Johnson MW (1995) Morphological variation in Bemisia endosymbionts. Protoplasma 189:194–202Google Scholar
  68. Costa HS, Toscano NC, Henneberry TJ (1996) Mycetocyte inclusion in the oocytes of Bemisia argentifolii (Homoptera, Aleyrodidae). Ann Entomol Soc Am 89:694–699Google Scholar
  69. Costa HS, Henneberry TJ, Toscano NC (1997) Effects of antibacterial materials on Bemisia argentifolii (Homoptera: Aleyrodidae) oviposition, growth, survival, and sex ratio. J Econ Entomol 90:333–339Google Scholar
  70. Crawford IP (1989) Evolution of a biosynthetic pathway—the tryptophan paradigm. Annu Rev Microbiol 43:567–600PubMedGoogle Scholar
  71. Dadd RH (1985) Nutrition: organisms. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology, vol 4. Pergamon, Elmsford, pp 315–319Google Scholar
  72. Dale C, Maudlin I (1999) Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int J Syst Bacteriol 49:267–275PubMedGoogle Scholar
  73. Dasch GA (1975) Morphological and molecular studies on intracellular bacterial symbiotes of insects. Yale University, New HavenGoogle Scholar
  74. Dasch GA, Weiss E, Chang K-P (1984) Endosymbionts of insects. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 811–833Google Scholar
  75. Denk D, Böck A (1987) l-Cysteine biosynthesis in Escherichia coli: nucleotide sequence and expression of the serine acetyltransferase (cysE) gene from wild-type and a cysteine-excreting mutant. J Gen Microbiol 133:515–525PubMedGoogle Scholar
  76. Dixon AFG (1973) Biology of aphids. Edward Arnold, LondonGoogle Scholar
  77. Dixon AFG (1992) Constraints on the rate of parthenogenetic reproduction and pest status of aphid. Invertebr Reprod Dev 22:159–163Google Scholar
  78. Douglas AE (1988) Sulfate utilization in an aphid symbiosis. Insect Biochem 18:159–163Google Scholar
  79. Douglas AE (1989) Mycetocyte symbiosis in insects. Biol Rev Camb Philos Soc 64:409–434PubMedGoogle Scholar
  80. Douglas AE (1990) Nutritional interactions between Myzus persicae and its symbionts. In: Campbell RK, Eikenbary RD (eds) Aphid-plant genotype interactions. Elsevier Biomedical Press, Amsterdam, pp 319–327Google Scholar
  81. Douglas AE (1997) Parallels and contrasts between symbiotic bacteria and bacterial-derived organelles: evidence from Buchnera, the bacterial symbiont of aphids. FEMS Microbiol Ecol 24:1–9Google Scholar
  82. Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37PubMedGoogle Scholar
  83. Douglas AE, Dixon AFG (1987) The mycetocyte symbiosis of aphids: variation with age and morph in virginoparae of Megoura viciae and Acyrthosiphon pisum. J Insect Physiol 33:109–113Google Scholar
  84. Douglas AE, Prosser WA (1992) Synthesis of the essential amino acid tryptophan in the pea aphid (Acyrthosiphon pisum) symbiosis. J Insect Physiol 38:565–568Google Scholar
  85. Douglas AE, Smith DC (1989) Are endosymbioses mutualistic? Trends Ecol Evol 4:350–352PubMedGoogle Scholar
  86. Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, Richards FF, Beard CB (1997) Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci USA 94:3274–3278PubMedGoogle Scholar
  87. Eisen JA (1995) The RecA Protein as a model molecule for molecular systematic studies of bacteria—comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol 41:1105–1123PubMedGoogle Scholar
  88. Eremeeva ME, Ching WM, Wu YL, Silverman DJ, Dasch GA (1998) Western blotting analysis of heat shock proteins of Rickettsiales and other eubacteria. FEMS Microbiol Lett 167:229–237PubMedGoogle Scholar
  89. Faye I (1978) Insect immunity: early fate of bacteria injected in a Saturniid pupae. J Invertebr Pathol 31:19–26Google Scholar
  90. Filichkin SA, Brumfield S, Filichkin TP, Young MJ (1997) In vitro interactions of the aphid endosymbiotic SymL chaperonin with barley yellow dwarf virus. J Virol 71:569–577PubMedGoogle Scholar
  91. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, McKenney K, Sutton G, Fitzhugh W, Fields C, Gocayne JD, Scott J, Shirley R, Liu LI, Glodek A, Kelley JM, Weidman JF, Phillips CA, Spriggs T, Hedblom E, Cotton MD, Utterback TR, Hanna MC, Nguyen DT, Saudek DM, Brandon RC, Fine LD, Fritchman JL, Fuhrmann JL, Geoghagen NSM, Gnehm CL, McDonald LA, Small KV, Fraser CM, Smith HO, Venter JC (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:469–512Google Scholar
  92. Forrest JMS (1987) Galling aphids. In: Minks AK, Harrewijn P (eds) Aphids: their biology, natural enemies and control, vol 2A. Elsevier, Amsterdam, pp 341–353Google Scholar
  93. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM, Fritchman JL, Weidman JF, Small KV, Sandusky M, Fuhrmann J, Nguyen D, Utterback TR, Saudek DM, Phillips CA, Merrick JM, Tomb JF, Dougherty BA, Bott KF, Hu PC, Lucier TS, Peterson SN, Smith HO, Hutchison CA, Venter JC (1995) The minimal gene complement of Mycoplasma genitalium. Science 270:397–403PubMedGoogle Scholar
  94. Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty B, Tomb JF, Fleischmann RD, Richardson D, Peterson J, Kerlavage AR, Quackenbush J, Salzberg S, Hanson M, vanVugt R, Palmer N, Adams MD, Gocayne J, Weidman J, Utterback T, Watthey L, McDonald L, Artiach P, Bowman C, Garland S, Fujii C, Cotton MD, Horst K, Roberts K, Hatch B, Smith HO, Venter JC (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580–586PubMedGoogle Scholar
  95. Fukatsu T, Ishikawa H (1992a) A novel eukaryotic extracellular symbiont in an aphid, Astegopteryx styraci (Homoptera, Aphididae, Hormaphidinae). J Insect Physiol 38:765–773Google Scholar
  96. Fukatsu T, Ishikawa H (1992b) Soldier and male of an eusocial aphid Colophina arma lack endosymbiont: implications for physiological and evolutionary interaction between host and symbiont. J Insect Physiol 38:1033–1042Google Scholar
  97. Fukatsu T, Ishikawa H (1992c) Synthesis and localization of symbionin, an aphid endosymbiont protein. Insect Biochem Mol Biol 22:167–174Google Scholar
  98. Fukatsu T, Ishikawa H (1993) Occurrence of chaperonin-60 and chaperonin-10 in primary and secondary bacterial symbionts of aphids—implications for the evolution of an endosymbiotic system in aphids. J Mol Evol 36:568–577PubMedGoogle Scholar
  99. Fukatsu T, Ishikawa H (1996) Phylogenetic position of yeast-like symbiont of Hamiltonaphis styraci (Homoptera, Aphididae) based on 18S rDNA sequence. Insect Biochem Mol Biol 26:383–388PubMedGoogle Scholar
  100. Fukatsu T, Ishikawa H (1998) Differential immunohistochemical visualization of the primary and secondary intracellular symbiotic bacteria of aphids. Appl Entomol Zool 33:321–326Google Scholar
  101. Fukatsu T, Nikoh N (1998) Two intracellular symbiotic bacteria from the mulberry psyllid Anomoneura mori (Insecta, Homoptera). Appl Environ Microbiol 64:3599–3606PubMedGoogle Scholar
  102. Fukatsu T, Aoki S, Kurosu U, Ishikawa H (1994) Phylogeny of Cerataphidini aphids revealed by their symbiotic microorganisms and basic structure of their galls: implications for host-symbiont coevolution and evolution of sterile soldier castes. Zool Sci 11:613–623Google Scholar
  103. Fukatsu T, Watanabe K, Sekiguchi Y (1998) Specific detection of intracellular symbiotic bacteria of aphids by oligonucleotide-probed in situ hybridization. Appl Entomol Zool 33:461–472Google Scholar
  104. Gasnier-Fauchet F, Nardon P (1986) Comparison of methionine metabolism in symbiotic and aposymbiotic larvae of Sitophilus oryzae L. (Coleoptera: curculionidae). II. Involvement of the symbiotic bacteria in the oxidation of methionine. Comp Biochem Physiol 85B:251–254Google Scholar
  105. Gasnier-Fauchet F, Gharib A, Nardon P (1986) Comparison of methionine metabolism in symbiotic and aposymbiotic larvae of Sitophilus oryzae L. (Coleoptera: Curculionidae) I. Evidence for a glycine N-methyltransferase-like activity in the aposymbiotic larvae. Comp Biochem Physiol 85B:245–250Google Scholar
  106. Gray SM, Banerjee N (1999) Mechanisms of arthropod transmission of plant and animal viruses. Microbiol Mol Biol Rev 63:128–148PubMedGoogle Scholar
  107. Grenier AM, Nardon C, Rahbe Y (1994) Observations on the micro-organisms occurring in the gut of the pea aphid Acyrthosiphon pisum. Entomol Exp Appl 70:91–96Google Scholar
  108. Griffiths GW, Beck SD (1973) Intracellular symbiotes of the pea aphid, Acyrthosiphon pisum. J Insect Physiol 19:75–84Google Scholar
  109. Griffiths GW, Beck SD (1974) Effect of antibiotics on intracellular symbiotes in the pea aphid, Acyrthosiphon pisum. Cell Tissue Res 148:287–300PubMedGoogle Scholar
  110. Grinyer I, Musgrave AJ (1966) Ultrastructure and peripheral membranes of the mycetomal microorganism of Sitophilus granarius (L. coleoptera). J Cell Sci 1:181–186Google Scholar
  111. Gross CA (1996) Function and regulation of heat shock proteins. In: Neidhard FC (ed) Escherichia coli and Salmonella, vol 1. ASM Press, Washington, DC, pp 1382–1399Google Scholar
  112. Gross R, Rappuoli R (1988) Positive regulation of pertussis toxin expression. Proc Natl Acad Sci USA 85:3913–3917PubMedGoogle Scholar
  113. Hara E, Ishikawa H (1990) Purification and partial characterization of symbionin, an aphid endosymbiont-specific protein. Insect Biochem 20:421–427Google Scholar
  114. Harada H, Ishikawa H (1993) Gut microbe of aphid closely related to its intracellular symbiont. Biosystems 31:185–191PubMedGoogle Scholar
  115. Harada H, Oyaizu H, Ishikawa H (1996) A consideration about the origin of aphid intracellular symbiont in connection with gut bacterial flora. J Gen Appl Microbiol 42:17–26Google Scholar
  116. Harrison CP, Douglas AE, Dixon AFG (1989) A rapid method to isolate symbiotic bacteria from aphids. J Invertebr Pathol 53:427–428Google Scholar
  117. Harwood RF, James MT (1979) Entomology in human and animal health. Macmillan, New YorkGoogle Scholar
  118. Hassan AKM, Moriya S, Baumann P, Yoshikawa H, Ogasawara N (1996) Structure of the dnaA region of the endosymbiont, Buchnera aphidicola, of the aphid Schizaphis graminum. DNA Res 3:415–419PubMedGoogle Scholar
  119. Heddi A, Lefebvre F, Nardon P (1991) The influence of symbiosis on the respiratory control ratio (RCR) and the ADP/O Ratio in the adult weevil-Sitophilus oryzae (Coleoptera, Curculionidae). Endocytobiosis Cell Res 8:61–73Google Scholar
  120. Heddi A, Lefebvre F, Nardon P (1993) Effect of endocytobiotic bacteria on mitochondrial enzymatic activities in the weevil Sitophilus oryzae (Coleoptera, Curculionidae). Insect Biochem Mol Biol 23:403–411Google Scholar
  121. Heddi A, Charles H, Khatchadourian C, Bonnot G, Nardon P (1998) Molecular characterization of the principal symbiotic bacteria of the weevil Sitophilus oryzae: a peculiar G–C content of an endocytobiotic DNA. J Mol Evol 47:52–61PubMedGoogle Scholar
  122. Henry SM (1962) The significance of microorganisms in the nutrition of insects. Trans N Y Acad Sci 24:676–683Google Scholar
  123. Hinde R (1971a) The control of mycetome symbiotes of the aphids Brevicoryne brassicae, Myzus persicae, and Macrosiphon rosae. J Insect Physiol 17:1971–1800Google Scholar
  124. Hinde R (1971b) The fine structure of mycetome symbiotes of the aphids Brevicoryne brassicae, Myzus persicae, and Macrosiphum rosae. J Insect Physiol 17:2035–2050PubMedGoogle Scholar
  125. Hogenhout SA, van derWilk F, Verbeek M, Goldbach RW, van den Heuvel JFJM (1998) Potato leafroll virus binds to the equatorial domain of the aphid endosymbiotic GroEL homolog. J Virol 72:358–365PubMedGoogle Scholar
  126. Houk EJ, Griffiths GW (1980) Intracellular symbiotes of the Homoptera. Annu Rev Entomol 25:161–187Google Scholar
  127. Houk EJ, Griffiths GW, Hadjokas NE, Beck SD (1977) Peptidoglycan in the cell wall of the primary intracellular symbiote of the pea aphid. Science 198:401–403PubMedGoogle Scholar
  128. Humphreys NJ, Douglas AE (1997) Partitioning of symbiotic bacteria between generations of insect: a quantitative study of a Buchnera sp. in the pea aphid (Acyrthosiphon pisum) reared at different temperatures. Appl Environ Microbiol 63:3294–3296PubMedGoogle Scholar
  129. Iaccarino FM, Tremblay E (1973) Comparazione ultrastrutturale della disimbiosi di Macrosiphum rosae (L.) e Dactynotus jaceae (L.) (Homoptera, Aphididae). Boll Lab Entomol Agrar Filipo Silvestri 30:319–335Google Scholar
  130. Ishikawa H (1982) Isolation of the intracellular symbionts and partial characterizations of their RNA species of the elder aphid, Acyrthosiphon magnoliae. Comp Biochem Physiol 72B:239–247Google Scholar
  131. Ishikawa H (1987) Nucleotide composition and kinetic complexity of the genomic DNA of an intracellular symbiont in the pea aphid Acyrthosiphon pisum. J Mol Evol 24:205–211Google Scholar
  132. Kakeda K, Ishikawa H (1991) Molecular chaperon produced by an intracellular symbiont. J Biochem 110:583–587PubMedGoogle Scholar
  133. Kambhampati S (1995) A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes. Proc Natl Acad Sci USA 92:2017–2020PubMedGoogle Scholar
  134. Katsumata R, Ikeda M (1993) Hyperproduction of tryptophan in Corynebacterium glutamicum by pathway engineering. Biotechnology 11:921–925Google Scholar
  135. Klotz MG, Norton JM (1998) Multiple copies of ammonia monooxygenase (amo) operons have evolved under biased AT/GC mutational pressure in ammonia-oxidizing autotrophic bacteria. FEMS Microbiol Lett 168:303–311PubMedGoogle Scholar
  136. Komaki K, Ishikawa H (1999) Intracellular symbionts of aphids are bacteria with numerous genomic copies. J Mol Evol 48:717–722PubMedGoogle Scholar
  137. Kreditch NM (1996) Biosynthesis of cysteine. In: Neidhardt FC (ed) Escherichia coli and Salmonella, vol 1. ASM Press, Washington, DC, pp 514–527Google Scholar
  138. Kusano T, Takeshima T, Inoue C, Sugawara K (1991) Evidence for two sets of structural genes coding for ribulose bisphosphate carboxylase in Thiobacillus ferrooxidans. J Bacteriol 173:7313–7323PubMedGoogle Scholar
  139. Lai CY, Baumann P (1992a) Genetic analysis of an aphid endosymbiont DNA fragment homologous to the rnpA-rpmH-dnaA-dnaN-gyrB region of eubacteria. Gene 113:175–181PubMedGoogle Scholar
  140. Lai CY, Baumann P (1992b) Sequence analysis of a DNA fragment from Buchnera aphidicola (an endosymbiont of aphids) containing genes homologous to dnaG, rpoD, cysE andsecB. Gene 119:113–118PubMedGoogle Scholar
  141. Lai CY, Baumann L, Baumann P (1994) Amplification of trpEG: adaptation of Buchnera aphidicola to an endosymbiotic association with aphids. Proc Natl Acad Sci USA 91:3819–3823PubMedGoogle Scholar
  142. Lai C-Y, Baumann P, Moran NA (1995) Genetics of the tryptophan biosynthetic pathway of the prokaryotic endosymbiont (Buchnera) of the aphid Schlechtendalia chinensis. Insect Mol Biol 4:47–59PubMedGoogle Scholar
  143. Lai CY, Baumann P, Moran N (1996) The endosymbiont (Buchnera sp.) of the aphid Diuraphis noxia contains plasmids consisting of trpEG and tandem repeats of trpEG pseudogenes. Appl Environ Microbiol 62:332–339PubMedGoogle Scholar
  144. Lambert JD, Moran NA (1998) Deleterious mutations destabilize ribosomal RNA in endosymbiotic bacteria. Proc Natl Acad Sci USA 95:4458–4462PubMedGoogle Scholar
  145. Liadouze I, Febvay G, Guillaud J, Bonnot G (1996) Metabolic fate of energetic amino acids in the aposymbiotic pea aphid Acyrthosiphon pisum (Harris) (Homoptera, Aphididae). Symbiosis 21:115–127Google Scholar
  146. Lipsitch M, Nowak MA, Ebert D, May RM (1995) The population dynamics of vertically and horizontally transmitted parasites. Proc R Soc Lond B Biol Sci 260:321–327Google Scholar
  147. Llanes C, Gabant P, Couturier M, Bayer L, Plesiat P (1996) Molecular analysis of the replication elements of the broad-host-range RepA/C replicon. Plasmid 36:26–35PubMedGoogle Scholar
  148. Margolis N, Hogan D, Tilly K, Rosa PA (1994) Plasmid location of Borrelia purine biosynthesis gene homologs. J Bacteriol 176:6427–6432PubMedGoogle Scholar
  149. Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. W. H. Freeman Spektrum, Oxford/New YorkGoogle Scholar
  150. McLean DL, Houk EJ (1973) Phase contrast and electron microscopy pf the mycetocytes and symbiotes of the pea aphid, Acyrthosiphon pisum. J Insect Physiol 19:625–633Google Scholar
  151. McMillan DJ, Mau M, Walker MJ (1998) Characterisation of the urease gene cluster in Bordetella bronchiseptica. Gene 208:243–251PubMedGoogle Scholar
  152. Messer W, Weigl C (1996) Initiation of chromosome replication. In: Neidhardt FC (ed) Escherichia coli and Salmonella, vol 2. ASM Press, Washington, DC, pp 1579–1601Google Scholar
  153. Moran NA (1996) Accelerated evolution and Muller’s ratchet in endosymbiotic bacteria. Proc Natl Acad Sci USA 93:2873–2878PubMedGoogle Scholar
  154. Moran N, Baumann P (1994) Phylogenetics of cytoplasmically inherited microorganisms of arthropods. Trends Ecol Evol 9:15–20PubMedGoogle Scholar
  155. Moran NA, Telang A (1998) Bacteriocyte-associated symbionts of insects: a variety of insect groups harbor ancient prokaryotic endosymbionts. Bioscience 48:295–304Google Scholar
  156. Moran NA, Munson MA, Baumann P, Ishikawa H (1993) A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc Lond B Biol Sci 253:167–171Google Scholar
  157. Moran NA, von Dohlen CD, Baumann P (1995) Faster evolutionary rates in endosymbiotic bacteria than in cospeciating insect hosts. J Mol Evol 41:727–731Google Scholar
  158. Moran NA, Kaplan ME, Gelsey MJ, Murphy TG, Scholes EA (1999) Phylogeny and evolution of the aphid genus Uroleucon based on nuclear and mitochondrial DNA sequences. Syst Entomol 24:85–93Google Scholar
  159. Munson MA, Baumann P, Kinsey MG (1991a) Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyte-associated, primary endosymbionts of aphids. Int J Syst Bacteriol 41:566–568Google Scholar
  160. Munson MA, Baumann P, Clark MA, Baumann L, Moran NA, Voegtlin DJ, Campbell BC (1991b) Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families. J Bacteriol 173:6321–6324PubMedGoogle Scholar
  161. Munson MA, Baumannn P, Moran MA (1992) Phylogenetic relationships of the endosymbionts of mealybugs (Homoptera: Pseudococcidae) based on 16S rDNA sequences. Mol Phylogenet Evol 1:26–30PubMedGoogle Scholar
  162. Munson MA, Baumann L, Baumann P (1993) Buchnera aphidicola (a prokaryotic endosymbiont of aphids) contains a putative 16S rRNA operon unlinked to the 23S rRNA-encoding gene: sequence determination, and promoter and terminator analysis. Gene 137:171–178PubMedGoogle Scholar
  163. Musgrave AJ, Grinyer I (1968) Membranes associated with the disintegration of mycetomal micro-organisms in Sitophilus zeamais (Mots. Coleoptera). J Cell Sci 3:65–70PubMedGoogle Scholar
  164. Nakabachi A, Ishikawa H (1997) Differential display of mRNAs related to amino acid metabolism in the endosymbiotic system of aphids. Insect Biochem Mol Biol 27:1057–1062PubMedGoogle Scholar
  165. Nakabachi A, Ishikawa H (1999) Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera. J Insect Physiol 45:1–6PubMedGoogle Scholar
  166. Nardon P, Grenier AM (1988) Genetical and biochemical interactions between the host and its endocytobiotes in the weevil Sitophilus (Coleoptera, Curculionidae) and other related species. In: Scannerini S (ed) Cell to cell signals in plant, animal and microbial symbiosis. Springer, Heidelberg, pp 255–270Google Scholar
  167. Nicholson ML, Gaasenbeek M, Laudenbach DE (1995) Two enzymes together capable of cysteine biosynthesis are encoded on a cyanobacterial plasmid. Mol Gen Genet 247:623–632PubMedGoogle Scholar
  168. Nogge G (1976) Aposymbiotic tsetse flies. Glossina morsitans morsitans obtained by feeding adults on rabbits immunized specifically with symbionts. J Insect Physiol 24:299–304Google Scholar
  169. Nogge G (1982) Significance of symbionts for the maintenance of an optimal nutritional state of successful reproduction in hematophagous arthropods. Parasitology 82:299–304Google Scholar
  170. Norton JM, Low JM, Martin G (1996) The gene encoding ammonia monooxygenase subunit A exists in three nearly identical copies in Nitrosospira sp. NpAV. FEMS Microbiol Lett 139:181–188PubMedGoogle Scholar
  171. O’Neill A, Hoffman A, Werren JH (1997) Influential passengers; inherited microorganisms and arthropod reproduction. Oxford University Press, OxfordGoogle Scholar
  172. Ohtaka C, Nakamura H, Ishikawa H (1992) Structures of chaperonins from an intracellular symbiont and their functional expression in Escherichia coli groE mutants. J Bacteriol 174:1869–1874PubMedGoogle Scholar
  173. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220PubMedGoogle Scholar
  174. Pennisi E (1998) Evolution—heat shock protein mutes genetic changes. Science 282:1796PubMedGoogle Scholar
  175. Remaudière G, Remaudière M (1997) Catalogue des aphididae du monde. Institut National de la Recherche Agronomique, ParisGoogle Scholar
  176. Riley M, Labedan B (1996) Escherichia coli gene products: physiological functions and common ancestries. In: Neidhardt FC (ed) Escherichia coli and Salmonella, vol 2. ASM Press, Washington, DC, pp 2118–2202Google Scholar
  177. Romero D, Palacios R (1997) Gene amplification and genomic plasticity in prokaryotes. Annu Rev Genet 31:91–111PubMedGoogle Scholar
  178. Roth JR, Benson N, Galitski T, Haack K, Lawrence JG, Miesel L (1996) Rearrangements of the bacterial chromosome: formation and applications. In: Neidhardt FC (ed) Escherichia coli and Salmonella, vol 2. ASM Press, Washington, DC, pp 2256–2276Google Scholar
  179. Rouhbakhsh D, Baumann P (1995) Characterization of a putative 23S-5S rRNA operon of Buchnera aphidicola (endosymbiont of aphids) unlinked to the 16S rRNA-encoding gene. Gene 155:107–112PubMedGoogle Scholar
  180. Rouhbakhsh D, Moran NA, Baumann L, Voegtlin DJ, Baumann P (1994) Detection of Buchnera, the primary prokaryotic endosymbiont of aphids, using the polymerase chain reaction. Insect Mol Biol 3:213–217PubMedGoogle Scholar
  181. Rouhbakhsh D, Lai CY, von Dohlen CD, Clark MA, Baumann L, Baumann P, Moran NA, Voegtlin DJ (1996) The tryptophan biosynthetic pathway of aphid endosymbionts (Buchnera): genetics and evolution of plasmid-associated anthranilate synthase (trpEG) within the Aphididae. J Mol Evol 42:414–421PubMedGoogle Scholar
  182. Rouhbakhsh D, Clark MA, Baumann L, Moran NA, Baumann P (1997) Evolution of the tryptophan biosynthetic pathway in Buchnera (aphid endosymbionts): studies of plasmid-associated trpEG within the genus Uroleucon. Mol Phylogenet Evol 8:167–176PubMedGoogle Scholar
  183. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342PubMedGoogle Scholar
  184. Sacchi L, Corona S, Grigolo A, Laudani U, Selmi MG, Bigliardi E (1996) The fate of the endocytobionts of Blattella germanica (Blattaria, Blattellidae) and Periplaneta americana (Blattaria, Blattidae) during embryo development. Ital J Zool 63:1–11Google Scholar
  185. Sacchi L, Nalepa CA, Bigliardi E, Corona S, Grigolo A, Laudani U, Bandi C (1998a) Ultrastructural studies of the fat body and bacterial endosymbionts of Cryptocercus punctulatus Scudder (Blattaria: Cryptocercidae). Symbiosis 25:251–269Google Scholar
  186. Sacchi L, Nalepa CA, Bigliardi E, Lenz M, Bandi C, Corona S, Grigolo A, Lambiase S, Laudani U (1998b) Some aspects of intracellular symbiosis during embryo development of Mastotermes darwiniensis (Isoptera: Mastotermitidae). Parassitologia 40:309–316PubMedGoogle Scholar
  187. Sandström J, Moran N (1999) How nutritionally imbalanced is phloem sap for aphids? Entomol Exp Appl 91:203–210Google Scholar
  188. Sandström J, Pettersson J (1994) Amino acid composition of phloem sap and the relation to intraspecific variation in pea aphid (Acyrthosiphon pisum) performance. J Insect Physiol 40:947–955Google Scholar
  189. Sandström J, Telang A, Moran NA (2000) Nutritional enhancement of host plants by aphids-a comparison of three aphid species on grasses. J Insect Physiol 46:33–40PubMedGoogle Scholar
  190. Sasaki T, Ishikawa H (1995) Production of essential amino acids from glutamate by mycetocyte symbionts of the pea aphid, Acyrthosiphon pisum. J Insect Physiol 41:41–46Google Scholar
  191. Sasaki T, Aoki T, Hayashi H, Ishikawa H (1990) Amino acid composition of the honeydew of symbiotic and aposymbiotic pea aphids Acyrthosiphon pisum. J Insect Physiol 36:35–40Google Scholar
  192. Sato S, Ishikawa H (1997a) Expression and control of an operon from an intracellular symbiont which is homologous to the groE operon. J Bacteriol 179:2300–2304PubMedGoogle Scholar
  193. Sato S, Ishikawa H (1997b) Structure and expression of the dnaKJ operon of Buchnera, an intracellular symbiotic bacteria of aphid. J Biochem 122:41–48PubMedGoogle Scholar
  194. Schröder D, Deppisch H, Obermayer M, Krohne G, Stackebrandt E, Holldobler B, Goebel W, Gross R (1996) Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization. Mol Microbiol 21:479–489PubMedGoogle Scholar
  195. Silva FJ, van Ham RCHJ, Sabater B, Latorre A (1998) Structure and evolution of the leucine plasmids carried by the endosymbiont (Buchnera aphidicola) from aphids of the family Aphididae. FEMS Microbiol Lett 168:43–49PubMedGoogle Scholar
  196. Smith DC, Douglas AE (1987) The biology of symbiosis. Edward Arnold, LondonGoogle Scholar
  197. Smith OH, Yanofsky C (1962) Enzymes involved in the biosynthesis of tryptophan. Methods Enzymol 5:794–806Google Scholar
  198. Spaulding AW, von Dohlen CD (1998) Phylogenetic characterization and molecular evolution of bacterial endosymbionts in psyllids (Hemiptera: Sternorrhyncha). Mol Biol Evol 15:1506–1513PubMedGoogle Scholar
  199. Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao QX, Koonin EV, Davis RW (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754–759PubMedGoogle Scholar
  200. Sylvester ES (1985) Multiple acquisition of viruses and vector-dependent prokaryotes: consequences on transmission. Annu Rev Entomol 30:71–88Google Scholar
  201. Telang A, Sandström J, Dyreson E, Moran NA (1999) Feeding damage by Diuraphis noxia results in nutritionally enhanced phloem diet. Entomol Exp Appl 91:403–412Google Scholar
  202. Thao ML, Baumann P (1998) Sequence analysis of a DNA fragment from Buchnera aphidicola (aphid endosymbiont) containing the genes dapD-htrA-ilvI-ilvH-ftsL-ftsI-murE. Curr Microbiol 37:214–216PubMedGoogle Scholar
  203. Thao ML, Baumann L, Baumann P, Moran NA (1998) Endosymbionts (Buchnera) from the aphids Schizaphis graminum and Diuraphis noxia have different copy numbers of the plasmid containing the leucine biosynthetic genes. Curr Microbiol 36:238–240PubMedGoogle Scholar
  204. Tremblay E (1989) Coccoidea endosymbiosis. In: Schwemmler W, Gassner G (eds) Insect endocytobiosis: morphology, physiology, genetics, evolution. CRC Press, Boca Raton, pp 145–173Google Scholar
  205. Unterman BM, Baumann P (1990) Partial characterization of ribosomal RNA operons of the pea-aphid endosymbionts: evolutionary and physiological implications. In: Campbell RK, Eikenbary RD (eds) Aphid-plant genotype interactions. Elsevier Biomedical Press, Amsterdam, pp 329–350Google Scholar
  206. Unterman BM, Baumann P, McLean DL (1989) Pea aphid symbiont relationships established by analysis of 16S rRNAs. J Bacteriol 171:2970–2974PubMedGoogle Scholar
  207. van den Heuvel JFJM, Verbeek M, van der Wilk F (1994) Endosymbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae. J Gen Virol 75:2559–2565PubMedGoogle Scholar
  208. van den Heuvel JFJM, Bruyere A, Hogenhout A, ZieglerGraff V, Brault V, Verbeek M, van derWilk F, Richards K (1997) The N-terminal region of the luteovirus readthrough domain determines virus binding to Buchnera GroEL and is essential for virus persistence in the aphid. J Virol 71:7258–7265PubMedGoogle Scholar
  209. van Ham RCHJ, Moya A, Latorre A (1997) Putative evolutionary origin of plasmids carrying the genes involved in leucine biosynthesis in Buchnera aphidicola (endosymbiont of aphids). J Bacteriol 179:4768–4777PubMedGoogle Scholar
  210. van Ham RCHJ, Martínez-Torres D, Moya A, Latorre A (1999) Plasmid-encoded anthranilate synthase (TrpEG) in Buchnera aphidicola from the family Pemphigidae. Appl Environ Microbiol 65:117–125Google Scholar
  211. von Dohlen CD, Moran NA (1995) Molecular phylogeny of the Homoptera—a paraphyletic taxon. J Mol Evol 41:211–223Google Scholar
  212. von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229Google Scholar
  213. Waku Y, Endo Y (1987) Ultrastructure and life cycle of the symbionts in a Homopteran insect, Anomoneura mori Schwartz (Psyllidae). Appl Entomol Zool 22:630–637Google Scholar
  214. Wernegreen JJ, Moran NA (1999) Evidence for genetic drift in endosymbionts (Buchnera): analyses of protein-coding genes. Mol Biol Evol 16:83–97PubMedGoogle Scholar
  215. Werren JH, O’Neill SL (1997) The evolution of heritable symbionts. In: O’Neill SL, Hoffman AA, Werren JH (eds) Influential passengers; inherited microorganisms and arthropod reproduction. Oxford University Press, Oxford, pp 1–41Google Scholar
  216. Whitehead LF, Douglas AE (1993) A metabolic study of Buchnera, the intracellular bacterial symbionts of the pea aphid Acyrthosiphon pisum. J Gen Microbiol 139:821–826Google Scholar
  217. Wicker C, Nardon P (1982) Development responses of symbiotic and aposymbiotic weevils Sitophilus oryzae L. (Coleoptera, Curculionidae) to a diet supplemented with aromatic amino-acids. J Insect Physiol 28:1021–1024Google Scholar
  218. Wilkinson TL (1998) The elimination of intracellular microorganisms from insects: an analysis of antibiotic-treatment in the pea aphid (Acyrthosiphon pisum). Comp Biochem Physiol A Comp Physiol 119:871–881Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Paul Baumann
    • 1
  • Nancy A. Moran
    • 2
  • Linda C. Baumann
    • 3
  1. 1.Division of Agriculture and Natural ResourcesUniversity of California Cooperative ExtensionDavisUSA
  2. 2.Biological and Biomedical Sciences ProgramYale UniversityNew HavenUSA
  3. 3.School of NursingUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations