Advertisement

Tuberculosis

  • Robindra Basu Roy
  • Eric Rubin
Reference work entry

Abstract

Mycobacterium tuberculosis is an obligate human pathogen of immense importance, infecting up to one third of the human population and causing 1.4 million deaths per year. Despite a long-established vaccine and initially effective antibiotics, M. tuberculosis continues to be a scourge of mankind through a combination of factors: related to the organism, host, their interaction, co-infections such as with HIV, and societal issues. The hallmark of M. tuberculosis as a pathogen is its intracellular growth and ability to evade killing by macrophages, including latent infection for many years. Here we consider distinctive characteristics of the organism, pathogenesis, epidemiology, clinical syndrome, diagnosis, treatment, and prevention of tuberculosis. Pressing challenges include combating drug resistance, designing better vaccines, improved diagnostics, and simplified treatment regimes. Molecular techniques are increasingly being transferred from bench to bedside and the coordinated efforts of microbiologists, immunologists, epidemiologists, clinicians, and policy-makers are required to turn the tide against tuberculosis.

Keywords

Human Immunodeficiency Virus Tuberculin Skin Test Pulmonary Tuberculosis Isoniazid Preventative Therapy Extrapulmonary Tuberculosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdool Karim SS, Naidoo K et al (2011) Integration of antiretroviral therapy with tuberculosis treatment. N Engl J Med 365(16):1492–1501PubMedCrossRefGoogle Scholar
  2. Abel B, Tameris M et al (2010) The novel tuberculosis vaccine, AERAS-402, induces robust and polyfunctional CD4+ and CD8+ T cells in adults. Am J Respir Crit Care Med 181(12):1407–1417PubMedCrossRefGoogle Scholar
  3. Agranoff D, Fernandez-Reyes D et al (2006) Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum. Lancet 368(9540):1012–1021PubMedCrossRefGoogle Scholar
  4. Almeida Da Silva PE, Palomino JC (2011) Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother 66(7):1417–1430PubMedCrossRefGoogle Scholar
  5. Arnvig KB, Comas I et al (2011) Sequence-based analysis uncovers an abundance of non-coding RNA in the total transcriptome of Mycobacterium tuberculosis. PLoS Pathog 7(11):e1002342PubMedCrossRefGoogle Scholar
  6. Behar SM, Divangahi M et al (2010) Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol 8:668–674Google Scholar
  7. Berry MPR, Graham CM et al (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466(7309):973–977PubMedCrossRefGoogle Scholar
  8. Blanc FX, Sok T et al (2011) Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. N Engl J Med 365(16):1471–1481PubMedCrossRefGoogle Scholar
  9. Boehme CC, Nabeta P et al (2010) Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363(11):1005–1015PubMedCrossRefGoogle Scholar
  10. Boehme CC, Nicol MP et al (2011) Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet 377(9776):1495–1505PubMedCrossRefGoogle Scholar
  11. Borrell S, Gagneux S (2011) Strain diversity, epistasis and the evolution of drug resistance in Mycobacterium tuberculosis. Clin Microbiol Infect 17(6):815–820PubMedCrossRefGoogle Scholar
  12. Burrill J, Williams CJ et al (2007) Tuberculosis: a radiologic review. Radiographics 27(5):1255–1273PubMedCrossRefGoogle Scholar
  13. Caccamo N, Guggino G et al (2009) Analysis of Mycobacterium tuberculosis-specific CD8 T-cells in patients with active tuberculosis and in individuals with latent infection. PLoS One 4(5):e5528PubMedCrossRefGoogle Scholar
  14. Cardona PJ, Asensio JG et al (2009) Extended safety studies of the attenuated live tuberculosis vaccine SO2 based on phoP mutant. Vaccine 27(18):2499–2505PubMedCrossRefGoogle Scholar
  15. Caviedes L, Coronel J, et al. (2006) MODS: a user guide. From http://www.modsperu.org/
  16. CDC (2005) Guidelines for preventing the transmission of Mycobacterium tuberculosis in healthcare settings. Morb Mortal Wkly Rep 54(RR-17):11–141Google Scholar
  17. CDC (2011a) Recommendations for use of an isoniazid-rifapentine regimen with direct observation to treat latent Mycobacterium tuberculosis infection. Morb Mortal Wkly Rep 60(48):1650–1653Google Scholar
  18. CDC (2011b) Reported tuberculosis in the United States, 2010. Department of Health and Human Services, CDC, AtlantaGoogle Scholar
  19. Chao MC, Rubin EJ (2010) Letting sleeping dos lie: does dormancy play a role in tuberculosis? Annu Rev Microbiol 64(1):293–311PubMedCrossRefGoogle Scholar
  20. Colditz GA, Brewer TF et al (1994) Efficacy of BCG vaccine in the prevention of tuberculosis. JAMA 271(9):698–702PubMedCrossRefGoogle Scholar
  21. Cole ST, Brosch R et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544PubMedCrossRefGoogle Scholar
  22. Comas I, Chakravartti J et al (2010) Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 42(6):498–503PubMedCrossRefGoogle Scholar
  23. Comas I, Borrell S et al (2011) Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 44(1):106–110PubMedCrossRefGoogle Scholar
  24. Cox H, Ford N (2012) Linezolid for the treatment of complicated drug-resistant tuberculosis: a systematic review and meta-analysis. Int J Tuberc Lung Dis 16(4):447–454PubMedCrossRefGoogle Scholar
  25. Crick DC, Quadri LE, Brennan PJ (2008) Biochemistry of the Cell Envelope of Mycobacterium tuberculosis. In: Kaufman, Rubin (eds) Handbook of Tuberculosis: Molecular Biology and Biochemistry. WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim, pp 1–20Google Scholar
  26. Daniel T (2006) The history of tuberculosis. Respir Med 100(11):1862–1870PubMedCrossRefGoogle Scholar
  27. Davies PD, Pai M (2008) The diagnosis and misdiagnosis of tuberculosis. Int J Tuberc Lung Dis 12(11):1226–1234PubMedGoogle Scholar
  28. Davis JM, Ramakrishnan L (2009) The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136(1):37–49PubMedCrossRefGoogle Scholar
  29. de Carvalho LP, Fischer SM et al (2010) Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem Biol 17(10):1122–1131PubMedCrossRefGoogle Scholar
  30. Department of Health (2007) Tuberculosis. Immunisation against infectious disease. The Green Book – 2006 updated edition. Department of Health, London, pp 391–409Google Scholar
  31. Diacon AH, Pym A et al (2009) The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med 360(23):2397–2405PubMedCrossRefGoogle Scholar
  32. Diacon AH, Dawson R et al (2011) Early bactericidal activity of delamanid (OPC-67683) in smear-positive pulmonary tuberculosis patients. Int J Tuberc Lung Dis 15(7):949–954PubMedCrossRefGoogle Scholar
  33. Diel R, Goletti D et al (2011) Interferon gamma release assays for the diagnosis of latent M. tuberculosis infection: a systematic review and meta-analysis. Eur Respir J 37(1):88–99PubMedCrossRefGoogle Scholar
  34. Divangahi M, Desjardins D et al (2010) Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nat Immunol 11(8):751–758PubMedCrossRefGoogle Scholar
  35. Griffin JE, Gawronski JD et al (2011) High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 7(9):e1002251PubMedCrossRefGoogle Scholar
  36. Grode L, Seiler P et al (2005) Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J Clin Invest 115(9):2472–2479PubMedCrossRefGoogle Scholar
  37. Hanna BA, Ebrahimzadeh A et al (1999) Multicenter evaluation of the BACTEC MGIT 960 system for recovery of mycobacteria. J Clin Microbiol 37(3):748–752PubMedGoogle Scholar
  38. Harries AD, Zachariah R et al (2010) The HIV-associated tuberculosis epidemic – when will we act? Lancet 375(9729):1906–1919PubMedCrossRefGoogle Scholar
  39. Havlir DV, Kendall MA et al (2011) Timing of antiretroviral therapy for HIV-1 infection and tuberculosis. N Engl J Med 365(16):1482–1491PubMedCrossRefGoogle Scholar
  40. Hoft DF, Blazevic A et al (2008) A new recombinant Bacille Calmette-Guerin vaccine safely induces significantly enhanced tuberculosis-specific immunity in human volunteers. J Infect Dis 198(10):1491–1501PubMedCrossRefGoogle Scholar
  41. Horsburgh CR, Rubin EJ (2011) Clinical practice. Latent tuberculosis infection in the United States. N Engl J Med 364(15):1441–1448PubMedCrossRefGoogle Scholar
  42. Hunter R (2011) Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis 91(6):497–509PubMedCrossRefGoogle Scholar
  43. Jain P, Thaler DS et al (2011) Reporter phage and breath tests: emerging phenotypic assays for diagnosing active tuberculosis, antibiotic resistance, and treatment efficacy. J Infect Dis 204(suppl 4):S1142–S1150PubMedCrossRefGoogle Scholar
  44. Kaufmann S (2011) Fact and fiction in tuberculosis vaccine research: 10 years later. Lancet Infect Dis 11(8):633–640PubMedCrossRefGoogle Scholar
  45. Kaur D, Guerin ME et al (2009) Chapter 2: biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv Appl Microbiol 69:23–78PubMedCrossRefGoogle Scholar
  46. Koch R (1932) Die aetiologie der tuberculose – a translation by B. Pinner and M. Pinner with an introduction by A. K. Krause. Am Rev Tuberc 25:285–323Google Scholar
  47. Koul A, Arnoult E et al (2011) The challenge of new drug discovery for tuberculosis. Nature 469(7331):483–490PubMedCrossRefGoogle Scholar
  48. Kruh NA, Troudt J et al (2010) Portrait of a pathogen: the Mycobacterium tuberculosis proteome In Vivo. PLoS One 5(11):e13938PubMedCrossRefGoogle Scholar
  49. Laennec R (1962) A treatise on the disease of the chest, translated by Forbes J. Hafner Publishing, New YorkGoogle Scholar
  50. Lancioni C, Nyendak M et al (2011) CD8+ T cells provide an immunologic signature of tuberculosis in young children. Am J Respir Crit Care Med 185(2):206–212PubMedCrossRefGoogle Scholar
  51. Layre E, Sweet L et al (2011) A comparative lipidomics platform for chemotaxonomic analysis of Mycobacterium tuberculosis. Chem Biol 18(12):1537–1549PubMedCrossRefGoogle Scholar
  52. Lee M, Lee J et al (2012) Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med 367:1508–1518PubMedCrossRefGoogle Scholar
  53. Ling DI, Zwerling AA et al (2008) GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis. Eur Respir J 32(5):1165–1174PubMedCrossRefGoogle Scholar
  54. Louw GE, Warren RM et al (2009) A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob Agents Chemother 53(8):3181–3189PubMedCrossRefGoogle Scholar
  55. Major R (1945) Classic descriptions of disease, 3rd edn. Charles C. Thomas, SpringfieldGoogle Scholar
  56. Martin A, Portaels F et al (2007) Colorimetric redox-indicator methods for the rapid detection of multidrug resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. J Antimicrob Chemother 59(2):175–183PubMedCrossRefGoogle Scholar
  57. Martineau AR, Timms PM et al (2011) High-dose vitamin D3 during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet 377(9761):242–250PubMedCrossRefGoogle Scholar
  58. Minion J, Leung E et al (2011) Diagnosing tuberculosis with urine lipoarabinomannan: systematic review and meta-analysis. Eur Respir J 38:1398–1405PubMedCrossRefGoogle Scholar
  59. Mitarai S, Okumura M et al (2011) Evaluation of a simple loop-mediated isothermal amplification test kit for the diagnosis of tuberculosis. Int J Tuberc Lung Dis 15(9):1211–1217PubMedCrossRefGoogle Scholar
  60. Morgan M, Kalantri S et al (2005) A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. BMC Infect Dis 5:62PubMedCrossRefGoogle Scholar
  61. Murry JP, Sassetti CM et al (2008) Transposon site hybridization in Mycobacterium tuberculosis. In: Osterman A, Gerdes S (eds) Methods in molecular biology, vol 416, Microbial gene essentiality. Humana Press, Totowa, pp 45–59Google Scholar
  62. Muyoyeta M, de Haas PE et al (2010) Evaluation of the Capilia TB assay for culture confirmation of Mycobacterium tuberculosis in Zambia and South Africa. J Clin Microbiol 48(10):3773–3775PubMedCrossRefGoogle Scholar
  63. Napier RJ, Rafi W et al (2011) Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe 10(5):475–485PubMedCrossRefGoogle Scholar
  64. Nicol MP, Workman L et al (2011) Accuracy of the Xpert MTB/RIF test for the diagnosis of pulmonary tuberculosis in children admitted to hospital in Cape Town, South Africa: a descriptive study. Lancet Infect Dis 11(11):819–824PubMedCrossRefGoogle Scholar
  65. Niederweis M, Danilchanka O et al (2010) Mycobacterial outer membranes: in search of proteins. Trends Microbiol 18(3):109–116PubMedCrossRefGoogle Scholar
  66. Orenstein EW, Basu S et al (2009) Treatment outcomes among patients with multidrug-resistant tuberculosis: systematic review and meta-analysis. Lancet Infect Dis 9(3):153–161PubMedCrossRefGoogle Scholar
  67. Paige C, Bishai WR (2010) Penitentiary or penthouse condo? The tuberculous granuloma from the microbe’s point of view. Cell Microbiol 12(3):301–309PubMedCrossRefGoogle Scholar
  68. Ramos E, Fissette K et al (2012) Integrated detection of multi- and extensively drug-resistant tuberculosis using the nitrate reductase assay. Int J Tuberc Lung Dis 16(1):110–113PubMedCrossRefGoogle Scholar
  69. Rangaka MX, Wilkinson KA et al (2012) Predictive value of interferon-gamma release assays for incident active tuberculosis: a systematic review and meta-analysis. Lancet Infect Dis 12(1):45–55PubMedCrossRefGoogle Scholar
  70. Rubin EJ (2009) The granuloma in tuberculosis—friend or foe? N Engl J Med 360(23):2471–2473PubMedCrossRefGoogle Scholar
  71. Rustomjee R, Lienhardt C et al (2008) A phase II study of the sterilising activities of ofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis. Int J Tuberc Lung Dis 12(2):128–138PubMedGoogle Scholar
  72. Sankar S, Ramamurthy M et al (2011) An appraisal of PCR-based technology in the detection of Mycobacterium tuberculosis. Mol Diagn Ther 15(1):1–11PubMedCrossRefGoogle Scholar
  73. Saviola B, Bishai W (2006) The Genus Mycobacterium - Medical. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes. A Handbook on the Biology of Bacteria: Archaea. Bacteria: Firmicutes, Actinomycetes, 3rd edn, vol 3. Springer, NY, pp 927Google Scholar
  74. Scriba TJ, Tameris M et al (2012) A phase IIa trial of the new TB Vaccine, MVA85A, in HIV and/or M Tuberculosis infected adults. Am J Respir Crit Care Med 185(7):769–778PubMedCrossRefGoogle Scholar
  75. Sia IG, Wieland ML (2011) Current concepts in the management of tuberculosis. Mayo Clin Proc 86(4):348–361PubMedCrossRefGoogle Scholar
  76. Singh R, Manjunatha U et al (2008) PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322(5906):1392–1395PubMedCrossRefGoogle Scholar
  77. Skeiky YAW, Dietrich J et al (2010) Non-clinical efficacy and safety of HyVac4:IC31 vaccine administered in a BCG prime‚Äìboost regimen. Vaccine 28(4):1084–1093PubMedCrossRefGoogle Scholar
  78. Sutherland JS, Hill PC et al (2011) Identification of probable early-onset biomarkers for tuberculosis disease progression. PLoS One 6(9):e25230PubMedCrossRefGoogle Scholar
  79. Tobin DM, Vary JC Jr et al (2010) The lta4h locus modulates susceptibility to mycobacterial infection in Zebrafish and humans. Cell 140(5):717–730PubMedCrossRefGoogle Scholar
  80. Tobin DM, Roca FJ et al (2012) Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 148(3):434–446PubMedCrossRefGoogle Scholar
  81. Torok ME, Farrar JJ (2011) When to start antiretroviral therapy in HIV-associated tuberculosis. N Engl J Med 365(16):1538–1540PubMedCrossRefGoogle Scholar
  82. Treglia G, Taralli S et al (2011) Is there a role for fluorine 18 fluorodeoxyglucose-positron emission tomography and positron emission tomography/computed tomography in evaluating patients with mycobacteriosis? A systematic review. J Comput Assist Tomogr 35(3):387–393PubMedCrossRefGoogle Scholar
  83. Trunz BB, Fine PEM et al (2006) Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 367(9517):1173–1180PubMedCrossRefGoogle Scholar
  84. Udwadia ZF, Amale RA et al (2011) Totally drug-resistant tuberculosis in India. Clin Infect Dis 54(4):579–581PubMedCrossRefGoogle Scholar
  85. Wallis RS, Jakubiec WM et al (2010a) Pharmacokinetics and whole-blood bactericidal activity against Mycobacterium tuberculosis of single doses of PNU-100480 in healthy volunteers. J Infect Dis 202(5):745–751PubMedCrossRefGoogle Scholar
  86. Wallis RS, Pai M et al (2010b) Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice. Lancet 375(9729):1920–1937PubMedCrossRefGoogle Scholar
  87. Warner D, Mizrahi V (2008) Physiology of Mycobacterium tuberculosis. In: Kaufmann S, Rubin E (eds) Handbook of tuberculosis: molecular biology and biochemistry. WILEY-VCH, WeinheimGoogle Scholar
  88. World Health Organization (1998a) Laboratory services in TB control, part II: microscopy. (WHO/TB/98.258) World Health Organization, GenevaGoogle Scholar
  89. World Health Organization (1998b) Laboratory services in TB control, Part III: culture. (WHO/TB/98.258) World Health Organization, GenevaGoogle Scholar
  90. World Health Organization (2009) Global tuberculosis control: a short update to the 2009 report. World Health Organization, GenevaGoogle Scholar
  91. World Health Organization (2010) Multidrug and extensively drug-resistant TB (M/XDR-TB): 2010 global report on surveillance and response. GenevaGoogle Scholar
  92. World Health Organization (2011a) Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB / RIF System. Policy statement. From http://whqlibdoc.who.int/publications/2011/9789241501545_eng.pdf
  93. World Health Organization (2011b) Global tuberculosis control: WHO report 2011. GenevaGoogle Scholar
  94. World Health Organization (2011c) Guidelines for the programmatic management of drug-resistant tuberculosis. GenevaGoogle Scholar
  95. World Health Organization Stop TB Partnership (2009) Treatment of tuberculosis: guidelines, 4th edn. World Health Organization, GenevaGoogle Scholar
  96. World Health Organization Stop TB partnership (2010) The global plan to stop TB 2011–2015: transforming the fight towards elimination of tuberculosis. GenevaGoogle Scholar
  97. Young D, Stark J et al (2008) Systems biology of persistent infection: tuberculosis as a case study. Nat Rev Microbiol 6(7):520–528PubMedCrossRefGoogle Scholar
  98. Zhang Y, Jacobs WR (2008) Mechanisms of drug action, drug resistance and drug tolerance in Mycobacterium tuberculosis: expected phenotypes from evolutionary pressures from a highly successful pathogen. In: Kaufmann SH, Rubin E (eds) Handbook of tuberculosis: molecular biology and biochemistry. WILEY-VCH, WeinheimGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK
  2. 2.Harvard School of Public HealthBostonUSA

Personalised recommendations