Origin of Life: RNA World Versus Autocatalytic Anabolist

Reference work entry


Two theories on the origin of life are characterized and compared: (1) Origin by RNA replication in a cold prebiotic broth of activated nucleotides (RNA world theory) and (2) origin by transition of metal-catalyzed carbon fixation, with ligand acceleration by organic products, in a hot volcanic-hydrothermal flow setting (autocatalytic anabolist theory).


Thioglycolic Acid Anionic Intermediate Transition Metal Center Genetic Machinery Benzyl Mercaptan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I express my gratitude to Claudia Huber for dedicated and ingenious experimental testing of the anabolist theory, to Helmut Simon, Adelbert Bacher and Mathias Groll for providing laboratory facilities and support, to Deutsche Forschungsgemeinschaft for financial support, to Otto Kandler, the great catalyst without whom none of this would have come about, and to Dorothy Wächtershäuser for years of encouragement and help in formulating this and other papers.


  1. Blöchl E, Keller M, Wächtershäuser G, Stetter KO (1992) Reactions depending on iron sulfide and linking geochemistry with biochemistry. Proc Natl Acad Sci USA 89:8117–8120PubMedCrossRefGoogle Scholar
  2. Carter CW, Kraut J (1974) A proposed model for interaction of polypeptides with RNA. Proc Natl Acad Sci USA 72:283–287CrossRefGoogle Scholar
  3. Cech TR (ed) (2011) The RNA worlds in context. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a006742Google Scholar
  4. Chemnitz Galal W, Pan M, Kelman Z, Hurwitz J (2012) Characterization of the DNA Primase complex isolated from the archaeon, Thermococcus kodakarensis. J Biol Chem 287(20):16209–16219PubMedCrossRefGoogle Scholar
  5. Cockel CS (2006) The origin and emergence of life under impact bombardment. Phil Trans R Soc B 361:1845–1875CrossRefGoogle Scholar
  6. Cody GD, Boctor NZ, Filley TR, Hazen RM, Scott JH, Sharma A, Yoder HS Jr (2000) Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. Science 289:1337–1340PubMedCrossRefGoogle Scholar
  7. De Duve C (1991) Blueprint for a cell: the nature and origin of life. Neil Patterson, BurlingtonGoogle Scholar
  8. Di Giulio M (2003) The universal ancestor and the ancestor of bacteria were hyperthermophiles. J Mol Evol 57:721–730PubMedCrossRefGoogle Scholar
  9. Dörr M, Käßbohrer J, Grunert R, Kreisel G, Brand WA, Werner RA, Geilmann H, Apfel C, Robl C, Weigand W (2003) A possible prebiotic formation of ammonia from dinitrogen on iron-sulfide surfaces. Angew Chem Int Ed 42:1540–1543CrossRefGoogle Scholar
  10. Gesteland RF, Cech TR, Atkins JF (eds) (1999) The RNA world: the nature of modern RNA suggests a prebiotic RNA. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  11. Fuchs G (2011) Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65:631–658PubMedCrossRefGoogle Scholar
  12. Harish A, Caetano-Anollés G (2012) Ribosomal history reveals origin of modern protein synthesis. PLoS One 7:e32776PubMedCrossRefGoogle Scholar
  13. Heinen W, Lauwers AM (1996) Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment. Orig Life Evol Biosph 26:131–150PubMedCrossRefGoogle Scholar
  14. Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276:245–247PubMedCrossRefGoogle Scholar
  15. Huber C, Eisenreich W, Hecht S, Wächtershäuser G (2003) A possible primordial peptide cycle. Science 301:938–940PubMedCrossRefGoogle Scholar
  16. Huber C, Kraus F, Hanzlik M, Eisenreich W, Wächtershäuser G (2012) Elements of metabolic evolution. Chem Eur J 18:2063–2080PubMedCrossRefGoogle Scholar
  17. Johnston WK, Unrau PJ, Lawrence MS, Glasner ME, Bartel DP (2001) RNA-catalyzed RNA-polymerization: accurate and general RNA-templated primer extension. Science 292:1319–1325PubMedCrossRefGoogle Scholar
  18. Kandler O (1998) The early diversification of life and the origin of the three domains: a proposal. In: Wiegel J, Adams MWW (eds) Thermophiles: the keys to molecular evolution and the origin of life. Taylor & Francis, London, pp 19–31Google Scholar
  19. Keller M, Blöchl E, Wächtershäuser G, Stetter KO (1994) Formation of amide bonds without condensation agent and implications for the origin of life. Nature 368:836–838PubMedCrossRefGoogle Scholar
  20. Kuhn H (1972) Selbstorganisation molekularer systeme und die evolution des genetischen apparats. Angew Chem 84:838–862CrossRefGoogle Scholar
  21. Kuwabara T, Minaba M, Ogi N, Kammekura M (2005) Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount. Int J Syst Microbiol 55:2507–2514CrossRefGoogle Scholar
  22. Loison A, Dubant S, Adam P, Albrecht P (2010) Elucidation of an iterative process of carbon-carbon bond formation of prebiotic significance. Astrobiology 10:973–988PubMedCrossRefGoogle Scholar
  23. Martin W, Russell MJ (2003) On the origin of cells: an hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil Trans R Soc B 358:27–85CrossRefGoogle Scholar
  24. Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4.300 Myr ago. Nature 409:178–181PubMedCrossRefGoogle Scholar
  25. Moulton V, Gardner PP, Pointon RF, Creamer LK, Jameson GB, Penny D (2000) RNA folding argues against a hot-start origin of life. J Molec Evol 51:416–421PubMedGoogle Scholar
  26. Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242PubMedCrossRefGoogle Scholar
  27. Popper KR (1959) The logic of scientific discovery. Hutchinson, LondonGoogle Scholar
  28. Prakash CJ, Aldersley MF, Delano JW, Ferris JP (2009) Mechanism of montmorillonite catalysis in the formation of RNA oligomers. J Am Chem Soc 131:13369–13374CrossRefGoogle Scholar
  29. Rickard D, Luther GW III (2007) Chemistry of iron sulfides. Chem Rev 107:514–562PubMedCrossRefGoogle Scholar
  30. Schreiner E, Nair NN, Wittekindt C, Marx D (2011) Peptide synthesis in aqueous environments: the role of extreme conditions and pyrite mineral surfaces on formation and hydrolysis of peptides. J Am Chem Soc 133:8216–8226PubMedCrossRefGoogle Scholar
  31. Schwartz AW (2008) Intractable mixtures and the origin of life. In: Herdewijn P, Kisakürek MV (eds) Origin of life: chemical approach. Verlag Helvetica Chimica Acta, Zürich, pp 175–183Google Scholar
  32. Shapiro R (1986) Origins: a sceptic’s guide to the creation of life on Earth. Summit Books, New YorkGoogle Scholar
  33. Stockbridge RB, Lewis CA Jr, Wolfenden R (2010) Impact of temperature on the time required for the establishment of primordial biochemistry, and for the evolution of enzymes. Proc Natl Acad Sci 107:22102–22105PubMedCrossRefGoogle Scholar
  34. Szostak JW (2011) An optimal degree of physical and chemical heterogeneity for the origin of life? Phil Trans R Soc B 366:2894–2901PubMedCrossRefGoogle Scholar
  35. Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390PubMedCrossRefGoogle Scholar
  36. Wacey D, Kilburn MR, Saunders M, Cliff J, Brasier MD (2011) Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nature Geosci 4:698–702CrossRefGoogle Scholar
  37. Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci USA 87:200–204PubMedCrossRefGoogle Scholar
  38. Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: the iron-sulfur world. Prog Biophys Mol Biol 58:85–201PubMedCrossRefGoogle Scholar
  39. Wächtershäuser G (1998a) The case for a hyperthermophilic, chemolithoautotrophic origin of life in an iron-sulfur world. In: Wiegel J, Adams MWW (eds) Thermophiles: the keyes to molecular evolution and the origin of life? Taylor & Francis, London, pp 47–57Google Scholar
  40. Wächtershäuser G (1998b) Towards a reconstruction of ancestral genomes by gene cluster alignment. Syst Appl Microbiol 21:473–477CrossRefGoogle Scholar
  41. Wächtershäuser G (2003) From pre-cells to eukarya — a tale of two lipids. Mol Microbiol 47:13–22PubMedCrossRefGoogle Scholar
  42. Wächtershäuser G (2006) From volcanic origins of chemoautotrophic origin of life to bacteria, archaea and eukarya. Phil Trans R Soc B Lond 361:1787–1808CrossRefGoogle Scholar
  43. Wächtershäuser G (2010) Chemoautotrophic origin of life: the iron-sulfur world hypothesis. In: Barton LL, Mandl M, Loy A (eds) Geomicrobiology: molecular and environmental perspective. Springer, Dordrecht, pp 1–35CrossRefGoogle Scholar
  44. Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178PubMedCrossRefGoogle Scholar
  45. Woese CR (1972) The emergence of genetic organization. In: Ponnamperuma C (ed) Exobiology. North-Holland, Amsterdam, pp 301–341Google Scholar
  46. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedGoogle Scholar
  47. Woese CR (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.MunichGermany
  2. 2.Chapel HillUSA

Personalised recommendations