Advertisement

Listeria

  • Mobarak Abu Mraheil
  • Sukhadeo Barbuddhe
  • Torsten Hain
  • Trinad Chakraborty

Abstract

The genus Listeria is a member of the family Listeriaceae within the order Bacillales and currently comprises ten distinct species. Listeria spp. are gram-positive, nonsporulating, facultatively anaerobic bacteria of low G+C content that are present ubiquitously in nature and have been isolated from diverse environmental sources. The genus Listeria harbors two pathogenic species, Listeria monocytogenes and L. ivanovii, and eight nonpathogenic species that include L. innocua, L. seeligeri, L. welshimeri, L. grayi, L. marthii, L. rocourtiae, L. fleischmannii, and L. weihenstephanensis. Based on their 16S rRNA sequences, L. fleischmannii and L. grayi branch deeply and are clearly separated from the remaining species. Even though classified as mesophilic bacteria, Listeria spp. are characterized by their ability to grow at low temperatures and have high tolerance ranges to both salt concentrations (10%) as well as a broad range of pH. Listeriosis, the infectious disease caused by L. monocytogenes, is an extremely serious, life-threatening foodborne disease with high mortality rate documented by several outbreaks. Contamination with L. monocytogenes is critical for the food industry and is among the leading microbiological causes of food recalls. The pathogenic bacterium L. monocytogenes is morphologically indistinguishable from other Listeria species and often causes nonspecific clinical symptoms; therefore, laboratory testing is required to differentiate L. monocytogenes from other Listeria species and to diagnose listeriosis. Comparative analysis of full genome sequences reveals an open pan-genome and that Listeria genome evolution is dictated by limited gene acquisition and gene loss. Based on these analyses, the diversity of modern listerial species evolved through loss of virulence properties rather than virulence gene acquisition.

Keywords

Cystic Fibrosis Transmembrane Conductance Regulator Listeria Species Chromogenic Medium Listeria Strain Cell Wall Binding Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Carsten Kuenne for providing Fig. 10.2 and all members of our laboratory for their numerous contributions. Work in the authors’ laboratories was funded by grants made available to T. H. and T. C. via the Federal Ministry of Education and Research (BMBF), the German Academic Research Exchange Foundation (DAAD), German Science Research Council (DFG), and the European Union.

References

  1. Abreu C, Magro F, Vilas-Boas F, Lopes S, Macedo G, Sarmento A (2012) Listeria infection in patients on anti-TNF treatment: report of two cases and review of the literature. J Crohns Colitis doi:10.1016/j.crohns.2012.04.018Google Scholar
  2. Alexander AV, Walker RL, Johnson BJ, Charlton BR, Woods LW (1992) Bovine abortions attributable to Listeria ivanovii: four cases (1988–1990). J Am Vet Med Assoc 200:711–714PubMedGoogle Scholar
  3. Allerberger F, Wagner M (2010) Listeriosis: a resurgent foodborne infection. Clin Microbiol Infect 16:16–23PubMedCrossRefGoogle Scholar
  4. Antal EA, Dietrichs E, Loberg EM, Melby KK, Maehlen J (2005) Brain stem encephalitis in listeriosis. Scand J Infect Dis 37:190–194PubMedCrossRefGoogle Scholar
  5. Armstrong RW, Fung PC (1993) Brainstem encephalitis (rhombencephalitis) due to Listeria monocytogenes: case report and review. Clin Infect Dis 16:689–702PubMedCrossRefGoogle Scholar
  6. Audurier A, Taylor AG, Carbonnelle B, McLauchlin J (1984) A phage typing system for Listeria monocytogenes and its use in epidemiological studies. Clin Invest Med 7:229–232PubMedGoogle Scholar
  7. Aznar R, Alarcon B (2002) On the specificity of PCR detection of Listeria monocytogenes in food: a comparison of published primers. Syst Appl Microbiol 25:109–119PubMedCrossRefGoogle Scholar
  8. Barbuddhe SB, Maier T, Schwarz G, Kostrzewa M, Hof H, Domann E, Chakraborty T, Hain T (2008) Rapid identification and typing of Listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 74:5402–5407PubMedCrossRefGoogle Scholar
  9. Barbuddhe SB, Malik SV, Kumar JA, Kalorey DR, Chakraborty T (2012) Epidemiology and risk management of listeriosis in India. Int J Food Microbiol 154:113–118PubMedCrossRefGoogle Scholar
  10. Barton Behravesh C, Jones TF, Vugia DJ, Long C, Marcus R, Smith K, Thomas S, Zansky S, Fullerton KE, Henao OL, Scallan E, FoodNet Working Group (2011) Deaths associated with bacterial pathogens transmitted commonly through food: foodborne diseases active surveillance network (FoodNet), 1996–2005. J Infect Dis 204:263–267Google Scholar
  11. Begley M, Sleator RD, Gahan CG, Hill C (2005) Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect Immun 73:894–904PubMedCrossRefGoogle Scholar
  12. Berrada H, Soriano JM, Pico Y, Manes J (2006) Quantification of Listeria monocytogenes in salads by real time quantitative PCR. Int J Food Microbiol 107:202–206PubMedCrossRefGoogle Scholar
  13. Bertsch D, Rau J, Eugster MR, Haug MC, Lawson PA, Lacroix C, Meile L (2012) Listeria fleischmannii sp. nov., isolated from cheese. Int J Syst Evol Microbiol doi: 10.1099/ijs.0.036947-0Google Scholar
  14. Bille J (1990) Epidemiology of human listeriosis in Europe, with special reference to the Swiss outbreak. In: Miller AJ, Smith JL, Somkuti GA (eds) Foodborne listeriosis. Elsevier, New York, pp 71–74Google Scholar
  15. Bille J, Blanc DS, Schmid H, Boubaker K, Baumgartner A, Siegrist HH, Tritten ML, Lienhard R, Berner D, Anderau R, Treboux M, Ducommun JM, Malinverni R, Genne D, Erard PH, Waespi U (2006) Outbreak of human listeriosis associated with tomme cheese in northwest Switzerland, 2005. Euro Surveill 11:91–93PubMedGoogle Scholar
  16. Böhme K, Fernández-No IC, Barros-Velázquez J, Gallardo JM, Cañas B, Calo-Mata P (2011) Rapid species identification of seafood spoilage and pathogenic Gram-positive bacteria by MALDI-TOF mass fingerprinting. Electrophoresis 32:2951–2965PubMedCrossRefGoogle Scholar
  17. Borucki MK, Call DR (2003) Listeria monocytogenes serotype identification by PCR. J Clin Microbiol 41:5537–5540PubMedCrossRefGoogle Scholar
  18. Borucki MK, Reynolds J, Gay CC, McElwain KL, Kim SH, Knowles DP, Hu J (2004) Dairy farm reservoir of Listeria monocytogenes sporadic and epidemic strains. J Food Prot 67:2496–2499PubMedGoogle Scholar
  19. Brackett RE, Beuchat LR (1989) Methods and media for the isolation and cultivation of Listeria monocytogenes from various foods. Int J Food Microbiol 8:219–223PubMedCrossRefGoogle Scholar
  20. Braden CR (2003) Listeriosis. Pediatr Infect Dis J 22:745–746PubMedCrossRefGoogle Scholar
  21. Braun L, Cossart P (2000) Interactions between Listeria monocytogenes and host mammalian cells. Microbes Infect 2:803–811PubMedCrossRefGoogle Scholar
  22. Brockstedt DG, Bahjat KS, Giedlin MA, Liu W, Leong M, Luckett W, Gao Y, Schnupf P, Kapadia D, Castro G, Lim JY, Sampson-Johannes A, Herskovits AA, Stassinopoulos A, Bouwer HG, Hearst JE, Portnoy DA, Cook DN, Dubensky TW (2005) Killed but metabolically active microbes: a new vaccine paradigm for eliciting effector T-cell responses and protective immunity. Nat Med 11:853–860PubMedCrossRefGoogle Scholar
  23. Brosch R, Chen J, Luchansky JB (1994) Pulsed-field fingerprinting of listeriae: identification of genomic divisions for Listeria monocytogenes and their correlation with serovar. Appl Environ Microbiol 60:2584–2592PubMedGoogle Scholar
  24. Bubert A, Sokolovic Z, Chun SK, Papatheodorou L, Simm A, Goebel W (1999) Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol Gen Genet 261:323–336PubMedGoogle Scholar
  25. Buchrieser C, Rusniok C, Garrido P, Hain T, Scortti M, Lampidis R, Karst U, Chakraborty T, Cossart P, Kreft J, Vazquez-Boland JA, Goebel W, Glaser P (2011) Complete genome sequence of the animal pathogen Listeria ivanovii, which provides insights into host specificities and evolution of the genus Listeria. J Bacteriol 193:6787–6788PubMedCrossRefGoogle Scholar
  26. Cabanes D, Dehoux P, Dussurget O, Frangeul L, Cossart P (2002) Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol 10:238–245PubMedCrossRefGoogle Scholar
  27. Cabanes D, Sousa S, Cebria A, Lecuit M, Garcia-del Portillo F, Cossart P (2005) Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. EMBO J 24:2827–2838PubMedCrossRefGoogle Scholar
  28. Canchaya C, Giubellini V, Ventura M, De los Reyes-Gavilan CG, Margolles A (2010) Mosaic-like sequences containing transposon, phage, and plasmid elements among Listeria monocytogenes plasmids. Appl Environ Microbiol 76:4851–4857PubMedCrossRefGoogle Scholar
  29. Centers for Disease Control and Prevention (CDC) (2011) Multistate outbreak of Listeriosis linked to whole cantaloupes from Jensen Farms, Colorado (Final update). Listeriosis (Listeria infection). Retrieved December 9, 2011Google Scholar
  30. Chakraborty T, Hain T, Domann E (2000) Genome organization and the evolution of the virulence gene locus in Listeria species. Int J Med Microbiol 290:167–174PubMedCrossRefGoogle Scholar
  31. Chakraborty T, Leimeister-Wachter M, Domann E, Hartl M, Goebel W, Nichterlein T, Notermans S (1992) Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J Bacteriol 174:568–574PubMedGoogle Scholar
  32. Chand P, Sadana JR (1999) Outbreak of Listeria ivanovii abortion in sheep in India. Vet Rec 145:83–84PubMedCrossRefGoogle Scholar
  33. Chatterjee SS, Hossain H, Otten S, Kuenne C, Kuchmina K, Machata S, Domann E, Chakraborty T, Hain T (2006) Intracellular gene expression profile of Listeria monocytogenes. Infect Immun 74:1323–1338PubMedCrossRefGoogle Scholar
  34. Collins MD, Wallbanks S, Lane DJ, Shah J, Nietupski R, Smida J, Dorsch M, Stackebrandt E (1991) Phylogenetic analysis of the genus Listeria based on reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol 41:240–246PubMedCrossRefGoogle Scholar
  35. Cordano AM, Jacquet C (2009) Listeria monocytogenes isolated from vegetable salads sold at supermarkets in Santiago, Chile: prevalence and strain characterization. Int J Food Microbiol 132:176–179PubMedCrossRefGoogle Scholar
  36. Cossart P (2011) Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes. Proc Natl Acad Sci USA 108:19484–19491PubMedCrossRefGoogle Scholar
  37. Cossart P, Lecuit M (1998) Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling. EMBO J 17:3797–3806PubMedCrossRefGoogle Scholar
  38. Cummins AJ, Fielding AK, McLauchlin J (1994) Listeria ivanovii infection in a patient with AIDS. J Infect 28:89–91PubMedCrossRefGoogle Scholar
  39. Curtis GD, Lee WH (1995) Culture media and methods for the isolation of Listeria monocytogenes. Int J Food Microbiol 26:1–13PubMedCrossRefGoogle Scholar
  40. Curtis GDW, Nichols WW, Falla TJ (1989) Selective agents for Listeria can inhibit their growth. Lett Appl Microbiol 8:169–172CrossRefGoogle Scholar
  41. Darji A, Mohamed W, Domann E, Chakraborty T (2003) Induction of immune responses by attenuated isogenic mutant strains of Listeria monocytogenes. Vaccine 21(Suppl 2):S102–S109PubMedCrossRefGoogle Scholar
  42. den Bakker HC, Cummings CA, Ferreira V, Vatta P, Orsi RH, Degoricija L, Barker M, Petrauskene O, Furtado MR, Wiedmann M (2010) Comparative genomics of the bacterial genus Listeria: genome evolution is characterized by limited gene acquisition and limited gene loss. BMC Genomics 11:688CrossRefGoogle Scholar
  43. Deng X, Phillippy AM, Li Z, Salzberg SL, Zhang W (2010) Probing the pan-genome of Listeria monocytogenes: new insights into intraspecific niche expansion and genomic diversification. BMC Genomics 11:500PubMedCrossRefGoogle Scholar
  44. Donnelly CW, Baigent G (1986) Method for flow cytometric detection of Listeria monocytogenes in milk. Appl Environ Microbiol 52:689–695PubMedGoogle Scholar
  45. Dorscht J, Klumpp J, Bielmann R, Schmelcher M, Born Y, Zimmer M, Calendar R, Loessner MJ (2009) Comparative genome analysis of Listeria bacteriophages reveals extensive mosaicism, programmed translational frameshifting, and a novel prophage insertion site. J Bacteriol 191:7206–7215PubMedCrossRefGoogle Scholar
  46. Dortet L, Mostowy S, Cossart P (2012) Listeria and autophagy escape: involvement of InlK, an internalin-like protein. Autophagy 8:132–134PubMedCrossRefGoogle Scholar
  47. Doumith M, Cazalet C, Simoes N, Frangeul L, Jacquet C, Kunst F, Martin P, Cossart P, Glaser P, Buchrieser C (2004) New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect Immun 72:1072–1083PubMedCrossRefGoogle Scholar
  48. Dussurget O, Cabanes D, Dehoux P, Lecuit M, Buchrieser C, Glaser P, Cossart P (2002) Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 45:1095–1106PubMedCrossRefGoogle Scholar
  49. El Sayed ZM, El Shabrawy WO, El Eshmawy MM, Aly ES (2011) The high prevalence of Listeria monocytogenes peritonitis in cirrhotic patients of an Egyptian Medical Center. J Infect Public Health 4:211–216CrossRefGoogle Scholar
  50. Ermolaeva S, Karpova T, Novella S, Wagner M, Scortti M, Tartakovskii I, Vazquez-Boland JA (2003) A simple method for the differentiation of Listeria monocytogenes based on induction of lecithinase activity by charcoal. Int J Food Microbiol 82:87–94PubMedCrossRefGoogle Scholar
  51. Eugster MR, Haug MC, Huwiler SG, Loessner MJ (2011) The cell wall binding domain of Listeria bacteriophage endolysin PlyP35 recognizes terminal GlcNAc residues in cell wall teichoic acid. Mol Microbiol 81:1419–1432PubMedCrossRefGoogle Scholar
  52. Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476–511PubMedGoogle Scholar
  53. Farfour E, Leto J, Barritault M, Barberis C, Meyer J, Dauphin B, Le Guern AS, Leflèche A, Badell A, Guiso A, Leclercq A, Le Monnier A, Lecuit M, Rodriguez-Nava V, Bergeron E, Raymond J, Vimont S, Bille E, Carbonnelle E, Guet-Revillet H, Lécuyer H, Beretti JL, Vay C, Berche P, Ferroni A, Nassif X, Join-Lambert O (2012) Evaluation of the Andromas MALDI-TOF MS system for identification of aerobically growing Gram-positive Bacilli. J Clin Microbiol 50:2702–2707Google Scholar
  54. Fleming DW, Cochi SL, MacDonald KL, Brondum J, Hayes PS, Plikaytis BD, Holmes MB, Audurier A, Broome CV, Reingold AL (1985) Pasteurized milk as a vehicle of infection in an outbreak of Listeriosis. N Engl J Med 312:404–407PubMedCrossRefGoogle Scholar
  55. Food and Drug Administration (FDA) (2011) Centers for disease control and prevention CDC: Cantaloupe Listeria outbreak deadliest in a decade. Retrieved September 28, 2011Google Scholar
  56. Fraser JA, Sperber WH (1988) Rapid detection of Listeria spp. in food and environmental samples by esculin hydrolysis. J Food Prot 51:762–765Google Scholar
  57. Freitag NE, Jacobs KE (1999) Examination of Listeria monocytogenes intracellular gene expression by using the green fluorescent protein of Aequorea victoria. Infect Immun 67:1844–1852PubMedGoogle Scholar
  58. Gaillard JL, Berche P, Frehel C, Gouin E, Cossart P (1991) Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65:1127–1141PubMedCrossRefGoogle Scholar
  59. Gasanov U, Hughes D, Hansbro PM (2005) Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review. FEMS Microbiol Rev 29:851–875PubMedCrossRefGoogle Scholar
  60. Gill PA, Boulton JG, Fraser GC, Stevenson AE, Reddacliff LA (1997) Bovine abortion caused by Listeria ivanovii. Aust Vet J 75:214PubMedCrossRefGoogle Scholar
  61. Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couve E, de Daruvar A, Dehoux P, Domann E, Dominguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian KD, Fsihi H, Garcia-del Portillo F, Garrido P, Gautier L, Goebel W, Gomez-Lopez N, Hain T, Hauf J, Jackson D, Jones LM, Kaerst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, Madueno E, Maitournam A, Vicente JM, Ng E, Nedjari H, Nordsiek G, Novella S, de Pablos B, Perez-Diaz JC, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, Tierrez A, Vazquez-Boland JA, Voss H, Wehland J, Cossart P (2001) Comparative genomics of Listeria species. Science 294:849–852PubMedGoogle Scholar
  62. Gomber S, Revathi G, Krishna A, Gupta A (1998) Perinephric abscess (presenting as abdominal pain) due to Listeria monocytogenes. Ann Trop Paediatr 18:61–62PubMedGoogle Scholar
  63. Graves LM, Swaminathan B, Reeves MW, Hunter SB, Weaver RE, Plikaytis BD, Schuchat A (1994) Comparison of ribotyping and multilocus enzyme electrophoresis for subtyping of Listeria monocytogenes isolates. J Clin Microbiol 32:2936–2943PubMedGoogle Scholar
  64. Graves LM, Helsel LO, Steigerwalt AG, Morey RE, Daneshvar MI, Roof SE, Orsi RH, Fortes ED, Milillo SR, den Bakker HC, Wiedmann M, Swaminathan B, Sauders BD (2010) Listeria marthii sp. nov., isolated from the natural environment, Finger Lakes National Forest. Int J Syst Evol Microbiol 60:1280–1288PubMedCrossRefGoogle Scholar
  65. Gray ML, Killinger AH (1966) Listeria monocytogenes and listeric infections. Bacteriol Rev 30:309–382PubMedGoogle Scholar
  66. Gray ML, Stafseth HJ, Thorp F, Sholl LB, Riley WF (1948) A new technique for isolating Listerellae from the bovine brain. J Bacteriol 55:471–476Google Scholar
  67. Gray ML, Stafseth HJ, Thorp F Jr (1950) The use of potassium tellurite, sodium azide, and acetic acid in a selective medium for the isolation of Listeria monocytogenes. J Bacteriol 59:443–444PubMedGoogle Scholar
  68. Guillet C, Join-Lambert O, Le Monnier A, Leclercq A, Mechai F, Mamzer-Bruneel MF, Bielecka MK, Scortti M, Disson O, Berche P, Vazquez-Boland J, Lortholary O, Lecuit M (2010) Human listeriosis caused by Listeria ivanovii. Emerg Infect Dis 16:136–138PubMedCrossRefGoogle Scholar
  69. Hadorn K, Hachler H, Schaffner A, Kayser FH (1993) Genetic characterization of plasmid-encoded multiple antibiotic resistance in a strain of Listeria monocytogenes causing endocarditis. Eur J Clin Microbiol Infect Dis 12:928–937PubMedCrossRefGoogle Scholar
  70. Hain T, Chatterjee SS, Ghai R, Kuenne CT, Billion A, Steinweg C, Domann E, Karst U, Jansch L, Wehland J, Eisenreich W, Bacher A, Joseph B, Schar J, Kreft J, Klumpp J, Loessner MJ, Dorscht J, Neuhaus K, Fuchs TM, Scherer S, Doumith M, Jacquet C, Martin P, Cossart P, Rusniock C, Glaser P, Buchrieser C, Goebel W, Chakraborty T (2007) Pathogenomics of Listeria spp. Int J Med Microbiol 297:541–557PubMedCrossRefGoogle Scholar
  71. Hain T, Ghai R, Billion A, Kuenne CT, Steinweg C, Izar B, Mohamed W, Mraheil M, Domann E, Schaffrath S, Karst U, Goesmann A, Oehm S, Puhler A, Merkl R, Vorwerk S, Glaser P, Garrido P, Rusniok C, Buchrieser C, Goebel W, Chakraborty T (2012) Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes. BMC Genomics 13:144PubMedCrossRefGoogle Scholar
  72. Hain T, Steinweg C, Kuenne CT, Billion A, Ghai R, Chatterjee SS, Domann E, Karst U, Goesmann A, Bekel T, Bartels D, Kaiser O, Meyer F, Puhler A, Weisshaar B, Wehland J, Liang C, Dandekar T, Lampidis R, Kreft J, Goebel W, Chakraborty T (2006) Whole-genome sequence of Listeria welshimeri reveals common steps in genome reduction with Listeria innocua as compared to Listeria monocytogenes. J Bacteriol 188:7405–7415PubMedCrossRefGoogle Scholar
  73. Herman LM, De Block JH, Moermans RJ (1995) Direct detection of Listeria monocytogenes in 25 ml of raw milk by a two-step PCR with nested primers. Appl Environ Microbiol 61:817–819PubMedGoogle Scholar
  74. Ho AJ, Ivanek R, Grohn YT, Nightingale KK, Wiedmann M (2007) Listeria monocytogenes fecal shedding in dairy cattle shows high levels of day-to-day variation and includes outbreaks and sporadic cases of shedding of specific L. monocytogenes subtypes. Prev Vet Med 80:287–305PubMedCrossRefGoogle Scholar
  75. Hülpers G (1911) Lefvernekros hos kanin orsakad af en ej förut beskrifven bakterie. (Liver necrosis in rabbit caused by an hitherto unknown bacterium). Svensk Vet Tidskrift 2:265–273Google Scholar
  76. Ivanek R, Grohn YT, Tauer LW, Wiedmann M (2004) The cost and benefit of Listeria monocytogenes food safety measures. Crit Rev Food Sci Nutr 44:513–523PubMedCrossRefGoogle Scholar
  77. Jayarao BM, Donaldson SC, Straley BA, Sawant AA, Hegde NV, Brown JL (2006) A survey of foodborne pathogens in bulk tank milk and raw milk consumption among farm families in Pennsylvania. J Dairy Sci 89:2451–2458PubMedCrossRefGoogle Scholar
  78. Jeffers GT, Bruce JL, McDonough PL, Scarlett J, Boor KJ, Wiedmann M (2001) Comparative genetic characterization of Listeria monocytogenes isolates from human and animal listeriosis cases. Microbiology 147:1095–1104PubMedGoogle Scholar
  79. Johnson J, Jinneman K, Stelma G, Smith BG, Lye D, Messer J, Ulaszek J, Evsen L, Gendel S, Bennett RW, Swaminathan B, Pruckler J, Steigerwalt A, Kathariou S, Yildirim S, Volokhov D, Rasooly A, Chizhikov V, Wiedmann M, Fortes E, Duvall RE, Hitchins AD (2004) Natural atypical Listeria innocua strains with Listeria monocytogenes pathogenicity island 1 genes. Appl Environ Microbiol 70:4256–4266PubMedCrossRefGoogle Scholar
  80. Joseph B, Przybilla K, Stuhler C, Schauer K, Slaghuis J, Fuchs TM, Goebel W (2006) Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening. J Bacteriol 188:556–568PubMedCrossRefGoogle Scholar
  81. Joyce SA, Gahan CG (2010) Molecular pathogenesis of Listeria monocytogenes in the alternative model host Galleria mellonella. Microbiology 156:3456–3468PubMedCrossRefGoogle Scholar
  82. Kathariou S (2002) Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J Food Prot 65:1811–1829PubMedGoogle Scholar
  83. Katherine NK (2006) Listeria monocytogenes, Neisseria gonorrhoeae and other bacteria. Congenital and perinatal infections, a concise guide to diagnosis. Infectious disease, Part II. pp 225–232Google Scholar
  84. Kells J, Gilmour A (2004) Incidence of Listeria monocytogenes in two milk processing environments, and assessment of Listeria monocytogenes blood agar for isolation. Int J Food Microbiol 91:167–174PubMedCrossRefGoogle Scholar
  85. Khelef N, Lecuit M, Bierne H, Cossart P (2006) Species specificity of the Listeria monocytogenes InlB protein. Cell Microbiol 8:457–470PubMedCrossRefGoogle Scholar
  86. Kida K, Osada N, Isahaya K, Mikami T, Yoneyama K, Kongoji K, Osada K, Tsuchiya K, Miyake F (2007) Listeria endocarditis with acute thoracoabdominal aortic dissection. Intern Med 46:1209–1212PubMedCrossRefGoogle Scholar
  87. Krusch S, Domann E, Frings M, Zelmer A, Diener M, Chakraborty T, Weiss S (2002) Listeria monocytogenes mediated CFTR transgene transfer to mammalian cells. J Gene Med 4:655–667PubMedCrossRefGoogle Scholar
  88. Kuenne C, Voget S, Pischimarov J, Oehm S, Goesmann A, Daniel R, Hain T, Chakraborty T (2010) Comparative analysis of plasmids in the genus Listeria. PLoS One 5(9):e12511PubMedCrossRefGoogle Scholar
  89. Lachica RV (1990) Selective plating medium for quantitative recovery of food-borne Listeria monocytogenes. Appl Environ Microbiol 56:167–169PubMedGoogle Scholar
  90. Lang HE, Neuhaus K, Scherer S (2012) Listeria weihenstephanensis sp. nov., isolated from the water plant Lemna trisulca of a German fresh water pond. Int J Syst Evol Microbiol doi:10.1099/ijs.0.036830-0Google Scholar
  91. Lebrun M, Loulergue J, Chaslus-Dancla E, Audurier A (1992) Plasmids in Listeria monocytogenes in relation to cadmium resistance. Appl Environ Microbiol 58:3183–3186PubMedGoogle Scholar
  92. Leclercq A, Clermont D, Bizet C, Grimont PA, Fleche-Mateos A, Roche SM, Buchrieser C, Cadet-Daniel V, Le Monnier A, Lecuit M, Allerberger F (2010) Listeria rocourtiae sp. nov. Int J Syst Evol Microbiol 60:2210–2214PubMedCrossRefGoogle Scholar
  93. Lecuit M, Vandormael-Pournin S, Lefort J, Huerre M, Gounon P, Dupuy C, Babinet C, Cossart P (2001) A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292:1722–1725PubMedCrossRefGoogle Scholar
  94. Leimeister-Wachter M, Domann E, Chakraborty T (1992) The expression of virulence genes in Listeria monocytogenes is thermoregulated. J Bacteriol 174:947–952PubMedGoogle Scholar
  95. Linnan MJ, Mascola L, Lou XD, Goulet V, May S, Salminen C, Hird DW, Yonekura ML, Hayes P, Weaver R et al (1988) Epidemic listeriosis associated with Mexican-style cheese. N Engl J Med 319:823–828PubMedCrossRefGoogle Scholar
  96. Liu D, Ainsworth AJ, Austin FW, Lawrence ML (2003) Characterization of virulent and avirulent Listeria monocytogenes strains by PCR amplification of putative transcriptional regulator and internalin genes. J Med Microbiol 52:1065–1070PubMedCrossRefGoogle Scholar
  97. Loessner MJ (1991) Improved procedure for bacteriophage typing of Listeria strains and evaluation of new phages. Appl Environ Microbiol 57:882–884PubMedGoogle Scholar
  98. Loessner MJ, Estela LA, Zink R, Scherer S (1994a) Taxonomical classification of 20 newly isolated Listeria bacteriophages by electron microscopy and protein analysis. Intervirology 37:31–35PubMedGoogle Scholar
  99. Loessner MJ, Krause IB, Henle T, Scherer S (1994b) Structural proteins and DNA characteristics of 14 Listeria typing bacteriophages. J Gen Virol 75(Pt 4):701–710PubMedCrossRefGoogle Scholar
  100. Lopez V, Ortiz S, Corujo A, Lopez P, Poza D, Navas J, Moreno R, Martinez-Suarez JV (2008) Different contamination patterns of lineage I and II strains of Listeria monocytogenes in a Spanish broiler abattoir. Poult Sci 87:1874–1882PubMedCrossRefGoogle Scholar
  101. Lovett J, Francis DW, Hunt Jm JM (1987) Listeria monocytogenes in raw milk: detection, incidence and pathogenicity. J Food Prot 50:188–192Google Scholar
  102. Low JC, Donachie W (1997) A review of Listeria monocytogenes and listeriosis. Vet J 153:9–29PubMedCrossRefGoogle Scholar
  103. Ludwig W, Schleifer KH, Whitman WB (2009) Listeriaceae. In: Whitman WB (ed) Bergey´s manual of systematic bacteriology. Springer, Athens, USA, pp 244–268Google Scholar
  104. Lunden JM, Miettinen MK, Autio TJ, Korkeala HJ (2000) Persistent Listeria monocytogenes strains show enhanced adherence to food contact surface after short contact times. J Food Prot 63:1204–1207PubMedGoogle Scholar
  105. Mackaness GB (1962) Cellular resistance to infection. J Exp Med 116:381–406PubMedCrossRefGoogle Scholar
  106. Mackaness GB (1969) The influence of immunologically committed lymphoid cells on macrophage activity in vivo. J Exp Med 129:973–992PubMedCrossRefGoogle Scholar
  107. Mandal M, Kawamura KS, Wherry EJ, Ahmed R, Lee KD (2004) Cytosolic delivery of viral nucleoprotein by listeriolysin O-liposome induces enhanced specific cytotoxic T lymphocyte response and protective immunity. Mol Pharm 1:2–8PubMedCrossRefGoogle Scholar
  108. McBride ME, Girard KF (1960) A selective method for the isolation of Listeria monocytogenes from mixed bacterial populations. J Lab Clin Med 55:153–157Google Scholar
  109. McLauchlin J (1987) Listeria monocytogenes, recent advances in the taxonomy and epidemiology of listeriosis in humans. J Appl Bacteriol 63:1–11PubMedCrossRefGoogle Scholar
  110. McLauchlin J, Hampton MD, Shah S, Threlfall EJ, Wieneke AA, Curtis GD (1997) Subtyping of Listeria monocytogenes on the basis of plasmid profiles and arsenic and cadmium susceptibility. J Appl Microbiol 83:381–388PubMedCrossRefGoogle Scholar
  111. Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV (1999) Food-related illness and death in the United States. Emerg Infect Dis 5:607–625PubMedCrossRefGoogle Scholar
  112. Mengaud J, Dramsi S, Gouin E, Vazquez-Boland JA, Milon G, Cossart P (1991) Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol Microbiol 5:2273–2283PubMedCrossRefGoogle Scholar
  113. Mengaud J, Ohayon H, Gounon P, Mege R-M, Cossart P (1996) E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84:923–932PubMedCrossRefGoogle Scholar
  114. Miki K, Mackaness GB (1964) The passive transfer or acquired resistance to Listeria monocytogenes. J Exp Med 120:93–103PubMedCrossRefGoogle Scholar
  115. Mohamed W, Sethi S, Tchatalbachev S, Darji A, Chakraborty T (2012) Protective immunity to Listeria monocytogenes infection mediated by recombinant Listeria innocua harboring the VGC locus. PLoS One 7:e35503PubMedCrossRefGoogle Scholar
  116. Mohammed HO, Stipetic K, McDonough PL, Gonzalez RN, Nydam DV, Atwill ER (2009) Identification of potential on-farm sources of Listeria monocytogenes in herds of dairy cattle. Am J Vet Res 70:383–388PubMedCrossRefGoogle Scholar
  117. Moors MA, Levitt B, Youngman P, Portnoy DA (1999) Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes. Infect Immun 67:131–139PubMedGoogle Scholar
  118. Moreno LZ, Paixaõ R, Gobbi DD, Raimundo DC, Ferreira TP, Hofer E, Matte MH, Moreno AM (2012) Characterization of atypical Listeria innocua isolated from swine slaughterhouses and meat markets. Res Microbiol 163:268–271PubMedCrossRefGoogle Scholar
  119. Mraheil MA, Billion A, Mohamed W, Mukherjee K, Kuenne C, Pischimarov J, Krawitz C, Retey J, Hartsch T, Chakraborty T, Hain T (2011) The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages. Nucleic Acids Res 39:4235–4248PubMedCrossRefGoogle Scholar
  120. Mukherjee K, Altincicek B, Hain T, Domann E, Vilcinskas A, Chakraborty T (2010) Galleria mellonella as a model system for studying Listeria pathogenesis. Appl Environ Microbiol 76:310–317PubMedCrossRefGoogle Scholar
  121. Murray EGD, Webb RA, Swann MBR (1926) A disease of rabbits characterised by a large mononuclear leukocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (n. sp.). J Pathol Bacteriol 29:407–439CrossRefGoogle Scholar
  122. Mylonakis E, Hohmann EL, Calderwood SB (1998) Central nervous system infection with Listeria monocytogenes. 33 years' experience at a general hospital and review of 776 episodes from the literature. Medicine (Baltimore) 77:313–336CrossRefGoogle Scholar
  123. Nelson KE, Fouts DE, Mongodin EF, Ravel J, DeBoy RT, Kolonay JF, Rasko DA, Angiuoli SV, Gill SR, Paulsen IT, Peterson J, White O, Nelson WC, Nierman W, Beanan MJ, Brinkac LM, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Haft DH, Selengut J, Van Aken S, Khouri H, Fedorova N, Forberger H, Tran B, Kathariou S, Wonderling LD, Uhlich GA, Bayles DO, Luchansky JB, Fraser CM (2004) Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res 32:2386–2395PubMedCrossRefGoogle Scholar
  124. Nightingale KK, Fortes ED, Ho AJ, Schukken YH, Grohn YT, Wiedmann M (2005a) Evaluation of farm management practices as risk factors for clinical listeriosis and fecal shedding of Listeria monocytogenes in ruminants. J Am Vet Med Assoc 227:1808–1814PubMedCrossRefGoogle Scholar
  125. Nightingale KK, Windham K, Wiedmann M (2005b) Evolution and molecular phylogeny of Listeria monocytogenes isolated from human and animal listeriosis cases and foods. J Bacteriol 187:5537–5551PubMedCrossRefGoogle Scholar
  126. North RJ (1970) The relative importance of blood monocytes and fixed macrophages to the expression of cell-mediated immunity to infection. J Exp Med 132:521–534PubMedCrossRefGoogle Scholar
  127. North RJ (1978) The concept of the activated macrophage. J Immunol 121:806–809PubMedGoogle Scholar
  128. Nyfelt A (1929) Etiologie de la mononucleose infectieuse. Compt Rend Soc Biol 101:590–591Google Scholar
  129. Oevermann A, Botteron C, Seuberlich T, Nicolier A, Friess M, Doherr MG, Heim D, Hilbe M, Zimmer K, Zurbriggen A, Vandevelde M (2008) Neuropathological survey of fallen stock: active surveillance reveals high prevalence of encephalitic listeriosis in small ruminants. Vet Microbiol 130:320–329PubMedCrossRefGoogle Scholar
  130. Oevermann A, Di Palma S, Doherr MG, Abril C, Zurbriggen A, Vandevelde M (2010) Neuropathogenesis of naturally occurring encephalitis caused by Listeria monocytogenes in ruminants. Brain Pathol 20:378–390PubMedCrossRefGoogle Scholar
  131. Oliveira M, Usall J, Vinas I, Solsona C, Abadias M (2011) Transfer of Listeria innocua from contaminated compost and irrigation water to lettuce leaves. Food Microbiol 28:590–596PubMedCrossRefGoogle Scholar
  132. Orsi RH, den Bakker HC, Wiedmann M (2011) Listeria monocytogenes lineages: genomics, evolution, ecology, and phenotypic characteristics. Int J Med Microbiol 301:79–96PubMedCrossRefGoogle Scholar
  133. Paterson Y, Johnson RS (2004) Progress towards the use of Listeria monocytogenes as a live bacterial vaccine vector for the delivery of HIV antigens. Expert Rev Vaccines 3:S119–S134PubMedCrossRefGoogle Scholar
  134. Perez-Diaz JC, Vicente MF, Baquero F (1982) Plasmids in Listeria. Plasmid 8:112–118PubMedCrossRefGoogle Scholar
  135. Pinner RW, Schuchat A, Swaminathan B, Hayes PS, Deaver KA, Weaver RE, Plikaytis BD, Reeves M, Broome CV, Wenger JD (1992) Role of foods in sporadic listeriosis II. Microbiologic and epidemiologic investigation. The Listeria Study Group. JAMA 267:2046–2050PubMedCrossRefGoogle Scholar
  136. Pintado CM, Grant KA, Halford-Maw R, Hampton MD, Ferreira MA, McLauchlin J (2009) Association between a case study of asymptomatic ovine listerial mastitis and the contamination of soft cheese and cheese processing environment with Listeria monocytogenes in Portugal. Foodborne Pathog Dis 6:569–575PubMedCrossRefGoogle Scholar
  137. Pirie JHH (1927) A new disease of veld rodents. ‘Tiger river disease’. Publ S Afr Inst Med Res 3:163–186Google Scholar
  138. Pirie JH (1940) The genus Listerella pirie. Science 91:383PubMedCrossRefGoogle Scholar
  139. Portnoy DA, Chakraborty T, Goebel W, Cossart P (1992) Molecular determinants of Listeria monocytogenes pathogenesis. Infect Immun 60:1263–1267PubMedGoogle Scholar
  140. Poyart-Salmeron C, Carlier C, Trieu-Cuot P, Courtieu AL, Courvalin P (1990) Transferable plasmid-mediated antibiotic resistance in Listeria monocytogenes. Lancet 335:1422–1426PubMedCrossRefGoogle Scholar
  141. Renzoni A, Cossart P, Dramsi S (1999) PrfA, the transcriptional activator of virulence genes, is upregulated during interaction of Listeria monocytogenes with mammalian cells and in eukaryotic cell extracts. Mol Microbiol 34:552–561PubMedCrossRefGoogle Scholar
  142. Revathi G, Suneja A, Talwar V, Aggarwal N (1995) Fatal pericarditis due to Listeria monocytogenes. Eur J Clin Microbiol Infect Dis 14:254–255PubMedCrossRefGoogle Scholar
  143. Ripio MT, Dominguez-Bernal G, Suarez M, Brehm K, Berche P, Vazquez-Boland JA (1996) Transcriptional activation of virulence genes in wild-type strains of Listeria monocytogenes in response to a change in the extracellular medium composition. Res Microbiol 147:371–384PubMedCrossRefGoogle Scholar
  144. Robinson RK, Batt CA, Patel PD (eds) (2000) Encyclopedia of food microbiology. Academic, San Diego, CAGoogle Scholar
  145. Roche SM, Gracieux P, Albert I, Gouali M, Jacquet C, Martin PM, Velge P (2003) Experimental validation of low virulence in field strains of Listeria monocytogenes. Infect Immun 71:3429–3436PubMedCrossRefGoogle Scholar
  146. Rocourt J (1996) Taxonomy of the Listeria genus and typing of L. monocytogenes. Pathol Biol (Paris) 44:749–756Google Scholar
  147. Rocourt J, Grimont PAD (1983) Listeria welshimeri sp. nov. and Listeria seeligeri sp. nov. Int J Syst Bacteriol 33:866–869CrossRefGoogle Scholar
  148. Rocourt J, Boerlin P, Grimont F, Jacquet C, Piffaretti JC (1992) Assignment of Listeria grayi and Listeria murrayi to a single species, Listeria grayi, with a revised description of Listeria grayi. Int J Syst Bacteriol 42:171–174PubMedCrossRefGoogle Scholar
  149. Sallen B, Rajoharison A, Desvarenne S, Quinn F, Mabilat C (1996) Comparative analysis of 16S and 23S rRNA sequences of Listeria species. Int J Syst Bacteriol 46:669–674PubMedCrossRefGoogle Scholar
  150. Sauders BD, Durak MZ, Fortes E, Windham K, Schukken Y, Lembo AJ Jr, Akey B, Nightingale KK, Wiedmann M (2006) Molecular characterization of Listeria monocytogenes from natural and urban environments. J Food Prot 69:93–105PubMedGoogle Scholar
  151. Schlech WF III, Chase DP, Badley A (1993) A model of food-borne Listeria monocytogenes infection in the Sprague–Dawley rat using gastric inoculation: development and effect of gastric acidity on infective dose. Int J Food Microbiol 18:15–24PubMedCrossRefGoogle Scholar
  152. Seeliger HPR, Jones D (1986) Genus Listeria. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, MD, pp 1235–1245Google Scholar
  153. Seeliger HPR, Rocourt J, Schrettenbrunner A, Grimont PAD, Jones D (1984) Listeria ivanovii sp. nov. Int J Syst Bacteriol 34:336–337CrossRefGoogle Scholar
  154. Shen H, Tato CM, Fan X (1998) Listeria monocytogenes as a probe to study cell-mediated immunity. Curr Opin Immunol 10:450–458PubMedCrossRefGoogle Scholar
  155. Shen Y, Naujokas M, Park M, Ireton K (2000) InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103:501–510PubMedCrossRefGoogle Scholar
  156. Singh R, Paterson Y (2006) Listeria monocytogenes as a vector for tumor-associated antigens for cancer immunotherapy. Expert Rev Vaccines 5:541–552PubMedCrossRefGoogle Scholar
  157. Singh R, Dominiecki ME, Jaffee EM, Paterson Y (2005) Fusion to Listeriolysin O and delivery by Listeria monocytogenes enhances the immunogenicity of HER-2/neu and reveals subdominant epitopes in the FVB/N mouse. J Immunol 175:3663–3673PubMedGoogle Scholar
  158. Sleator RD, Hill C (2002) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71PubMedCrossRefGoogle Scholar
  159. Sleator RD, Hill C (2007) Patho-biotechnology; using bad bugs to make good bugs better. Sci Prog 90:1–14PubMedCrossRefGoogle Scholar
  160. Sleator RD, Wemekamp-Kamphuis HH, Gahan CG, Abee T, Hill C (2005) A PrfA-regulated bile exclusion system (BilE) is a novel virulence factor in Listeria monocytogenes. Mol Microbiol 55:1183–1195PubMedCrossRefGoogle Scholar
  161. Snapir YM, Vaisbein E, Nassar F (2006) Low virulence but potentially fatal outcome-Listeria ivanovii. Eur J Intern Med 17:286–287PubMedCrossRefGoogle Scholar
  162. Sokolovic Z, Fuchs A, Goebel W (1990) Synthesis of species-specific stress proteins by virulent strains of Listeria monocytogenes. Infect Immun 58:3582–3587PubMedGoogle Scholar
  163. Steinweg C, Kuenne CT, Billion A, Mraheil MA, Domann E, Ghai R, Barbuddhe SB, Karst U, Goesmann A, Puhler A, Weisshaar B, Wehland J, Lampidis R, Kreft J, Goebel W, Chakraborty T, Hain T (2010) Complete genome sequence of Listeria seeligeri, a nonpathogenic member of the genus Listeria. J Bacteriol 192:1473–1474PubMedCrossRefGoogle Scholar
  164. Swaminathan B, Gerner-Smidt P (2007) The epidemiology of human listeriosis. Microbes Infect 9:1236–1243PubMedCrossRefGoogle Scholar
  165. Tilney LG, Portnoy DA (1989) Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109:1597CrossRefGoogle Scholar
  166. Todd ECD, Notermans S (2011) Surveillance of listeriosis and its causative pathogen, Listeria monocytogenes. Food Control 22:1484–1490CrossRefGoogle Scholar
  167. Todeschini G, Friso S, Lombardi S, Casaril M, Fontana R, Corrocher R (1998) A case of Listeria murray/grayi bacteremia in a patient with advanced Hodgkin's disease. Eur J Clin Microbiol Infect Dis 17:808–810PubMedCrossRefGoogle Scholar
  168. Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, Loh E, Gripenland J, Tiensuu T, Vaitkevicius K, Barthelemy M, Vergassola M, Nahori MA, Soubigou G, Regnault B, Coppee JY, Lecuit M, Johansson J, Cossart P (2009) The Listeria transcriptional landscape from saprophytism to virulence. Nature 459:950–956PubMedCrossRefGoogle Scholar
  169. Van Kessel JS, Karns JS, Gorski L, McCluskey BJ, Perdue ML (2004) Prevalence of Salmonellae, Listeria monocytogenes, and fecal coliforms in bulk tank milk on US dairies. J Dairy Sci 87:2822–2830PubMedCrossRefGoogle Scholar
  170. van Netten P, Perales I, van de MA, Curtis GD, Mossel DA (1989) Liquid and solid selective differential media for the detection and enumeration of L. monocytogenes and other Listeria spp. Int J Food Microbiol 8:299–316PubMedCrossRefGoogle Scholar
  171. Vazquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Dominguez-Bernal G, Goebel W, Gonzalez-Zorn B, Wehland J, Kreft J (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640PubMedCrossRefGoogle Scholar
  172. Ward TJ, Gorski L, Borucki MK, Mandrell RE, Hutchins J, Pupedis K (2004) Intraspecific phylogeny and lineage group identification based on the prfA virulence gene cluster of Listeria monocytogenes. J Bacteriol 186:4994–5002PubMedCrossRefGoogle Scholar
  173. Ward TJ, Ducey TF, Usgaard T, Dunn KA, Bielawski JP (2008) Multilocus genotyping assays for single nucleotide polymorphism-based subtyping of Listeria monocytogenes isolates. Appl Environ Microbiol 74:7629–7642PubMedCrossRefGoogle Scholar
  174. Weiss S, Chakraborty T (2001) Transfer of eukaryotic expression plasmids to mammalian host cells by bacterial carriers. Curr Opin Biotechnol 12:467–472PubMedCrossRefGoogle Scholar
  175. Wesely IV (1999) Listeriosis in Animals. In: Ryser ET, EH M (eds) Listeria, listeriosis, and food safety, 2nd edn. Marcel Dekker, NY, pp 39–73Google Scholar
  176. Wiedmann M, Bruce JL, Keating C, Johnson AE, McDonough PL, Batt CA (1997) Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect Immun 65:2707–2716PubMedGoogle Scholar
  177. Woodward JJ, Iavarone AT, Portnoy DA (2010) c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328:1703–1705PubMedCrossRefGoogle Scholar
  178. Yoshikawa Y, Ogawa M, Hain T, Yoshida M, Fukumatsu M, Kim M, Mimuro H, Nakagawa I, Yanagawa T, Ishii T, Kakizuka A, Sztul E, Chakraborty T, Sasakawa C (2009) Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat Cell Biol 11:1233–1240PubMedCrossRefGoogle Scholar
  179. Zelmer A, Krusch S, Koschinski A, Rohde M, Repp H, Chakraborty T, Weiss S (2005) Functional transfer of eukaryotic expression plasmids to mammalian cells by Listeria monocytogenes: a mechanistic approach. J Gene Med 7:1097–1112PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mobarak Abu Mraheil
    • 1
  • Sukhadeo Barbuddhe
    • 2
  • Torsten Hain
    • 1
  • Trinad Chakraborty
    • 1
  1. 1.Institute for Medical Microbiology, German Centre for Infection ResearchJustus-Liebig UniversityGiessenGermany
  2. 2.Indian Council of Agricultural ResearchResearch Complex for GoaEla, Old GoaIndia

Personalised recommendations