The Prokaryotes pp 81-88 | Cite as
Origin of Life: RNA World Versus Autocatalytic Anabolist
- 4.4k Downloads
Abstract
Two theories on the origin of life are characterized and compared: (1) Origin by RNA replication in a cold prebiotic broth of activated nucleotides (RNA world theory) and (2) origin by transition of metal-catalyzed carbon fixation, with ligand acceleration by organic products, in a hot volcanic-hydrothermal flow setting (autocatalytic anabolist theory).
Keywords
Thioglycolic Acid Anionic Intermediate Transition Metal Center Genetic Machinery Benzyl MercaptanNotes
Acknowledgments
I express my gratitude to Claudia Huber for dedicated and ingenious experimental testing of the anabolist theory, to Helmut Simon, Adelbert Bacher and Mathias Groll for providing laboratory facilities and support, to Deutsche Forschungsgemeinschaft for financial support, to Otto Kandler, the great catalyst without whom none of this would have come about, and to Dorothy Wächtershäuser for years of encouragement and help in formulating this and other papers.
References
- Blöchl E, Keller M, Wächtershäuser G, Stetter KO (1992) Reactions depending on iron sulfide and linking geochemistry with biochemistry. Proc Natl Acad Sci USA 89:8117–8120PubMedCrossRefGoogle Scholar
- Carter CW, Kraut J (1974) A proposed model for interaction of polypeptides with RNA. Proc Natl Acad Sci USA 72:283–287CrossRefGoogle Scholar
- Cech TR (ed) (2011) The RNA worlds in context. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a006742Google Scholar
- Chemnitz Galal W, Pan M, Kelman Z, Hurwitz J (2012) Characterization of the DNA Primase complex isolated from the archaeon, Thermococcus kodakarensis. J Biol Chem 287(20):16209–16219PubMedCrossRefGoogle Scholar
- Cockel CS (2006) The origin and emergence of life under impact bombardment. Phil Trans R Soc B 361:1845–1875CrossRefGoogle Scholar
- Cody GD, Boctor NZ, Filley TR, Hazen RM, Scott JH, Sharma A, Yoder HS Jr (2000) Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. Science 289:1337–1340PubMedCrossRefGoogle Scholar
- De Duve C (1991) Blueprint for a cell: the nature and origin of life. Neil Patterson, BurlingtonGoogle Scholar
- Di Giulio M (2003) The universal ancestor and the ancestor of bacteria were hyperthermophiles. J Mol Evol 57:721–730PubMedCrossRefGoogle Scholar
- Dörr M, Käßbohrer J, Grunert R, Kreisel G, Brand WA, Werner RA, Geilmann H, Apfel C, Robl C, Weigand W (2003) A possible prebiotic formation of ammonia from dinitrogen on iron-sulfide surfaces. Angew Chem Int Ed 42:1540–1543CrossRefGoogle Scholar
- Gesteland RF, Cech TR, Atkins JF (eds) (1999) The RNA world: the nature of modern RNA suggests a prebiotic RNA. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
- Fuchs G (2011) Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65:631–658PubMedCrossRefGoogle Scholar
- Harish A, Caetano-Anollés G (2012) Ribosomal history reveals origin of modern protein synthesis. PLoS One 7:e32776PubMedCrossRefGoogle Scholar
- Heinen W, Lauwers AM (1996) Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment. Orig Life Evol Biosph 26:131–150PubMedCrossRefGoogle Scholar
- Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276:245–247PubMedCrossRefGoogle Scholar
- Huber C, Eisenreich W, Hecht S, Wächtershäuser G (2003) A possible primordial peptide cycle. Science 301:938–940PubMedCrossRefGoogle Scholar
- Huber C, Kraus F, Hanzlik M, Eisenreich W, Wächtershäuser G (2012) Elements of metabolic evolution. Chem Eur J 18:2063–2080PubMedCrossRefGoogle Scholar
- Johnston WK, Unrau PJ, Lawrence MS, Glasner ME, Bartel DP (2001) RNA-catalyzed RNA-polymerization: accurate and general RNA-templated primer extension. Science 292:1319–1325PubMedCrossRefGoogle Scholar
- Kandler O (1998) The early diversification of life and the origin of the three domains: a proposal. In: Wiegel J, Adams MWW (eds) Thermophiles: the keys to molecular evolution and the origin of life. Taylor & Francis, London, pp 19–31Google Scholar
- Keller M, Blöchl E, Wächtershäuser G, Stetter KO (1994) Formation of amide bonds without condensation agent and implications for the origin of life. Nature 368:836–838PubMedCrossRefGoogle Scholar
- Kuhn H (1972) Selbstorganisation molekularer systeme und die evolution des genetischen apparats. Angew Chem 84:838–862CrossRefGoogle Scholar
- Kuwabara T, Minaba M, Ogi N, Kammekura M (2005) Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount. Int J Syst Microbiol 55:2507–2514CrossRefGoogle Scholar
- Loison A, Dubant S, Adam P, Albrecht P (2010) Elucidation of an iterative process of carbon-carbon bond formation of prebiotic significance. Astrobiology 10:973–988PubMedCrossRefGoogle Scholar
- Martin W, Russell MJ (2003) On the origin of cells: an hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil Trans R Soc B 358:27–85CrossRefGoogle Scholar
- Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4.300 Myr ago. Nature 409:178–181PubMedCrossRefGoogle Scholar
- Moulton V, Gardner PP, Pointon RF, Creamer LK, Jameson GB, Penny D (2000) RNA folding argues against a hot-start origin of life. J Molec Evol 51:416–421PubMedGoogle Scholar
- Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242PubMedCrossRefGoogle Scholar
- Popper KR (1959) The logic of scientific discovery. Hutchinson, LondonGoogle Scholar
- Prakash CJ, Aldersley MF, Delano JW, Ferris JP (2009) Mechanism of montmorillonite catalysis in the formation of RNA oligomers. J Am Chem Soc 131:13369–13374CrossRefGoogle Scholar
- Rickard D, Luther GW III (2007) Chemistry of iron sulfides. Chem Rev 107:514–562PubMedCrossRefGoogle Scholar
- Schreiner E, Nair NN, Wittekindt C, Marx D (2011) Peptide synthesis in aqueous environments: the role of extreme conditions and pyrite mineral surfaces on formation and hydrolysis of peptides. J Am Chem Soc 133:8216–8226PubMedCrossRefGoogle Scholar
- Schwartz AW (2008) Intractable mixtures and the origin of life. In: Herdewijn P, Kisakürek MV (eds) Origin of life: chemical approach. Verlag Helvetica Chimica Acta, Zürich, pp 175–183Google Scholar
- Shapiro R (1986) Origins: a sceptic’s guide to the creation of life on Earth. Summit Books, New YorkGoogle Scholar
- Stockbridge RB, Lewis CA Jr, Wolfenden R (2010) Impact of temperature on the time required for the establishment of primordial biochemistry, and for the evolution of enzymes. Proc Natl Acad Sci 107:22102–22105PubMedCrossRefGoogle Scholar
- Szostak JW (2011) An optimal degree of physical and chemical heterogeneity for the origin of life? Phil Trans R Soc B 366:2894–2901PubMedCrossRefGoogle Scholar
- Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390PubMedCrossRefGoogle Scholar
- Wacey D, Kilburn MR, Saunders M, Cliff J, Brasier MD (2011) Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nature Geosci 4:698–702CrossRefGoogle Scholar
- Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci USA 87:200–204PubMedCrossRefGoogle Scholar
- Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: the iron-sulfur world. Prog Biophys Mol Biol 58:85–201PubMedCrossRefGoogle Scholar
- Wächtershäuser G (1998a) The case for a hyperthermophilic, chemolithoautotrophic origin of life in an iron-sulfur world. In: Wiegel J, Adams MWW (eds) Thermophiles: the keyes to molecular evolution and the origin of life? Taylor & Francis, London, pp 47–57Google Scholar
- Wächtershäuser G (1998b) Towards a reconstruction of ancestral genomes by gene cluster alignment. Syst Appl Microbiol 21:473–477CrossRefGoogle Scholar
- Wächtershäuser G (2003) From pre-cells to eukarya — a tale of two lipids. Mol Microbiol 47:13–22PubMedCrossRefGoogle Scholar
- Wächtershäuser G (2006) From volcanic origins of chemoautotrophic origin of life to bacteria, archaea and eukarya. Phil Trans R Soc B Lond 361:1787–1808CrossRefGoogle Scholar
- Wächtershäuser G (2010) Chemoautotrophic origin of life: the iron-sulfur world hypothesis. In: Barton LL, Mandl M, Loy A (eds) Geomicrobiology: molecular and environmental perspective. Springer, Dordrecht, pp 1–35CrossRefGoogle Scholar
- Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178PubMedCrossRefGoogle Scholar
- Woese CR (1972) The emergence of genetic organization. In: Ponnamperuma C (ed) Exobiology. North-Holland, Amsterdam, pp 301–341Google Scholar
- Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedGoogle Scholar
- Woese CR (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859PubMedCrossRefGoogle Scholar