• Gemma E. Walton
  • Jonathan R. Swann
  • Glenn R. Gibson


The human large intestine is an intensively colonized area containing bacteria that are health promoting as well as pathogenic. This has led to functional food developments that fortify the former at the expense of the latter. Probiotics have a long history of use in humans as live microbial feed additions. In contrast, a prebiotic is a nondigestible food ingredient that beneficially affects the host by targeting indigenous components thought to be positive. Dietary carbohydrates, such as fibers, are candidate prebiotics, but most promise has been realized with oligosaccharides. As prebiotics exploit nonviable food ingredients, their applicability in diets is wide ranging.

Main prebiotic targets at the moment are bifidobacteria and lactobacilli (although this may change as our knowledge of the microbiota diversity and functionality expands). Any dietary component that reaches the colon intact is a potential prebiotic; however, much of the interest in the development of prebiotics is aimed at nondigestible oligosaccharides such as inulin-type fructooligosaccharides (FOS) and trans-galactooligosaccharides (TOS). In Europe, FOS and TOS have been shown to be prebiotics, through numerous volunteer trials, as evidence by their ability to positively change the gut flora composition after a short feeding period. Other prebiotics are emerging. Some prebiotics occur naturally in several foods such as leek, asparagus, chicory, Jerusalem artichoke, garlic, artichoke, onion, wheat, banana, and oats. However, these foods contain only trace levels, so developments have taken the approach of removing the active ingredients from such sources and adding them to more frequently consumed products in order to attain levels whereby a prebiotic effect may occur, for example, cereals, confectionery, biscuits, infant feeds, yogurts, table spreads, bread, sauces, drinks, etc.

As gastrointestinal disorders are prevalent in terms of human health, both probiotics and prebiotics serve an important role in the prophylactic management of various acute and chronic gut-derived conditions. Examples include protection from gastroenteritis and some inflammatory conditions.


Irritable Bowel Syndrome Fecal Microbiota Colonic Microbiota Prebiotic Effect Human Intervention Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, Ellis KJ (2005) A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr 82:471–476PubMedGoogle Scholar
  2. Aldercreutz H (1993) Lignans and isoflavonoids of dietary origin and hormone-dependant cancer. In: Waldron KW (ed) Food and cancer prevention. Royal Society of Chemistry, Cambridge, pp 348–352CrossRefGoogle Scholar
  3. Apajalahti JH, Kettunen A, Nurminen PH, Jatila H, Holben W (2003) Selective plating underestimates abundance and shows differential recovery of bifidobacterial species from human feces. Appl Environ Microbiol 69:5731–5735PubMedCrossRefGoogle Scholar
  4. Bakker-Zierikzee AM, Alles MS, Knol J, Kok FJ, Tolboom JJ, Bindels JG (2005) Effects of infant formula containing a mixture of galacto- and fructo-oligosaccharides or viable Bifidobacterium animalis on the intestinal microflora during the first 4 months of life. Br J Nutr 94:783–790PubMedCrossRefGoogle Scholar
  5. Bakker-Zierikzee AM, Tol EA, Kroes H, Alles MS, Kok FJ, Bindels JG (2006) Faecal SIgA secretion in infants fed on pre- or probiotic infant formula. Pediatr Allergy Immunol 17:134–140PubMedCrossRefGoogle Scholar
  6. Ballongue J, Schumann C, Quignon P (1997) Effects of lactulose and lactitol on colonic microflora and enzymatic activity. Scand J Gastroenterol Suppl 222:41–44PubMedGoogle Scholar
  7. Beausoleil M, Fortier N, Guénette S, L’ecuyer A, Savoie M, Franco M, Lachaine J, Weiss K (2007) Effect of a fermented milk combining Lactobacillus acidophilus Cl1285 and Lactobacillus casei in the prevention of antibiotic-associated diarrhea: a randomized, double-blind, placebo-controlled trial. Can J Gastroenterol 211:732–736Google Scholar
  8. Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72:3593–3599PubMedCrossRefGoogle Scholar
  9. Ben XM, Zhou XY, Zhao WH, Yu WL, Pan W, Zhang WL, Wu SM, Van Beusekom CM, Schaafsma A (2004) Supplementation of milk formula with galacto-oligosaccharides improves intestinal micro-flora and fermentation in term infants. Chin Med J 117:1268–1270PubMedGoogle Scholar
  10. Bengmark S (1998) Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut 42:2–7PubMedCrossRefGoogle Scholar
  11. Bernet MF, Brassart D, Neeser JR, Servin AL (1993) Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interactions. Appl Environ Microbiol 59:4121–4128PubMedGoogle Scholar
  12. Beynen AC, Baas JC, Hoekemeijer PE, Kappert HJ, Bakker MH, Koopman JP, Lemmens AG (2002) Faecal bacterial profile, nitrogen excretion and mineral absorption in healthy dogs fed supplemental oligofructose. J Anim Physiol Anim Nutr 86:298–305CrossRefGoogle Scholar
  13. Bezkorovainy A (2001) Probiotics: determinants of survival and growth in the gut. Am J Clin Nutr 73(Suppl):399–405Google Scholar
  14. Bingham SA (1993) Plant cell wall material and cancer protection. In: Waldron KW (ed) Food and cancer prevention. Royal Society of Chemistry, Cambridge, pp 339–347CrossRefGoogle Scholar
  15. Blaut M (2002) Relationship of prebiotics and food to intestinal microflora. Eur J Nutr 41:I11–I16PubMedCrossRefGoogle Scholar
  16. Blottiere HM, Buecher B, Galmiche JP, Cherbut C (2003) Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation. Proc Nutr Soc 62:101–106PubMedCrossRefGoogle Scholar
  17. Boehm G, Lidestri M, Casetta P, Jelinek J, Negretti F, Stahl B, Marini A (2002) Supplementation of a bovine milk formula with an oligosaccharides mixture increases counts of faecal bifidobacteria in preterm infants. Arch Dis Children 86:F178–F182CrossRefGoogle Scholar
  18. Boehm G, Jelinek J, Stahl B, van Laere K, Knol J, Fanaro S, Moro G, Vigi V (2004) Prebiotics in infant formulas. J Clin Gastroenterol 38:S76–S79PubMedCrossRefGoogle Scholar
  19. Bouhnik Y, Flourie B, D’Agay-Abensour L, Pochart P, Gramet G, Durand M, Rambaud JC (1997) Administration of transgalacto-oligosaccharides increases fecal Bifidobacteria and modifies colonic fermentation metabolism in healthy humans. J Nutr 127:444–448PubMedGoogle Scholar
  20. Bouhnik Y, Achour L, Paineau D, Riottot M, Attar A, Bornet F (2007) Four-week short chain fructo-oligosaccharides ingestion leads to increasing fecal bifidobacteria and cholesterol excretion in healthy elderly volunteers. Nutr J 5:42CrossRefGoogle Scholar
  21. Brommage R, Binacua C, Antille S, Carrie AL (1993) Intestinal calcium absorption in rats is stimulated by dietary lactulose and other resistant sugars. J Nutr 123:2186–2194PubMedGoogle Scholar
  22. Brown AJ, Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319PubMedCrossRefGoogle Scholar
  23. Brück WM, Kelleher SL, Gibson GR, Nielsen KE, Chatterton DE, Lonnerdal B (2003) rRNA probes used to quantify the effects of glycomacropeptide and alpha-lactalbumin supplementation on the predominant groups of intestinal bacteria of infant rhesus monkeys challenged with enteropathogenic Escherichia coli. J Pedtr Gastroenterol Nutr 37:273–280CrossRefGoogle Scholar
  24. Campbell JM, Fahey GC Jr, Wolf BW (1997) Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. J Nutr 127:130–136PubMedGoogle Scholar
  25. Cani PD, Dewever C, Delzenne NM (2004) Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br J Nutr 92:521–526PubMedCrossRefGoogle Scholar
  26. Cani PD, Joly E, Horsmans Y, Delzenne NM (2006) Oligofructose promotes satiety in healthy human: a pilot study. Eur J Clin Nutr 60:567–572PubMedCrossRefGoogle Scholar
  27. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR, Delzenne NM (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50:2374–2383PubMedCrossRefGoogle Scholar
  28. Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D, De Backer F, Neyrinck AM, Delzenne NM (2009) Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr 90:1236–1243PubMedCrossRefGoogle Scholar
  29. Carvalho-Wells AL, Helmolz K, Nodet C, Molzer C, Leonard C, McKevith B, Thielecke F, Jackson KG, Tuohy KM (2010) Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: a human feeding study. Br J Nutr 104:1353–1356PubMedCrossRefGoogle Scholar
  30. Cheikhyoussef A, Pogori N, Chen W, Zhang H (2008) Antimicrobial proteinaceous compounds obtained from bifidobacteria: from production to their application. Int J Food Microbiol 125:215–222PubMedCrossRefGoogle Scholar
  31. Chonan O, Matsumoto K, Watanuki M (1995) Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats. Biosci Biotechnol Biochem 59:236–239PubMedCrossRefGoogle Scholar
  32. Cimperman L, Bayless G, Best K, Diligente A, Mordarski B, Oster M, Smith M, Vatakis F, Wiese D, Steiber A, Katz J (2011) A randomized, double-blind, placebo-controlled pilot study of Lactobacillus reuteri ATCC 55730 for the prevention of antibiotic-associated diarrhea in hospitalized adults. J Clin Gastroenterol 459:785–789CrossRefGoogle Scholar
  33. Claesson MJ, O’Sullivan O, Wang Q, Nikkilä J, Marchesi JR, Smidt H, de Vos WM, Ross RP, O’Toole PW (2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One 4:e6669PubMedCrossRefGoogle Scholar
  34. Collins MD, Gibson GR (1999) Probiotics, prebiotics and synbiotics: dietary approaches for the modulation of microbial ecology. Am J Clin Nutr 69:1052–1057Google Scholar
  35. Costabile A, Klinder A, Fava F, Napolitano A, Fogliano V, Leonard C, Gibson GR, Tuohy KM (2008) Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Br J Nutr 99:110–120PubMedCrossRefGoogle Scholar
  36. Costalos C, Kapiki A, Apostolou M, Papathoma E (2008) The effect of a prebiotic supplemented formula on growth and stool microbiology of term infants. Early Hum Dev 84:45–49PubMedCrossRefGoogle Scholar
  37. Coussement P, Franck A (1998) New food applications for inulin. Agro Food Ind Hi Tech 9:26–28Google Scholar
  38. Crittenden RG, Playne MJ (1996) Production, properties and applications of food-grade oligosaccharides. Trends Food Sci Technol 7:353–361CrossRefGoogle Scholar
  39. Cummings JH, Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70:443–459PubMedCrossRefGoogle Scholar
  40. Cummings JH, Gibson GR, Macfarlane GT (1989) Quantitative estimates of fermentation in the hind gut of man. Acta Vet Scand 86:76–82Google Scholar
  41. D’Sousa A, Rajkumar C, Cooke J, Bulpitt CJ (2002) Probiotics in prevention of antibiotic associated diarrhoea: meta-analysis. Br Med J 324:1361–1364CrossRefGoogle Scholar
  42. Dass NB, John AK, Crumbley CW, Shehee WR, Maurio FP, Moore GB, Taylor CM, Sanger GJ (2007) The relationship between the effects of short-chain fatty acids on intestinal motility in vitro and GPR43 receptor activation. Neurogastroenterol Motil 19:66–74PubMedCrossRefGoogle Scholar
  43. Daubioul CA, Taper HS, De Wispelaere LD, Delzenne NM (2000) Dietary oligofructose lessens hepatic steatosis, but does not prevent hypertriglyceridemia in obese Zucker rats. J Nutr 130:1314–1319PubMedGoogle Scholar
  44. de Vrese M, Stegelmann A, Richter B, Fenselau S, Laue C, Schrezenmeir J (2001) Probiotics – compensation for lactose insufficiency. Am J Clin Nutr 73(Suppl):421–429Google Scholar
  45. Delzenne NM, Kok N (2001) Effects of fructans-type prebiotics on lipid metabolism. Am J Clin Nutr 73:456S–458SPubMedGoogle Scholar
  46. Delzenne NM, Cani PD, Daubioul C, Neyrinck AM (2005) Impact of inulin and oligofructose on gastrointestinal peptides. Br J Nutr 93(Suppl):157–161CrossRefGoogle Scholar
  47. Demigne C, Morand C, Levrat MA, Besson C, Moundras C, Remesy C (1995) Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes. Br J Nutr 74:209–219PubMedCrossRefGoogle Scholar
  48. Depeint F, Tzortzis G, Vulevic J, I’anson K, Gibson GR (2008) Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: a randomized, double-blind, crossover, placebo-controlled intervention study. Am J Clin Nutr 87:785–791PubMedGoogle Scholar
  49. Dewulf EM, Cani PD, Neyrinck AM, Possemiers S, Van Holle A, Muccioli GG, Deldicque L, Bindels LB, Pachikian BD, Sohet FM, Mignolet E, Francaux M, Larondelle Y, Delzenne NM (2011) Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARg-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. J Nutr Biochem 22:712–722PubMedCrossRefGoogle Scholar
  50. Diez M, Hornick JL, Baldwin P, Istasse L (1997) Influence of a blend of fructo-oligosaccharides and sugar beet fiber on nutrient digestibility and plasma metabolite concentrations in healthy beagles. Am J Vet Res 58:1238–1242PubMedGoogle Scholar
  51. Dunne C, O’Mahony L, Murphy L, Thornton G, Morrissey D, O’Halloran S, Feeney M, Flynn S, Fitzgerald G, Daly C, Kiley B, O’Sullivan GC, Shanahan F, Collins K (2001) In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 73(Suppl):386–392Google Scholar
  52. Fiordaliso M, Kok N, Desager JP, Goethals F, Deboyser D, Roberfroid M, Delzenne NM (1995) Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoprotein of rats. Lipids 30:163–167PubMedCrossRefGoogle Scholar
  53. Franks AH, Harmsen HJM, Raangs GC, Jansen GJ, Schut F, Welling GW (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridisation with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64:3336–3345PubMedGoogle Scholar
  54. Fuller R (ed) (1992) Probiotics: the scientific basis. Chapman and Hall, LondonGoogle Scholar
  55. Fuller R (ed) (1997) Probiotics 2: applications and practical aspects. Chapman and Hall, LondonGoogle Scholar
  56. Fuller R, Gibson GR (1997) Modification of the intestinal microflora using probiotics and prebiotics. Scand J Gastroenterol 32:28–31Google Scholar
  57. Gibson GR (1999) Dietary Modulation of the human gut microflora using the prebiotics oligofructose and inulin. J Nutr 129:1438–1441Google Scholar
  58. Gibson GR, Macfarlane GT (eds) (1995) Human colonic bacteria: role in nutrition, physiology and pathology. CRC Press, FloridaGoogle Scholar
  59. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412PubMedGoogle Scholar
  60. Gibson GR, Roberfroid MB (eds) (2008) A handbook of prebiotics. Taylor and Francis, FloridaGoogle Scholar
  61. Gibson GR, Wang X (1994) Regulatory effects of bifidobacteria on the growth of other colonic bacteria. J Appl Bacteriol 77:412–420PubMedCrossRefGoogle Scholar
  62. Gibson GR, Williams CM (eds) (2000) Functional foods: concept to product. Woodhead Publishing, CambridgeGoogle Scholar
  63. Gibson GR, Cummings JH, Macfarlane GT (1991) Growth and activities of sulphate reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol Ecol 103:103–112Google Scholar
  64. Gibson GR, Macfarlane S, Macfarlane GT (1993) Metabolic interactions involving sulphate-reducing and methanogenic bacteria in the human large intestine. FEMS Microbiol Ecol 12:117–125CrossRefGoogle Scholar
  65. Gibson GR, Beatty ER, Wang X, Cummings JH (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108:975–982PubMedCrossRefGoogle Scholar
  66. Gibson GR, Probert HM, van Loo JAE, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:259–275PubMedCrossRefGoogle Scholar
  67. Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, Gareau M, Murphy EF, Saulnier D, Loh G, Macfarlane S, Delzenne N, Ringel Y, Kozianowski G, Dickmann R, Lenoir-Wijnkook I, Walker C, Buddington R (2010) Dietary prebiotics: current status and new definition. Food Sci Technol Bull: Funct Foods 7:1–19CrossRefGoogle Scholar
  68. Haarman M, Knol J (2006) Quantitative real-time PCR analysis of fecal Lactobacillus species in infants receiving a prebiotic infant formula. Appl Environ Microbiol 72:2359–2365PubMedCrossRefGoogle Scholar
  69. Hamilton-Miller JMT (2001) A review of clinical trials of probiotics in the management of inflammatory bowel disease. Infect Dis Rev 3:83–87Google Scholar
  70. Harmsen HJM, Gibson GR, Elfferich P, Raangs GC, Wildeboer-Veloo ACM, Argaiz A, Roberfroid MB, Welling GW (1999) Comparison of viable cell counts and fluorescence in situ hybridization using specific rRNA-based probes for the quantification of human fecal bacteria. FEMS Microbiol Lett 183:125–129CrossRefGoogle Scholar
  71. Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pedtr Gastroenterol Nutr 30:61–67CrossRefGoogle Scholar
  72. Harmsen HJM, Raangs GC, He T, Dgener JE, Welling GW (2002) Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl Environ Microbiol 68:2982–2990PubMedCrossRefGoogle Scholar
  73. Hascoët JM, Hubert C, Rochat F, Legagneur H, Gaga S, Emady-Azar S, Steenhout PG (2011) Effect of formula composition on the development of infant gut microbiota. J Pediatr Gastroenterol Nutr 52:756–762PubMedCrossRefGoogle Scholar
  74. Hayakawa K, Mizutani J, Wada K, Masai T, Yoshihara I, Mitsuoka T (1990) Effects of soybean oligosaccharides on human faecal flora. Microb Ecol Health Dis 3:293–303CrossRefGoogle Scholar
  75. Howard MD, Gordon DT, Garleb KA, Kerley MS (1995) Dietary fructooligosaccharide, xylooligosaccharide and gum arabic have variable effects on cecal and colonic microbiota and epithelial cell proliferation in mice and rats. J Nutr 125:2604–2609PubMedGoogle Scholar
  76. Ichikawa H, Sakata T (1997) Effect of L-lactic acid, short-chain fatty acids, and pH in cecal infusate on morphometric and cell kinetic parameters of rat cecum. Dig Dis Sci 42:1598–1610PubMedCrossRefGoogle Scholar
  77. Inan MS, Rasoulpour RJ, Yin L, Hubbard AK, Rosenberg DW, Giardina C (2000) The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology 118:724–734PubMedCrossRefGoogle Scholar
  78. Ito M, Kimura M, Deguchi Y, Miyamori-Watabe A, Yajima T, Kan T (1993) Effects of transgalactosylated disaccharides on the human intestinal microflora and their metabolism. J Nutr Sci Vitaminol 39:279–288PubMedCrossRefGoogle Scholar
  79. Jackson KG, Taylor GR, Clohessy AM, Williams CM (1999) The effect of the daily intake of inulin on fasting lipid, insulin and glucose concentrations in middle-aged men and women. Br J Nutr 82:23–30PubMedGoogle Scholar
  80. Kashimura J, Kimura M, Itokawa Y (1996) The effects of isomaltulose, isomalt, and isomaltulose-based oligomers on mineral absorption and retention. Biol Trace Elem Res 54:239–250PubMedCrossRefGoogle Scholar
  81. Kim SH, da Lee H, Meyer D (2007) Supplementation of baby formula with native inulin has a prebiotic effect in formula-fed babies. Asia Pac J Clin Nutr 16:172–177PubMedGoogle Scholar
  82. Kleessen B, Sykura B, Zunft HJ, Blaut M (1997) Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. Am J Clin Nutr 65:1397–1402PubMedGoogle Scholar
  83. Knol J, Boehm G, Lidestri M, Negretti F, Jelinek J, Agosti M, Stahl B, Marini A, Mosca F (2005) Increase of faecal bifidobacteria due to dietary oligosaccharides induces a reduction of clinically relevant pathogen germs in the faeces of formula-fed preterm infants. Acta Paediatr Suppl 94:31–33PubMedCrossRefGoogle Scholar
  84. Kohmoto T, Fukui F, Takaku H, Machida Y, Arai M, Mitsuoka T (1988) Effect of isomalto-oligosaccharides on human fecal flora. Bifidobacteria Microflora 7:61–69Google Scholar
  85. Kohmoto T, Fukui F, Takaku H, Mitsuoka T (1991) Dose–response test of isomalto-oligosaccharides for increasing fecal bifidobacteria. Agric Biol Chem 55:2157–2159CrossRefGoogle Scholar
  86. Kok N, Roberfroid M, Delzenne NM (1996) Dietary oligofructose modifies the impact of fructose on hepatic triacylglycerol metabolism. Metabol: Clin Exp 45:1547–1550CrossRefGoogle Scholar
  87. Kok NN, Taper HS, Delzenne NM (1998) Oligofructose modulates lipid metabolism alterations induced by a fat-rich diet in rats. J Appl Toxicol 18:47–53PubMedCrossRefGoogle Scholar
  88. Kolida S, Gibson GR (2011) Synbiotics in health and disease. Annu Rev Food Sci Technol 2:373–393PubMedCrossRefGoogle Scholar
  89. Kolida S, Meyer D, Gibson GR (2007) A double-blind placebo-controlled study to establish the bifidogenic dose of inulin in healthy humans. Eur J Clin Nutr 61:1189–1195PubMedCrossRefGoogle Scholar
  90. Kruh J, Defer N, Tichonicky L (1995) Effects of butyrate on cell proliferation and gene expression. In: Cummings JH, Rombeau JL, Sakata T (eds) Physiological and clinical aspects of short-chain fatty acids. Cambridge University Press, Cambridge, UK, pp 275–288Google Scholar
  91. Kruse HP, Kleessen B, Blaut M (1999) Effects of inulin on faecal bifidobacteria in human subjects. Br J Nutr 82:375–382PubMedGoogle Scholar
  92. Kurita-Ochiai T, Amano S, Fukushima K, Ochiai K (2003) Cellular events involved in butyric acid-induced T cell apoptosis. J Immunol 171:3576–3584PubMedGoogle Scholar
  93. Langendijd PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR, Wilkinson MHF, Welling GW (1995) Quantitative fluorescence in situ hybridisation of Bifidobacterium spp. with genus-specific 16 S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61:3069–3075Google Scholar
  94. Levrat MA, Remesy C, Demigne C (1991) High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. J Nutr 121:1730–1737PubMedGoogle Scholar
  95. Levrat MA, Favier ML, Moundras C, Remesy C, Demigne C, Morand C (1994) Role of dietary propionic acid and bile acid excretion in the hypocholesterolemic effects of oligosaccharides in rats. J Nutr 124:531–538PubMedGoogle Scholar
  96. Luo J, Rizkalla SW, Alamowitch C, Boussairi A, Blayo A, Barry JL, Laffitte A, Guyon F, Bornet FR, Slama G (1996) Chronic consumption of short-chain fructooligosaccharides by healthy subjects decreased basal hepatic glucose production but had no effect on insulin-stimulated glucose metabolism. Am J Clin Nutr 63:939–945PubMedGoogle Scholar
  97. Luo J, Van Yperselle M, Rizkalla SW, Rossi F, Bornet FR, Slama G (2000) Chronic consumption of short-chain fructooligosaccharides does not affect basal hepatic glucose production or insulin resistance in type 2 diabetics. J Nutr 130:1572–1577PubMedGoogle Scholar
  98. Macfarlane GT, McBain AJ (1999) The human colonic microbiota. In: Gibson GR, Roberfroid MB (eds) Colonic microbiota, nutrition and health. Kluwer, Dordrecht, pp 1–25CrossRefGoogle Scholar
  99. Macfarlane GT, Hay S, Macfarlane S, Gibson GR (1990) Effect of different carbohydrates on growth, polysaccharidase and glycosidase production by Bacteroides ovatus, in batch and continuous culture. J Appl Bacteriol 68:179–187PubMedCrossRefGoogle Scholar
  100. Macfarlane GT, Gibson GR, Cummings JH (1992) Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol 72:56–62Google Scholar
  101. Macfarlane GT, Macfarlane S, Gibson GR (1998) Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colonic microbiota. Microb Ecol Health Dis 35:180–187CrossRefGoogle Scholar
  102. Mäkivuokko H, Nurmi J, Nurminen P, Stowell J, Rautonen N (2005) In vitro effects on polydextrose by colonic bacteria and caco-2 cell cyclooxygenase gene expression. Nutr Cancer 52:94–104PubMedCrossRefGoogle Scholar
  103. Mallett AK, Bearne CA, Rowland IR, Farthing MJ, Cole CB, Fuller R (1987) The use of rats associated with a human faecal flora as a model for studying the effects of diet on the human gut microflora. J Appl Bacteriol 63:39–45PubMedCrossRefGoogle Scholar
  104. Manning TS, Gibson GR (2004) Microbial-gut interactions in health and disease. Prebiot Best Prac Res Clin Gastroenterol 18:287–298CrossRefGoogle Scholar
  105. Marcus R, Watt J (1969) Seaweeds and ulcerative colitis in laboratory animals. Lancet 2:489–490PubMedCrossRefGoogle Scholar
  106. Marteau PR, de Vrese M, Cellier CJ, Schrezenmeir J (2001) Protection from gastrointestinal diseases with the use of probiotics. Am J Clin Nutr 73 (Suppl):430–436Google Scholar
  107. Menne E, Guggenbuhl N, Roberfroid M (2000) Fn-type chicory inulin hydrolysate has a prebiotic effect in humans. J Nutr 130:1197–1199PubMedGoogle Scholar
  108. Mihatsch WA, Hoegel J, Pohlandt F (2006) Prebiotic oligosaccharides reduce stool viscosity and accelerate gastrointestinal transport in preterm infants. Acta Paediatr 95:843–848PubMedCrossRefGoogle Scholar
  109. Millard AL, Mertes PM, Ittelet D, Villard F, Jeannesson P, Bernard J (2002) Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages. Clin Exp Immunol 130:245–255PubMedCrossRefGoogle Scholar
  110. Minekus M, Marteau O, Havenaar R, Huis in’t Veld JH (1995) A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Altern Lab Anim 23:197–209Google Scholar
  111. Minekus M, Smeets-Peeters M, Bernelier A, Marol-Bonnin S, Havenaar R, Marteau P, Alric M, Fonty G, Huis in’t Veld JH (1999) A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl Microbiol Biotechnol 53:108–114PubMedCrossRefGoogle Scholar
  112. Mineo H, Amano M, Minaminida K, Chiji H, Shigematsu N, Tomita F, Hara H (2006) Two-week feeding of difructose anhydride III enhances calcium absorptive activity with epithelial cell proliferation in isolated rat cecal mucosa. Nutrition 22:312–320PubMedCrossRefGoogle Scholar
  113. Mitsou EK, Turunen K, Anapliotis P, Zisi D, Spiliotis V, Kyriacou A (2009) Impact of a jelly containing short-chain fructo-oligosaccharides and Sideritis euboea extract on human faecal microbiota. Int J Food Microbiol 135:112–117PubMedCrossRefGoogle Scholar
  114. Molly K, Vande Woestyne M, De Smet I (1994) Validation of the simulator of the human intestinal microbial ecosystem (SHIME) reactor using microorganism-associated activities. Microb Ecol Health Dis 7:191–200CrossRefGoogle Scholar
  115. Moro G, Minoli I, Mosca M, Fanaro S, Jelinek J, Stahl B, Boehm G (2002) Dosage-related bifidogenic effects of galacto- and fructooligosaccharides in formula-fed term infants. J Pediatr Gastroenterol Nutr 34:291–295PubMedCrossRefGoogle Scholar
  116. Moro GE, Stahl B, Fanaro S, Jelinek J, Boehm G, Coppa GV (2005) Dietary prebiotic oligosaccharides are detectable in the faeces of formula-fed infants. Acta Paediatr 94:27–30CrossRefGoogle Scholar
  117. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedGoogle Scholar
  118. Naidu AS, Bidlack WR, Clemens RA (1999) Probiotic spectra of lactic acid bacteria. Crit Rev Food Sci Nutr 38:13–126CrossRefGoogle Scholar
  119. Nobaek S, Johansson ML, Molin G, Ahrné S, Jeppsson B (2000) Alteration of intestinal microflora is associated with reduction in abdominal bloating and pain in patients with irritable bowel syndrome. Am J Gastroenterol 95:1231–1238PubMedCrossRefGoogle Scholar
  120. Parker TJ, Naylor SJ, Riordan AM, Hunter JO (1995) Management of patients with food intolerance in irritable bowel syndrome: the development and use of an exclusion diet. J Hum Nutr Diet 8:159–166CrossRefGoogle Scholar
  121. Pereira DI, Gibson GR (2002) Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Crit Rev Biochem Mol Biol 37:259–281PubMedCrossRefGoogle Scholar
  122. Pool-Zobel BL, Selvaraju V, Sauer J, Kautenburger T, Kiefer J, Richter KK, Soom M, Wolfl S (2005) Butyrate may enhance toxicological defence in primary, adenoma and tumor human colon cells by favourably modulating expression of glutathione S-transferases genes, an approach in nutrigenomics. Carcinogenesis 26:1064–1076PubMedCrossRefGoogle Scholar
  123. Rajilic-Stojanovic M, Heilig HGHJ, Molenaar D, Kajander K, Surakka A, Smidt H, de Vos WM (2009) Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of the universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol 11:1736–1751PubMedCrossRefGoogle Scholar
  124. Ramnani P, Gaudier E, Bingham M, van Bruggen P, Tuohy KM, Gibson GR (2010) Prebiotic effect of fruit and vegetable shots containing Jerusalem artichoke inulin: a human intervention study. Br J Nutr 104:233–240PubMedCrossRefGoogle Scholar
  125. Raschka L, Daniel H (2005) Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone 37:728–735PubMedCrossRefGoogle Scholar
  126. Reid G, Howard J, Gan BS (2001) Can bacterial interference prevent infection? Trends Microbiol 9:424–428PubMedCrossRefGoogle Scholar
  127. Roberfroid MB (1999) Caloric value of inulin and oligofructose. J Nutr 129(Suppl):1436–1437Google Scholar
  128. Roger LC, Costabile A, Holland DT, Hoyles L, McCartney AL (2010) Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology 156:3329–3341PubMedCrossRefGoogle Scholar
  129. Roopashri AN, Varadaraj MC (2009) Molecular characterization of native isolates of lactic acid bacteria, bifidobacteria and yeasts for beneficial attributes. Appl Microbiol Biotechnol 83:1115–1126PubMedCrossRefGoogle Scholar
  130. Rowan F, Docherty NG, Murphy M, Murphy B, Calvin Coffey J, O’Connell PR (2009) Desulfovibrio bacterial species are increased in ulcerative colitis. Dis Colon Rectum 53:1530–1536CrossRefGoogle Scholar
  131. Rumney CJ, Rowland IR (1992) In vivo and in vitro models of the human colonic flora. Crit Rev Food Sci Nutr 31:299–331PubMedCrossRefGoogle Scholar
  132. Saarela M (ed) (2011) Functional foods: concept to product, 2nd edn. Woodhead Publishing, CambridgeGoogle Scholar
  133. Saito T, Itoh T, Adachi S (1987) Chemical structure of three neutral trisaccharides isolated in free form from bovine colostrum. Carbohydr Res 165:43–51PubMedCrossRefGoogle Scholar
  134. Sako T, Matsumoto K, Tanaka R (1999) Recent progress on research and applications of non- digestible galacto-oligosaccharides. Int Dairy J 9:69–80CrossRefGoogle Scholar
  135. Salminen S, Ramos P, Fonden R (1993) Substrates and lactic acid bacteria. In: von Wright A, Salminen S (eds) Lactic acid bacteria. Marcel Dekker, New YorkGoogle Scholar
  136. Sanders ME, Gibson GR, Gill HS, Guarner F (2007) Probiotics: their potential to impact human health. CAST Issue Paper 36:1–20Google Scholar
  137. Sauer J, Richter KK, Pool-Zobel BL (2007) Physiological concentrations of butyrate favorably modulate genes of oxidative and metabolic stress in primary human colon cells. J Nutr Biochem 18:736–745PubMedCrossRefGoogle Scholar
  138. Saulnier DM, Kolida S, Gibson GR (2009) Microbiology of the human intestinal tract and approaches for its dietary modulation. Curr Pharm Des 15:1403–1414PubMedCrossRefGoogle Scholar
  139. Savino F, Palumeri E, Castagno E, Cresi F, Dalmasso P, Cavallo F, Oggero R (2006) Reduction of crying episodes owing to infantile colic: a randomized controlled study on the efficacy of a new infant formula. Eur J Clin Nutr 60:1304–1310PubMedCrossRefGoogle Scholar
  140. Scholtens PA, Alles MS, Bindels JG, van der Linde EG, Tolboom JJ, Knol J (2006) Bifidogenic effects of solid weaning foods with added prebiotic oligosaccharides: a randomised controlled clinical trial. J Pediatr Gastroenterol Nutr 42:553–559PubMedCrossRefGoogle Scholar
  141. Schumann C (2002) Medical, nutritional and technological properties of lactulose. An update. Eur J Nutr 41:I17–I25PubMedCrossRefGoogle Scholar
  142. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, Lapidus A, Rokhsar DS, Lebrilla CB, German JB, Price NP, Richardson PM, Mills DA (2008) The genome sequence of Bifidobacterium longum subsp. Infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci USA 105:18964–18969PubMedCrossRefGoogle Scholar
  143. Shanahan F (2000) Therapeutic manipulation of gut flora. Science 289:1311–1312PubMedCrossRefGoogle Scholar
  144. Sherman PM, Cabana M, Gibson GR, Koletzko BV, Neu J, Veereman-Wauters G, Ziegler EE, Walker WA (2009) Potential roles and clinical utility of prebiotics in newborns, infants, and children: proceedings from a global prebiotic summit meeting, New York City, June 27–28, 2008. J Pediatr 155(Suppl):61–70Google Scholar
  145. Silk DBA, Davis A, Vulevic J, Tzortzis G, Gibson GR (2009) Clinical trial: the effect of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharmacol Ther 29:508–518PubMedCrossRefGoogle Scholar
  146. Smith HW (1965) Observations of the flora of the alimentary tract of animals and factors affecting its composition. J Pathol Bacteriol 89:95–122PubMedCrossRefGoogle Scholar
  147. Tannock GW (1999) A fresh look at the intestinal microflora. In: Tanock GW (ed) Probiotics: a critical review. Horizon Scientific, Wymondham, pp 5–12Google Scholar
  148. Tannock G (ed) (2002) Probiotics and prebiotics. Caister Academic, NorfolkGoogle Scholar
  149. Tateyama I, Hashii K, Johno I, Iino T, Hirai K, Suwa Y, Kiso Y (2005) Effect of xylooligosaccharide intake on severe constipation in pregnant women. J Nutr Sci Vitaminol 51:445–448PubMedCrossRefGoogle Scholar
  150. Terada A, Hara H, Kato S, Kimura T, Fujimori I, Hara K, Maruyama T, Mitsuoka T (1993) Effect of lactosucrose (4 G-beta-d-galactosylsucrose) on fecal flora and fecal putrefactive products of cats. J Vet Med Sci 55:291–295PubMedCrossRefGoogle Scholar
  151. Trautwein EA, Rieckhoff D, Erbersdobler HF (1998) Dietary inulin lowers plasma cholesterol and triacylglycerol and alters biliary bile acid profile in hamsters. J Nutr 128:1937–1943PubMedGoogle Scholar
  152. Tuohy KM, Kolida S, Lustenberger AM, Gibson GR (2001) The prebiotic effects of biscuits containing partially hydrolysed guar gum and fructo-oligosaccharides–a human volunteer study. Br J Nutr 86:341–348PubMedCrossRefGoogle Scholar
  153. Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JP (2011) Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr 93:62–72PubMedCrossRefGoogle Scholar
  154. Urias-Silvas JE, Cani PD, Delmee E, Neyrinck A, Lopez MG, Delzenne NM (2008) Physiological effects of dietary fructans extracted from Agave tequilana Gto. and Dasylirion spp. Br J Nutr 99:254–261PubMedCrossRefGoogle Scholar
  155. Vaughan EE, Schut F, Heilig HG, Zoetendal EG, de Vos WM, Akkermans AD (2000) A molecular view of the intestinal ecosystem. Curr Issues Intest Microbiol 1:1–12PubMedGoogle Scholar
  156. Versalovic J, Wilson M (eds) (2008) Therapeutic microbiology. ASM Press, WashingtonGoogle Scholar
  157. Vulevic J, Drakoularakou A, Yaqoob P, Tzortzis G, Gibson GR (2008) Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. Am J Clin Nutr 88:1438–1446PubMedGoogle Scholar
  158. Walton GE, Rastall RA, Martini M, Williams C, Jeffries R, Gibson GR (2010) A double-blind, placebo controlled human study investigating the effects of coffee derived manno-oligosaccharides on the faecal microbiota of a healthy adult population. Int J Probiot Prebiotics 5:75–84Google Scholar
  159. Walton GE, van den Heuvel EG, Kosters MH, Rastall RA, Tuohy KM, Gibson GR (2011) A randomised crossover study investigating the effects of galacto-oligosaccharides on the faecal microbiota in men and women over 50 years of age. Br J Nutr 13:1–10Google Scholar
  160. Watanabe K, Mikamo H, Tanaka K (2007) Clinical significance of sulfate-reducing bacteria for ulcerative colitis. Nihon Rinsho 7:1337–1346Google Scholar
  161. Williams CM (1997) Postprandial lipid metabolism: effects of dietary fatty acids. Proc Nutr Soc 56:679–692PubMedCrossRefGoogle Scholar
  162. Wullt M, Hagslätt MLJ, Odenholt I (2003) Lactobacillus plantarum 299v for the treatment of recurrent Clostridium difficile-associated diarrhoea: a double-blind, placebo-controlled trial. Scand J Infect Dis 35:365–367PubMedCrossRefGoogle Scholar
  163. Yamano T, Lino H, Takada M, Blum S, Rochat F, Fukushima Y (2006) Improvement of the human intestinal flora by ingestion of the probiotic strain Lactobacillus johnsonii La1. Br J Nutr 95:303–312PubMedCrossRefGoogle Scholar
  164. Young SL, Simon MA, Baird MA, Tannock GW, Bibiloni R, Spencely K, Lane JM, Fitzharris P, Crane J, Town I, Addo-Yobo E, Murray CS, Woodcock A (2004) Bifidobacterial species differentially affect expression of cell surface markers and cytokines of dendritic cells harvested from cord blood. Clin Diag Lab Immunol 11:686–690Google Scholar
  165. Ziegler E, Vanderhoof JA, Petschow B, Mitmesser SH, Stolz SI, Harris CL, Berseth CL (2007) Term infants fed formula supplemented with selected blends of prebiotics grow normally and have soft stools similar to those reported for breast-fed infants. J Pediatr Gastroenterol Nutr 44:359–364PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gemma E. Walton
    • 1
  • Jonathan R. Swann
    • 1
  • Glenn R. Gibson
    • 1
  1. 1.Department of Food and Nutritional SciencesThe University of ReadingReadingUK

Personalised recommendations