Chlamydial Diseases

Reference work entry

Abstract

Chlamydiae are unique among pathogenic bacteria in that they are completely dependent on their host species for survival. They are unable to multiply in any other environmental niche, and do not carry the minimum genetic code necessary to be self-sufficient. This absolute dependence on a specific host species is strongly reflected in the evolution of Chlamydia genomes. Chlamydiae have further evolved to occupy specific niches within their host species that manifest as tissue tropisms. These bacterial adaptations are counterbalanced by innate and adaptive host defenses. While Chlamydia research until recently has been hampered by an inability to genetically manipulate the bacteria, the wealth of pathogenic Chlamydia species, hosts, and tissue tropisms has provided a window into the complex relationship between these pathogens, their hosts, and the associated diseases. This chapter covers the spectrum of human illness caused by Chlamydiae, and incorporates experimental model data from closely related nonhuman Chlamydia species to better understand human disease. This approach is hopefully interesting and informative with the practical outcome of highlighting issues relevant to host defense and vaccine development.

Keywords

Genital Tract Pelvic Inflammatory Disease Chlamydia Infection Elementary Body Major Outer Membrane Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agrawal T, Vats V, Salhan S, Mittal A (2009) Determination of chlamydial load and immune parameters in asymptomatic, symptomatic and infertile women. FEMS Immunol Med Microbiol 55:250–257PubMedCrossRefGoogle Scholar
  2. Alacoque B, Cloppet H, Dumontel C, Moulin G (1984) Histological, immunofluorescent, and ultrastructural features of lymphogranuloma venereum: a case report. Br J Vener Dis 60:390–395PubMedGoogle Scholar
  3. Al-Azemi M, Refaat B, Amer S, Ola B, Chapman N, Ledger W (2010) The expression of inducible nitric oxide synthase in the human fallopian tube during the menstrual cycle and in ectopic pregnancy. Fertil Steril 94:833–840PubMedCrossRefGoogle Scholar
  4. Al-Zeer MA, Al-Younes HM, Braun PR, Zerrahn J, Meyer TF (2009) IFN-gamma-inducible Irga6 mediates host resistance against Chlamydia trachomatis via autophagy. PLoS One 4:e4588PubMedCrossRefGoogle Scholar
  5. Anderson JL (2005) Infection, antibiotics, and atherothrombosis–end of the road or new beginnings? N Engl J Med 352:1706–1709PubMedCrossRefGoogle Scholar
  6. Anderson JL, Muhlestein JB, Carlquist J, Allen A, Trehan S, Nielson C, Hall S, Brady J, Egger M, Horne B, Lim T (1999) Randomized secondary prevention trial of azithromycin in patients with coronary artery disease and serological evidence for Chlamydia pneumoniae infection: The azithromycin in coronary artery disease: elimination of myocardial infection with chlamydia (ACADEMIC) study. Circulation 99:1540–1547PubMedCrossRefGoogle Scholar
  7. Arno JN, Katz BP, McBride R, Carty GA, Batteiger BE, Caine VA, Jones RB (1994) Age and clinical immunity to infections with Chlamydia trachomatis. Sex Transm Dis 21:47–52PubMedCrossRefGoogle Scholar
  8. Arno JN, Yuan Y, Cleary RE, Morrison RP (1995) Serologic responses of infertile women to the 60-kd chlamydial heat shock protein (hsp60). Fertil Steril 64:730–735PubMedGoogle Scholar
  9. Augenbraun MH, Roblin PM, Chirgwin K, Landman D, Hammerschlag MR (1991) Isolation of Chlamydia pneumoniae from the lungs of patients infected with the human immunodeficiency virus. J Clin Microbiol 29:401–402PubMedGoogle Scholar
  10. Bahekar AA, Singh S, Saha S, Molnar J, Arora R (2007) The prevalence and incidence of coronary heart disease is significantly increased in periodontitis: a meta-analysis. Am Heart J 154:830–837PubMedCrossRefGoogle Scholar
  11. Bai H, Cheng J, Gao X, Joyee AG, Fan Y, Wang S, Jiao L, Yao Z, Yang X (2009) IL-17/Th17 promotes type 1 T cell immunity against pulmonary intracellular bacterial infection through modulating dendritic cell function. J Immunol 183:5886–5895PubMedCrossRefGoogle Scholar
  12. Bailey R, Duong T, Carpenter R, Whittle H, Mabey D (1999) The duration of human ocular Chlamydia trachomatis infection is age dependent. Epidemiol Infect 123:479–486PubMedCrossRefGoogle Scholar
  13. Bailey RL, Holland MJ, Whittle HC, Mabey DC (1995) Subjects recovering from human ocular chlamydial infection have enhanced lymphoproliferative responses to chlamydial antigens compared with those of persistently diseased controls. Infect Immun 63:389–392PubMedGoogle Scholar
  14. Bailey RL, Kajbaf M, Whittle HC, Ward ME, Mabey DC (1993) The influence of local antichlamydial antibody on the acquisition and persistence of human ocular chlamydial infection: IgG antibodies are not protective. Epidemiol Infect 111:315–324PubMedCrossRefGoogle Scholar
  15. Barnes RC, Katz BP, Rolfs RT, Batteiger B, Caine V, Jones RB (1990) Quantitative culture of endocervical Chlamydia trachomatis. J Clin Microbiol 28:774–780PubMedGoogle Scholar
  16. Barron AL, White HJ, Rank RG, Soloff BL, Moses EB (1981) A new animal model for the study of Chlamydia trachomatis genital infections: infection of mice with the agent of mouse pneumonitis. J Infect Dis 143:63–66PubMedCrossRefGoogle Scholar
  17. Barteneva N, Theodor I, Peterson EM, de la Maza LM (1996) Role of neutrophils in controlling early stages of a Chlamydia trachomatis infection. Infect Immun 64:4830–4833PubMedGoogle Scholar
  18. Bayram A, Erdogan MB, Eksi F, Yamak B (2011) Demonstration of Chlamydophila pneumoniae, Mycoplasma pneumoniae, Cytomegalovirus, and Epstein-Barr virus in atherosclerotic coronary arteries, nonrheumatic calcific aortic and rheumatic stenotic mitral valves by polymerase chain reaction. Anadolu Kardiyol Derg 11:237–243PubMedGoogle Scholar
  19. Bekpen C, Hunn JP, Rohde C, Parvanova I, Guethlein L, Dunn DM, Glowalla E, Leptin M, Howard JC (2005) The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage. Genome Biol 6:R92PubMedCrossRefGoogle Scholar
  20. Belland RJ, Nelson DE, Virok D, Crane DD, Hogan D, Sturdevant D, Beatty WL, Caldwell HD (2003) Transcriptome analysis of chlamydial growth during IFN-gamma-mediated persistence and reactivation. Proc Natl Acad Sci USA 100:15971–15976PubMedCrossRefGoogle Scholar
  21. Berger RE (1990) Acute epididymitis. In: Holmes KK, Mardh P-A, Sparling PF, Wiesner PJ (eds) Sexually transmitted diseases. McGraw-Hill, New York, pp 641–653Google Scholar
  22. Bergstedt-Lindqvist S, Sideras P, MacDonald HR, Severinson E (1984) Regulation of Ig class secretion by soluble products of certain T-cell lines. Immunol Rev 78:25–50PubMedCrossRefGoogle Scholar
  23. Black PN, Blasi F, Jenkins CR, Scicchitano R, Mills GD, Rubinfeld AR, Ruffin RE, Mullins PR, Dangain J, Cooper BC, David DB, Allegra L (2001) Trial of roxithromycin in subjects with asthma and serological evidence of infection with Chlamydia pneumoniae. Am J Respir Crit Care Med 164:536–541PubMedGoogle Scholar
  24. Bodetti TJ, Jacobson E, Wan C, Hafner L, Pospischil A, Rose K, Timms P (2002) Molecular evidence to support the expansion of the hostrange of Chlamydophila pneumoniae to include reptiles as well as humans, horses, koalas and amphibians. Syst Appl Microbiol 25:146–152PubMedCrossRefGoogle Scholar
  25. Brunham RC, Kimani J, Bwayo J, Maitha G, Maclean I, Yang C, Shen C, Roman S, Nagelkerke NJ, Cheang M, Plummer FA (1996) The epidemiology of Chlamydia trachomatis within a sexually transmitted diseases core group. J Infect Dis 173:950–956PubMedCrossRefGoogle Scholar
  26. Brunham RC, Kuo CC, Cles L, Holmes KK (1983) Correlation of host immune response with quantitative recovery of Chlamydia trachomatis from the human endocervix. Infect Immun 39:1491–1494PubMedGoogle Scholar
  27. Brunham RC, Maclean IW, Binns B, Peeling RW (1985) Chlamydia trachomatis: its role in tubal infertility. J Infect Dis 152:1275–1282PubMedCrossRefGoogle Scholar
  28. Brunham RC, Pourbohloul B, Mak S, White R, Rekart ML (2005) The unexpected impact of a Chlamydia trachomatis infection control program on susceptibility to reinfection. J Infect Dis 192:1836–1844PubMedCrossRefGoogle Scholar
  29. Brunham RC, Rekart ML (2008) The arrested immunity hypothesis and the epidemiology of chlamydia control. Sex Transm Dis 35:53–54PubMedCrossRefGoogle Scholar
  30. Buendia AJ, Sanchez J, Del Rio L, Garces B, Gallego MC, Caro MR, Bernabe A, Salinas J (1999) Differences in the immune response against ruminant chlamydial strains in a murine model. Vet Res 30:495–507PubMedGoogle Scholar
  31. Burton MJ, Mabey DC (2009) The global burden of trachoma: a review. PLoS Negl Trop Dis 3:e460PubMedCrossRefGoogle Scholar
  32. Burton MJ, Ramadhani A, Weiss HA, Hu V, Massae P, Burr SE, Shangali W, Holland MJ, Mabey DC, Bailey RL (2011) Active Trachoma Is Associated with Increased Conjunctival Expression of IL17A and Profibrotic Cytokines. Infect Immun 79:4977–4983PubMedCrossRefGoogle Scholar
  33. Buzoni-Gatel D, Bernard F, Andersen A, Rodolakis A (1990) Protective effect of polyclonal and monoclonal antibodies against abortion in mice infected by Chlamydia psittaci. Vaccine 8:342–346PubMedCrossRefGoogle Scholar
  34. Buzoni-Gatel D, Guilloteau L, Bernard F, Bernard S, Chardes T, Rocca A (1992) Protection against Chlamydia psittaci in mice conferred by Lyt-2+ T cells. Immunology 77:284–288PubMedGoogle Scholar
  35. Byrne GI, Rothermel CD (1983) Differential susceptibility of chlamydiae to exogenous fibroblast interferon. Infect Immun 39:1004–1005PubMedGoogle Scholar
  36. Caldwell HD, Wood H, Crane D, Bailey R, Jones RB, Mabey D, Maclean I, Mohammed Z, Peeling R, Roshick C, Schachter J, Solomon AW, Stamm WE, Suchland RJ, Taylor L, West SK, Quinn TC, Belland RJ, McClarty G (2003) Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates. J Clin Invest 111:1757–1769PubMedGoogle Scholar
  37. Campbell LA, Kuo CC (2004) Chlamydia pneumoniae–an infectious risk factor for atherosclerosis? Nat Rev Microbiol 2:23–32PubMedCrossRefGoogle Scholar
  38. Campbell LA, Patton DL, Moore DE, Cappuccio AL, Mueller BA, Wang SP (1993) Detection of Chlamydia trachomatis deoxyribonucleic acid in women with tubal infertility. Fertil Steril 59:45–50PubMedGoogle Scholar
  39. Carta F, Zanetti S, Pinna A, Sotgiu M, Fadda G (1994) The treatment and follow up of adult chlamydial ophthalmia. Br J Ophthalmol 78:206–208PubMedCrossRefGoogle Scholar
  40. Carter JD, Hudson AP (2010) The evolving story of Chlamydia-induced reactive arthritis. Curr Opin Rheumatol 22:424–430PubMedCrossRefGoogle Scholar
  41. CDC (2009) Sexually transmitted disease surveillance, 2008. U.S. Department of Health and Human Services, AtlantaGoogle Scholar
  42. Centers for Disease Control and Prevention (1997) Compendium of psittacosis (chlamydiosis) control. MMWR 46:RR-13Google Scholar
  43. Centers for Disease Control and Prevention (2000) Compendium of measures to control Chlamydia psittaci infection among humans (psittacosis) and pet birds (avian chlamydiosis). MMWR Recomm Rep 49:3–17Google Scholar
  44. Chakravortty D, Hensel M (2003) Inducible nitric oxide synthase and control of intracellular bacterial pathogens. Microbes Infect 5:621–627PubMedCrossRefGoogle Scholar
  45. Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, Kang HS, Ma L, Watowich SS, Jetten AM, Tian Q, Dong C (2009) Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30:576–587PubMedCrossRefGoogle Scholar
  46. Claman P, Honey L, Peeling RW, Jessamine P, Toye B (1997) The presence of serum antibody to the chlamydial heat shock protein (CHSP60) as a diagnostic test for tubal factor infertility. Fertil Steril 67:501–504PubMedCrossRefGoogle Scholar
  47. Coers J, Bernstein-Hanley I, Grotsky D, Parvanova I, Howard JC, Taylor GA, Dietrich WF, Starnbach MN (2008) Chlamydia muridarum evades growth restriction by the IFN-gamma-inducible host resistance factor Irgb10. J Immunol 180:6237–6245PubMedGoogle Scholar
  48. Coers J, Gondek DC, Olive AJ, Rohlfing A, Taylor GA, Starnbach MN (2011) Compensatory T cell responses in IRG-deficient mice prevent sustained Chlamydia trachomatis infections. PLoS Pathog 7:e1001346PubMedCrossRefGoogle Scholar
  49. Cohen CR, Sinei SS, Bukusi EA, Bwayo JJ, Holmes KK, Brunham RC (2000) Human leukocyte antigen class II DQ alleles associated with Chlamydia trachomatis tubal infertility. Obstet Gynecol 95:72–77PubMedCrossRefGoogle Scholar
  50. Cohen CR, Gichui J, Rukaria R, Sinei SS, Gaur LK, Brunham RC (2003) Immunogenetic correlates for Chlamydia trachomatis-associated tubal infertility. Obstet Gynecol 101:438–444PubMedCrossRefGoogle Scholar
  51. Cohen CR, Koochesfahani KM, Meier AS, Shen C, Karunakaran K, Ondondo B, Kinyari T, Mugo NR, Nguti R, Brunham RC (2005) Immunoepidemiologic profile of Chlamydia trachomatis infection: importance of heat-shock protein 60 and interferon- gamma. J Infect Dis 192:591–599PubMedCrossRefGoogle Scholar
  52. Cotter TW, Ramsey KH, Miranpuri GS, Poulsen CE, Byrne GI (1997) Dissemination of Chlamydia trachomatis chronic genital tract infection in gamma interferon gene knockout mice. Infect Immun 65:2145–2152PubMedGoogle Scholar
  53. Csonka GW (1965) Non-Gonococcal Urethritis. Br J Vener Dis 41:1–8PubMedGoogle Scholar
  54. Daoud A, Gloria CJ, Taningco G, Hammerschlag MR, Weiss S, Gelling M, Roblin PM, Joks R (2008) Minocycline treatment results in reduced oral steroid requirements in adult asthma. Allergy Asthma Proc 29:286–294PubMedCrossRefGoogle Scholar
  55. Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, Flynn BJ, Hoff ST, Andersen P, Reed SG, Morris SL, Roederer M, Seder RA (2007) Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 13:843–850PubMedCrossRefGoogle Scholar
  56. Darville T, O'Neill JM, Andrews CW Jr, Nagarajan UM, Stahl L, Ojcius DM (2003) Toll-like receptor-2, but not Toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection. J Immunol 171:6187–6197PubMedGoogle Scholar
  57. Dawson CR, Schachter J (1967) TRIC agent infections of the eye and genital tract. Am J Ophthalmol 63(Suppl):1288–1298PubMedGoogle Scholar
  58. de la Maza LM, Pal S, Khamesipour A, Peterson EM (1994) Intravaginal inoculation of mice with the Chlamydia trachomatis mouse pneumonitis biovar results in infertility. Infect Immun 62:2094–2097PubMedGoogle Scholar
  59. Dean D (1997) Chlamydia infections Chlamydia trachomatis. In: Connor DH, Chandler FW, Schwartz DA, Manz HJ, Lack EE (eds) Pathology of infectious diseases. Appleton & Lange, Stamford, pp 473–497Google Scholar
  60. Dean D, Suchland RJ, Stamm WE (2000) Evidence for long-term cervical persistence of Chlamydia trachomatis by omp1 genotyping. J Infect Dis 182:909–916PubMedCrossRefGoogle Scholar
  61. Debattista J, Timms P, Allan J (2002) Reduced levels of gamma-interferon secretion in response to chlamydial 60 kDa heat shock protein amongst women with pelvic inflammatory disease and a history of repeated Chlamydia trachomatis infections. Immunol Lett 81:205–210PubMedCrossRefGoogle Scholar
  62. Del Rio L, Buendia AJ, Sanchez J, Gallego MC, Caro MR, Ortega N, Seva J, Pallares FJ, Cuello F, Salinas J (2001) Endogenous interleukin-12 is not required for resolution of Chlamydophila abortus (Chlamydia psittaci serotype 1) infection in mice. Infect Immun 69:4808–4815PubMedCrossRefGoogle Scholar
  63. Derbigny WA, Kerr MS, Johnson RM (2005) Pattern recognition molecules activated by Chlamydia muridarum infection of cloned murine oviduct epithelial cell lines. J Immunol 175:6065–6075PubMedGoogle Scholar
  64. Derbigny WA, Johnson RM, Toomey KS, Ofner S, Jayarapu K (2010) The Chlamydia muridarum-induced IFN-beta response is TLR3-dependent in murine oviduct epithelial cells. J Immunol 185:6689–6697PubMedCrossRefGoogle Scholar
  65. Dinarello CA (1991) Interleukin-1 and interleukin-1 antagonism. Blood 77:1627–1652PubMedGoogle Scholar
  66. Ding AH, Nathan CF, Stuehr DJ (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 141:2407–2412PubMedGoogle Scholar
  67. Domeika M, Domeika K, Paavonen J, Mardh PA, Witkin SS (1998) Humoral immune response to conserved epitopes of Chlamydia trachomatis and human 60-kDa heat-shock protein in women with pelvic inflammatory disease. J Infect Dis 177:714–719PubMedCrossRefGoogle Scholar
  68. Donnelly RP, Kotenko SV (2010) Interferon-lambda: a new addition to an old family. J Interferon Cytokine Res 30:555–564PubMedCrossRefGoogle Scholar
  69. Donnelly RP, Sheikh F, Dickensheets H, Savan R, Young HA, Walter MR (2010) Interleukin-26: an IL-10-related cytokine produced by Th17 cells. Cytokine Growth Factor Rev 21:393–401PubMedCrossRefGoogle Scholar
  70. Dreses-Werringloer U, Bhuiyan M, Zhao Y, Gerard HC, Whittum-Hudson JA, Hudson AP (2009) Initial characterization of Chlamydophila (Chlamydia) pneumoniae cultured from the late-onset Alzheimer brain. Int J Med Microbiol 299:187–201PubMedCrossRefGoogle Scholar
  71. Dutta R, Jha R, Salhan S, Mittal A (2008) Chlamydia trachomatis-specific heat shock proteins 60 antibodies can serve as prognostic marker in secondary infertile women. Infection 36:374–378PubMedCrossRefGoogle Scholar
  72. Ebeling J, Dutow P, Janik K, Sommer K, Glage S, Tummler B, Munder S, Klos A (2010) C3-/- mice are partially protected against C. psittaci in early phase of lung infection. Mol Immunol 47:2267CrossRefGoogle Scholar
  73. Eckert LO, Hawes SE, Wolner-Hanssen P, Money DM, Peeling RW, Brunham RC, Stevens CE, Eschenbach DA, Stamm WE (1997) Prevalence and correlates of antibody to chlamydial heat shock protein in women attending sexually transmitted disease clinics and women with confirmed pelvic inflammatory disease. J Infect Dis 175:1453–1458PubMedCrossRefGoogle Scholar
  74. Ekerhovd E, Brannstrom M, Weijdegard B, Norstrom A (1999) Localization of nitric oxide synthase and effects of nitric oxide donors on the human Fallopian tube. Mol Hum Reprod 5:1040–1047PubMedCrossRefGoogle Scholar
  75. Ekman MR, Grayston JT, Visakorpi R, Kleemola M, Kuo CC, Saikku P (1993) An epidemic of infections due to Chlamydia pneumoniae in military conscripts. Clin Infect Dis 17:420–425PubMedCrossRefGoogle Scholar
  76. el-Asrar AM, Van den Oord JJ, Geboes K, Missotten L, Emarah MH, Desmet V (1989a) Immunopathology of trachomatous conjunctivitis. Br J Ophthalmol 73:276–282PubMedCrossRefGoogle Scholar
  77. el-Asrar AM, Emarah MH, Van den Oord JJ, Geboes K, Desmet V, Missotten L (1989b) Conjunctival epithelial cells infected with Chlamydia trachomatis express HLA-DR antigens. Br J Ophthalmol 73:399–400PubMedCrossRefGoogle Scholar
  78. Emerson PM, Lindsay SW, Alexander N, Bah M, Dibba SM, Faal HB, Lowe KO, McAdam KP, Ratcliffe AA, Walraven GE, Bailey RL (2004) Role of flies and provision of latrines in trachoma control: cluster-randomised controlled trial. Lancet 363:1093–1098PubMedCrossRefGoogle Scholar
  79. Erridge C, Pridmore A, Eley A, Stewart J, Poxton IR (2004) Lipopolysaccharides of Bacteroides fragilis, Chlamydia trachomatis and Pseudomonas aeruginosa signal via toll-like receptor 2. J Med Microbiol 53:735–740PubMedCrossRefGoogle Scholar
  80. Farris CM, Morrison SG, Morrison RP (2010) CD4+ T cells and antibody are required for optimal major outer membrane protein vaccine-induced immunity to Chlamydia muridarum genital infection. Infect Immun 78:4374–4383PubMedCrossRefGoogle Scholar
  81. Fernandez-Obregon A, Patton DL (2007) The role of Chlamydia pneumoniae in the etiology of acne rosacea: response to the use of oral azithromycin. Cutis 79:163–167PubMedGoogle Scholar
  82. Ficarra M, Ibana JS, Poretta C, Ma L, Myers L, Taylor SN, Greene S, Smith B, Hagensee M, Martin DH, Quayle AJ (2008) A distinct cellular profile is seen in the human endocervix during Chlamydia trachomatis infection. Am J Reprod Immunol 60:415–425PubMedCrossRefGoogle Scholar
  83. Frazer LC, O'Connell CM, Andrews CW Jr, Zurenski MA, Darville T (2011) Enhanced neutrophil longevity and recruitment contribute to the severity of oviduct pathology during Chlamydia muridarum infection. Infect Immun 79:4029–4041PubMedCrossRefGoogle Scholar
  84. Friis-Moller N, Sabin CA, Weber R, d'Arminio Monforte A, El-Sadr WM, Reiss P, Thiebaut R, Morfeldt L, De Wit S, Pradier C, Calvo G, Law MG, Kirk O, Phillips AN, Lundgren JD (2003) Combination antiretroviral therapy and the risk of myocardial infarction. N Engl J Med 349:1993–2003PubMedCrossRefGoogle Scholar
  85. Gaydos CA, Fowler CL, Gill VJ, Eiden JJ, Quinn TC (1993) Detection of Chlamydia pneumoniae by polymerase chain reaction-enzyme immunoassay in an immunocompromised population. Clin Infect Dis 17:718–723PubMedCrossRefGoogle Scholar
  86. Gaydos CA, Summersgill JT, Sahney NN, Ramirez JA, Quinn TC (1996) Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells. Infect Immun 64:1614–1620PubMedGoogle Scholar
  87. Geisler WM (2010) Duration of untreated, uncomplicated Chlamydia trachomatis genital infection and factors associated with chlamydia resolution: a review of human studies. J Infect Dis 201(Suppl 2):S104–S113PubMedCrossRefGoogle Scholar
  88. Geisler WM, Suchland RJ, Whittington WL, Stamm WE (2001) Quantitative culture of Chlamydia trachomatis: relationship of inclusion-forming units produced in culture to clinical manifestations and acute inflammation in urogenital disease. J Infect Dis 184:1350–1354PubMedCrossRefGoogle Scholar
  89. Gervassi AL, Probst P, Stamm WE, Marrazzo J, Grabstein KH, Alderson MR (2003) Functional characterization of class Ia- and non-class Ia-restricted Chlamydia-reactive CD8+ T cell responses in humans. J Immunol 171:4278–4286PubMedGoogle Scholar
  90. Gieffers J, Fullgraf H, Jahn J, Klinger M, Dalhoff K, Katus HA, Solbach W, Maass M (2001) Chlamydia pneumoniae infection in circulating human monocytes is refractory to antibiotic treatment. Circulation 103:351–356PubMedCrossRefGoogle Scholar
  91. Glanville AR, Gencay M, Tamm M, Chhajed P, Plit M, Hopkins P, Aboyoun C, Roth M, Malouf M (2005) Chlamydia pneumoniae infection after lung transplantation. J Heart Lung Transplant 24:131–136PubMedCrossRefGoogle Scholar
  92. Golding H, Singer A (1985) Specificity, phenotype, and precursor frequency of primary cytolytic T lymphocytes specific for class II major histocompatibility antigens. J Immunol 135:1610–1615PubMedGoogle Scholar
  93. Golub LM, Goodson JM, Lee HM, Vidal AM, McNamara TF, Ramamurthy NS (1985) Tetracyclines inhibit tissue collagenases. Effects of ingested low-dose and local delivery systems. J Periodontol 56:93–97PubMedCrossRefGoogle Scholar
  94. Gondek DC, Roan NR, Starnbach MN (2009) T cell responses in the absence of IFN-gamma exacerbate uterine infection with Chlamydia trachomatis. J Immunol 183:1313–1319PubMedCrossRefGoogle Scholar
  95. Goodall JC, Yeo G, Huang M, Raggiaschi R, Gaston JS (2001) Identification of Chlamydia trachomatis antigens recognized by human CD4+ T lymphocytes by screening an expression library. Eur J Immunol 31:1513–1522PubMedCrossRefGoogle Scholar
  96. Gosbell IB, Ross AD, Turner IB (1999) Chlamydia psittaci infection and reinfection in a veterinarian. Aust Vet J 77:511–513PubMedCrossRefGoogle Scholar
  97. Gray GC, Hyams KC, Wang SP, Grayston JT (1994) Mycoplasma pneumoniae and Chlamydia pneumoniae strain TWAR infections in U.S. Marine Corps recruits. Mil Med 159:292–294PubMedGoogle Scholar
  98. Grayston JT, Wang SP, Yeh LJ, Kuo CC (1985) Importance of reinfection in the pathogenesis of trachoma. Rev Infect Dis 7:717–725PubMedCrossRefGoogle Scholar
  99. Grayston JT, Campbell LA, Kuo CC, Mordhorst CH, Saikku P, Thom DH, Wang SP (1990) A new respiratory tract pathogen: Chlamydia pneumoniae strain TWAR. J Infect Dis 161:618–625PubMedCrossRefGoogle Scholar
  100. Grayston JT, Kronmal RA, Jackson LA, Parisi AF, Muhlestein JB, Cohen JD, Rogers WJ, Crouse JR, Borrowdale SL, Schron E, Knirsch C (2005) Azithromycin for the secondary prevention of coronary events. N Engl J Med 352:1637–1645PubMedCrossRefGoogle Scholar
  101. Haggerty CL, Gottlieb SL, Taylor BD, Low N, Xu F, Ness RB (2010) Risk of sequelae after Chlamydia trachomatis genital infection in women. J Infect Dis 201(Suppl 2):S134–S155PubMedCrossRefGoogle Scholar
  102. Hahn DL, Dodge RW, Golubjatnikov R (1991) Association of Chlamydia pneumoniae (strain TWAR) infection with wheezing, asthmatic bronchitis, and adult-onset asthma. JAMA 266:225–230PubMedCrossRefGoogle Scholar
  103. Halme S, Latvala J, Karttunen R, Palatsi I, Saikku P, Surcel HM (2000) Cell-mediated immune response during primary Chlamydia pneumoniae infection. Infect Immun 68:7156–7158PubMedCrossRefGoogle Scholar
  104. Hammerschlag MR, Chirgwin K, Roblin PM, Gelling M, Dumornay W, Mandel L, Smith P, Schachter J (1992) Persistent infection with Chlamydia pneumoniae following acute respiratory illness. Clin Infect Dis 14:178–182PubMedCrossRefGoogle Scholar
  105. Hammond CJ, Hallock LR, Howanski RJ, Appelt DM, Little CS, Balin BJ (2010) Immunohistological detection of Chlamydia pneumoniae in the Alzheimer's disease brain. BMC Neurosci 11:121PubMedCrossRefGoogle Scholar
  106. Harris M, Clark J, Coote N, Fletcher P, Harnden A, McKean M, Thomson A (2011) British Thoracic Society guidelines for the management of community acquired pneumonia in children: update, 2011. Thorax 66(Suppl 2):ii1–ii23PubMedCrossRefGoogle Scholar
  107. Hasan ZN (2011) Association of Chlamydia pneumoniae serology and ischemic stroke. South Med J 104:319–321PubMedCrossRefGoogle Scholar
  108. Hawkins RA, Rank RG, Kelly KA (2002) A Chlamydia trachomatis-specific Th2 clone does not provide protection against a genital infection and displays reduced trafficking to the infected genital mucosa. Infect Immun 70:5132–5139PubMedCrossRefGoogle Scholar
  109. He X, Nair A, Mekasha S, Alroy J, O'Connell CM, Ingalls RR (2011) Enhanced virulence of Chlamydia muridarum respiratory infections in the absence of TLR2 activation. PLoS One 6:e20846PubMedCrossRefGoogle Scholar
  110. Hillis SD, Owens LM, Marchbanks PA, Amsterdam LF, Mac Kenzie WR (1997) Recurrent chlamydial infections increase the risks of hospitalization for ectopic pregnancy and pelvic inflammatory disease. Am J Obstet Gynecol 176:103–107PubMedCrossRefGoogle Scholar
  111. Holland MJ, Bailey RL, Hayes LJ, Whittle HC, Mabey DC (1993) Conjunctival scarring in trachoma is associated with depressed cell-mediated immune responses to chlamydial antigens. J Infect Dis 168:1528–1531PubMedCrossRefGoogle Scholar
  112. Holmes KK, Handsfield HH, Wang SP, Wentworth BB, Turck M, Anderson JB, Alexander ER (1975) Etiology of nongonococcal urethritis. N Engl J Med 292:1199–1205PubMedCrossRefGoogle Scholar
  113. Hughes C, Maharg P, Rosario P, Herrell M, Bratt D, Salgado J, Howard D (1997) Possible nosocomial transmission of psittacosis. Infect Control Hosp Epidemiol 18:165–168PubMedCrossRefGoogle Scholar
  114. Huseby ES, Crawford F, White J, Kappler J, Marrack P (2003) Negative selection imparts peptide specificity to the mature T cell repertoire. Proc Natl Acad Sci USA 100:11565–11570PubMedCrossRefGoogle Scholar
  115. Igietseme JU, Ramsey KH, Magee DM, Williams DM, Kincy TJ, Rank RG (1993) Resolution of murine chlamydial genital infection by the adoptive transfer of a biovar-specific, Th1 lymphocyte clone. Reg Immunol 5:317–324PubMedGoogle Scholar
  116. Igietseme JU, Magee DM, Williams DM, Rank RG (1994a) Role for CD8+ T cells in antichlamydial immunity defined by Chlamydia-specific T-lymphocyte clones. Infect Immun 62:5195–5197PubMedGoogle Scholar
  117. Igietseme JU, Wyrick PB, Goyeau D, Rank RG (1994b) An in vitro model for immune control of chlamydial growth in polarized epithelial cells. Infect Immun 62:3528–3535PubMedGoogle Scholar
  118. Igietseme JU, Uriri IM, Hawkins R, Rank RG (1996) Integrin-mediated epithelial-T cell interaction enhances nitric oxide production and increased intracellular inhibition of Chlamydia. J Leukoc Biol 59:656–662PubMedGoogle Scholar
  119. Igietseme JU, Uriri IM, Chow M, Abe E, Rank RG (1997) Inhibition of intracellular multiplication of human strains of Chlamydia trachomatis by nitric oxide. Biochem Biophys Res Commun 232:595–601PubMedCrossRefGoogle Scholar
  120. Igietseme JU, Perry LL, Ananaba GA, Uriri IM, Ojior OO, Kumar SN, Caldwell HD (1998) Chlamydial infection in inducible nitric oxide synthase knockout mice. Infect Immun 66:1282–1286PubMedGoogle Scholar
  121. Igietseme JU, He Q, Joseph K, Eko FO, Lyn D, Ananaba G, Campbell A, Bandea C, Black CM (2009) Role of T lymphocytes in the pathogenesis of Chlamydia disease. J Infect Dis 200:926–934PubMedCrossRefGoogle Scholar
  122. Imtiaz MT, Schripsema JH, Sigar IM, Kasimos JN, Ramsey KH (2006) Inhibition of matrix metalloproteinases protects mice from ascending infection and chronic disease manifestations resulting from urogenital Chlamydia muridarum infection. Infect Immun 74:5513–5521PubMedCrossRefGoogle Scholar
  123. Isakson PC, Pure E, Vitetta ES, Krammer PH (1982) T cell-derived B cell differentiation factor(s). Effect on the isotype switch of murine B cells. J Exp Med 155:734–748PubMedCrossRefGoogle Scholar
  124. James SP, Graeff AS, Zeitz M, Kappus E, Quinn TC (1987) Cytotoxic and immunoregulatory function of intestinal lymphocytes in Chlamydia trachomatis proctitis of nonhuman primates. Infect Immun 55:1137–1143PubMedGoogle Scholar
  125. Jayarapu K, Kerr MS, Katschke A, Johnson RM (2009) Chlamydia muridarum-specific CD4 T-cell clones recognize infected reproductive tract epithelial cells in an interferon-dependent fashion. Infect Immun 77:4469–4479PubMedCrossRefGoogle Scholar
  126. Jayarapu K, Kerr M, Ofner S, Johnson RM (2010) Chlamydia-specific CD4 T cell clones control Chlamydia muridarum replication in epithelial cells by nitric oxide-dependent and -independent mechanisms. J Immunol 185:6911–6920PubMedCrossRefGoogle Scholar
  127. Jespersen CM, Als-Nielsen B, Damgaard M, Hansen JF, Hansen S, Helo OH, Hildebrandt P, Hilden J, Jensen GB, Kastrup J, Kolmos HJ, Kjoller E, Lind I, Nielsen H, Petersen L, Gluud C (2006) Randomised placebo controlled multicentre trial to assess short term clarithromycin for patients with stable coronary heart disease: CLARICOR trial. BMJ 332:22–27PubMedCrossRefGoogle Scholar
  128. Johnson RM (2004) Murine oviduct epithelial cell cytokine responses to Chlamydia muridarum infection include interleukin-12-p70 secretion. Infect Immun 72:3951–3960PubMedCrossRefGoogle Scholar
  129. Johnson FW, Matheson BA, Williams H, Laing AG, Jandial V, Davidson-Lamb R, Halliday GJ, Hobson D, Wong SY, Hadley KM et al (1985) Abortion due to infection with Chlamydia psittaci in a sheep farmer’s wife. Br Med J (Clin Res Ed) 290:592–594CrossRefGoogle Scholar
  130. Johnson RM, Kerr MS, Slaven JE (2012) Plac8-dependent and iNOS-dependent mechanisms clear Chlamydia muridarum infections from the genital tract. J Immunol 188(4):1896–1904PubMedCrossRefGoogle Scholar
  131. Johnston SL, Blasi F, Black PN, Martin RJ, Farrell DJ, Nieman RB (2006) The effect of telithromycin in acute exacerbations of asthma. N Engl J Med 354:1589–1600PubMedCrossRefGoogle Scholar
  132. Joyee AG, Qiu H, Wang S, Fan Y, Bilenki L, Yang X (2007) Distinct NKT cell subsets are induced by different Chlamydia species leading to differential adaptive immunity and host resistance to the infections. J Immunol 178:1048–1058PubMedGoogle Scholar
  133. Joyee AG, Qiu H, Fan Y, Wang S, Yang X (2008) Natural killer T cells are critical for dendritic cells to induce immunity in Chlamydial pneumonia. Am J Respir Crit Care Med 178:745–756PubMedCrossRefGoogle Scholar
  134. Jupelli M, Selby DM, Guentzel MN, Chambers JP, Forsthuber TG, Zhong G, Murthy AK, Arulanandam BP (2010) The contribution of interleukin-12/interferon-gamma axis in protection against neonatal pulmonary Chlamydia muridarum challenge. J Interferon Cytokine Res 30:407–415PubMedCrossRefGoogle Scholar
  135. Juvonen J, Laurila A, Juvonen T, Alakarppa H, Surcel HM, Lounatmaa K, Kuusisto J, Saikku P (1997) Detection of Chlamydia pneumoniae in human nonrheumatic stenotic aortic valves. J Am Coll Cardiol 29:1054–1059PubMedCrossRefGoogle Scholar
  136. Kari L, Whitmire WM, Olivares-Zavaleta N, Goheen MM, Taylor LD, Carlson JH, Sturdevant GL, Lu C, Bakios LE, Randall LB, Parnell MJ, Zhong G, Caldwell HD (2011) A live-attenuated chlamydial vaccine protects against trachoma in nonhuman primates. J Exp Med 208:2217–2223PubMedCrossRefGoogle Scholar
  137. Karimi ST, Schloemer RH, Wilde CE 3rd (1989) Accumulation of chlamydial lipopolysaccharide antigen in the plasma membranes of infected cells. Infect Immun 57:1780–1785PubMedGoogle Scholar
  138. Kelly KA, Wiley D, Wiesmeier E, Briskin M, Butch A, Darville T (2009) The combination of the gastrointestinal integrin (alpha4beta7) and selectin ligand enhances T-Cell migration to the reproductive tract during infection with Chlamydia trachomatis. Am J Reprod Immunol 61:446–452PubMedCrossRefGoogle Scholar
  139. Kent CK, Chaw JK, Wong W, Liska S, Gibson S, Hubbard G, Klausner JD (2005) Prevalence of rectal, urethral, and pharyngeal chlamydia and gonorrhea detected in 2 clinical settings among men who have sex with men: San Francisco, California, 2003. Clin Infect Dis 41:67–74PubMedCrossRefGoogle Scholar
  140. Kim SH, Han SY, Azam T, Yoon DY, Dinarello CA (2005) Interleukin-32: a cytokine and inducer of TNFalpha. Immunity 22:131–142PubMedGoogle Scholar
  141. Kinnunen AH, Surcel HM, Lehtinen M, Karhukorpi J, Tiitinen A, Halttunen M, Bloigu A, Morrison RP, Karttunen R, Paavonen J (2002a) HLA DQ alleles and interleukin-10 polymorphism associated with Chlamydia trachomatis-related tubal factor infertility: a case-control study. Hum Reprod 17:2073–2078PubMedCrossRefGoogle Scholar
  142. Kinnunen A, Molander P, Morrison R, Lehtinen M, Karttunen R, Tiitinen A, Paavonen J, Surcel HM (2002b) Chlamydial heat shock protein 60–specific T cells in inflamed salpingeal tissue. Fertil Steril 77:162–166PubMedCrossRefGoogle Scholar
  143. Kinnunen A, Surcel HM, Halttunen M, Tiitinen A, Morrison RP, Morrison SG, Koskela P, Lehtinen M, Paavonen J (2003) Chlamydia trachomatis heat shock protein-60 induced interferon-gamma and interleukin-10 production in infertile women. Clin Exp Immunol 131:299–303PubMedCrossRefGoogle Scholar
  144. Kurz H, Gopfrich H, Wabnegger L, Apfalter P (2009) Role of Chlamydophila pneumoniae in children hospitalized for community-acquired pneumonia in Vienna, Austria. Pediatr Pulmonol 44:873–876PubMedCrossRefGoogle Scholar
  145. Lacy HM, Bowlin AK, Hennings L, Scurlock AM, Nagarajan UM, Rank RG (2011) Essential role for neutrophils in pathogenesis and adaptive immunity in Chlamydia caviae ocular infections. Infect Immun 79:1889–1897PubMedCrossRefGoogle Scholar
  146. Laga M, Manoka A, Kivuvu M, Malele B, Tuliza M, Nzila N, Goeman J, Behets F, Batter V, Alary M et al (1993) Non-ulcerative sexually transmitted diseases as risk factors for HIV-1 transmission in women: results from a cohort study. AIDS 7:95–102PubMedCrossRefGoogle Scholar
  147. Lanham JG, Doyle DV (1984) Reactive arthritis following psittacosis. Br J Rheumatol 23:225–226PubMedCrossRefGoogle Scholar
  148. LaVerda D, Albanese LN, Ruther PE, Morrison SG, Morrison RP, Ault KA, Byrne GI (2000) Seroreactivity to Chlamydia trachomatis Hsp10 correlates with severity of human genital tract disease. Infect Immun 68:303–309PubMedCrossRefGoogle Scholar
  149. Ledford JG, Kovarova M, Koller BH (2007) Impaired host defense in mice lacking ONZIN. J Immunol 178:5132–5143PubMedGoogle Scholar
  150. Lee KJ, Kwon SJ, Choi BR, Bae SM, Kishimoto T, Ando S, Mashida C, Lee YH, Oh HB, Kim KS (2006) Outbreak of respiratory tract infections on an islet in Korea: possible Chlamydia pneumoniae infection. Jpn J Infect Dis 59:294–298PubMedGoogle Scholar
  151. Lee HY, Schripsema JH, Sigar IM, Murray CM, Lacy SR, Ramsey KH (2010) A link between neutrophils and chronic disease manifestations of Chlamydia muridarum urogenital infection of mice. FEMS Immunol Med Microbiol 59:108–116PubMedCrossRefGoogle Scholar
  152. Li W, Murthy AK, Guentzel MN, Seshu J, Forsthuber TG, Zhong G, Arulanandam BP (2008) Antigen-specific CD4+ T cells produce sufficient IFN-gamma to mediate robust protective immunity against genital Chlamydia muridarum infection. J Immunol 180:3375–3382PubMedGoogle Scholar
  153. Li W, Murthy AK, Guentzel MN, Chambers JP, Forsthuber TG, Seshu J, Zhong G, Arulanandam BP (2010) Immunization with a combination of integral chlamydial antigens and a defined secreted protein induces robust immunity against genital chlamydial challenge. Infect Immun 78:3942–3949PubMedCrossRefGoogle Scholar
  154. Lichtenwalner AB, Patton DL, Van Voorhis WC, Sweeney YT, Kuo CC (2004) Heat shock protein 60 is the major antigen which stimulates delayed-type hypersensitivity reaction in the macaque model of Chlamydia trachomatis salpingitis. Infect Immun 72:1159–1161PubMedCrossRefGoogle Scholar
  155. Lim WS, Macfarlane JT, Boswell TC, Harrison TG, Rose D, Leinonen M, Saikku P (2001) Study of community acquired pneumonia aetiology (SCAPA) in adults admitted to hospital: implications for management guidelines. Thorax 56:296–301PubMedCrossRefGoogle Scholar
  156. Liu AY, Destoumieux D, Wong AV, Park CH, Valore EV, Liu L, Ganz T (2002) Human beta-defensin-2 production in keratinocytes is regulated by interleukin-1, bacteria, and the state of differentiation. J Invest Dermatol 118:275–281PubMedCrossRefGoogle Scholar
  157. Low N (2004) Current status of chlamydia screening in Europe. Euro Surveill 8(41). Avilable online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=2566
  158. Lui G, Ip M, Lee N, Rainer TH, Man SY, Cockram CS, Antonio GE, Ng MH, Chan MH, Chau SS, Mak P, Chan PK, Ahuja AT, Sung JJ, Hui DS (2009) Role of 'atypical pathogens' among adult hospitalized patients with community-acquired pneumonia. Respirology 14:1098–1105PubMedCrossRefGoogle Scholar
  159. Lundgren M, Persson U, Larsson P, Magnusson C, Smith CI, Hammarstrom L, Severinson E (1989) Interleukin 4 induces synthesis of IgE and IgG4 in human B cells. Eur J Immunol 19:1311–1315PubMedCrossRefGoogle Scholar
  160. Mabey D, Peeling RW (2002) Lymphogranuloma venereum. Sex Transm Infect 78:90–92PubMedCrossRefGoogle Scholar
  161. Macfarlane JT, Macrae AD (1983) Psittacosis. Br Med Bull 39:163–167PubMedGoogle Scholar
  162. MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350PubMedCrossRefGoogle Scholar
  163. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, Dowell SF, File TM Jr, Musher DM, Niederman MS, Torres A, Whitney CG (2007) Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 44(Suppl 2):S27–S72PubMedCrossRefGoogle Scholar
  164. Matyszak MK, Gaston JS (2004) Chlamydia trachomatis-specific human CD8+ T cells show two patterns of antigen recognition. Infect Immun 72:4357–4367PubMedCrossRefGoogle Scholar
  165. McCafferty MC, Maley SW, Entrican G, Buxton D (1994) The importance of interferon-gamma in an early infection of Chlamydia psittaci in mice. Immunology 81:631–636PubMedGoogle Scholar
  166. Meijer A, Brandenburg A, de Vries J, Beentjes J, Roholl P, Dercksen D (2004) Chlamydophila abortus infection in a pregnant woman associated with indirect contact with infected goats. Eur J Clin Microbiol Infect Dis 23:487–490PubMedCrossRefGoogle Scholar
  167. Min-Oo G, Lindqvist L, Vaglenov A, Wang C, Fortin P, Li Y, Kaltenboeck B, Gros P (2008) Genetic control of susceptibility to pulmonary infection with Chlamydia pneumoniae in the mouse. Genes Immun 9:383–388PubMedCrossRefGoogle Scholar
  168. Miyairi I, Tatireddigari VR, Mahdi OS, Rose LA, Belland RJ, Lu L, Williams RW, Byrne GI (2007) The p47 GTPases Iigp2 and Irgb10 regulate innate immunity and inflammation to murine Chlamydia psittaci infection. J Immunol 179:1814–1824PubMedGoogle Scholar
  169. Mohan R (1984) Epidemiologic and laboratory observations of Chlamydia psittaci infection in pet birds. J Am Vet Med Assoc 184:1372–1374PubMedGoogle Scholar
  170. Molano M, Meijer CJ, Weiderpass E, Arslan A, Posso H, Franceschi S, Ronderos M, Munoz N, van den Brule AJ (2005) The natural course of Chlamydia trachomatis infection in asymptomatic Colombian women: a 5-year follow-up study. J Infect Dis 191:907–916PubMedCrossRefGoogle Scholar
  171. Moore T, Ananaba GA, Bolier J, Bowers S, Belay T, Eko FO, Igietseme JU (2002) Fc receptor regulation of protective immunity against Chlamydia trachomatis. Immunology 105:213–221PubMedCrossRefGoogle Scholar
  172. Morre SA, van den Brule AJ, Rozendaal L, Boeke AJ, Voorhorst FJ, de Blok S, Meijer CJ (2002) The natural course of asymptomatic Chlamydia trachomatis infections: 45% clearance and no development of clinical PID after one-year follow-up. Int J STD AIDS 13(Suppl 2):12–18PubMedCrossRefGoogle Scholar
  173. Morrison RP, Caldwell HD (2002) Immunity to murine chlamydial genital infection. Infect Immun 70:2741–2751PubMedCrossRefGoogle Scholar
  174. Morrison SG, Morrison RP (2000) In situ analysis of the evolution of the primary immune response in murine Chlamydia trachomatis genital tract infection. Infect Immun 68:2870–2879PubMedCrossRefGoogle Scholar
  175. Morrison SG, Morrison RP (2001) Resolution of secondary Chlamydia trachomatis genital tract infection in immune mice with depletion of both CD4+ and CD8+ T cells. Infect Immun 69:2643–2649PubMedCrossRefGoogle Scholar
  176. Morrison SG, Morrison RP (2005a) The protective effect of antibody in immunity to murine chlamydial genital tract reinfection is independent of immunoglobulin A. Infect Immun 73:6183–6186PubMedCrossRefGoogle Scholar
  177. Morrison SG, Morrison RP (2005b) A predominant role for antibody in acquired immunity to chlamydial genital tract reinfection. J Immunol 175:7536–7542PubMedGoogle Scholar
  178. Morrison RP, Lyng K, Caldwell HD (1989) Chlamydial disease pathogenesis. Ocular hypersensitivity elicited by a genus-specific 57-kD protein. J Exp Med 169:663–675PubMedCrossRefGoogle Scholar
  179. Morrison RP, Feilzer K, Tumas DB (1995) Gene knockout mice establish a primary protective role for major histocompatibility complex class II-restricted responses in Chlamydia trachomatis genital tract infection. Infect Immun 63:4661–4668PubMedGoogle Scholar
  180. Morrison SG, Farris CM, Sturdevant GL, Whitmire WM, Morrison RP (2011) Murine Chlamydia trachomatis genital infection is unaltered by depletion of CD4+ T cells and diminished adaptive immunity. J Infect Dis 203:1120–1128PubMedCrossRefGoogle Scholar
  181. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357PubMedGoogle Scholar
  182. Moulder JW (1966) The relation of the psittacosis group (Chlamydiae) to bacteria and viruses. Annu Rev Microbiol 20:107–130PubMedCrossRefGoogle Scholar
  183. Muhlestein JB, Anderson JL, Carlquist JF, Salunkhe K, Horne BD, Pearson RR, Bunch TJ, Allen A, Trehan S, Nielson C (2000) Randomized secondary prevention trial of azithromycin in patients with coronary artery disease: primary clinical results of the ACADEMIC study. Circulation 102:1755–1760PubMedCrossRefGoogle Scholar
  184. Murthy AK, Chambers JP, Meier PA, Zhong G, Arulanandam BP (2007) Intranasal vaccination with a secreted chlamydial protein enhances resolution of genital Chlamydia muridarum infection, protects against oviduct pathology, and is highly dependent upon endogenous gamma interferon production. Infect Immun 75:666–676PubMedCrossRefGoogle Scholar
  185. Murthy AK, Li W, Chaganty BK, Kamalakaran S, Guentzel MN, Seshu J, Forsthuber TG, Zhong G, Arulanandam BP (2011) Tumor necrosis factor alpha production from CD8+ T cells mediates oviduct pathological sequelae following primary genital Chlamydia muridarum infection. Infect Immun 79:2928–2935PubMedCrossRefGoogle Scholar
  186. Myers GS, Mathews SA, Eppinger M, Mitchell C, O'Brien KK, White OR, Benahmed F, Brunham RC, Read TD, Ravel J, Bavoil PM, Timms P (2009) Evidence that human Chlamydia pneumoniae was zoonotically acquired. J Bacteriol 191:7225–7233PubMedCrossRefGoogle Scholar
  187. Nagarajan UM, Ojcius DM, Stahl L, Rank RG, Darville T (2005) Chlamydia trachomatis induces expression of IFN-gamma-inducible protein 10 and IFN-beta independent of TLR2 and TLR4, but largely dependent on MyD88. J Immunol 175:450–460PubMedGoogle Scholar
  188. Nagarajan UM, Prantner D, Sikes JD, Andrews CW Jr, Goodwin AM, Nagarajan S, Darville T (2008) Type I interferon signaling exacerbates Chlamydia muridarum genital infection in a murine model. Infect Immun 76:4642–4648PubMedCrossRefGoogle Scholar
  189. Nagarajan UM, Sikes J, Prantner D, Andrews CW Jr, Frazer L, Goodwin A, Snowden JN, Darville T (2011) MyD88 deficiency leads to decreased NK cell gamma interferon production and T cell recruitment during Chlamydia muridarum genital tract infection, but a predominant Th1 response and enhanced monocytic inflammation are associated with infection resolution. Infect Immun 79:486–498PubMedCrossRefGoogle Scholar
  190. Nakashima K, Tanaka T, Kramer MH, Takahashi H, Ohyama T, Kishimoto T, Toshima H, Miwa S, Nomura A, Tsumura N, Ouchi K, Okabe N (2006) Outbreak of Chlamydia pneumoniae infection in a Japanese nursing home, 1999-2000. Infect Control Hosp Epidemiol 27:1171–1177PubMedCrossRefGoogle Scholar
  191. Nelson DE, Virok DP, Wood H, Roshick C, Johnson RM, Whitmire WM, Crane DD, Steele-Mortimer O, Kari L, McClarty G, Caldwell HD (2005) Chlamydial IFN-{gamma} immune evasion is linked to host infection tropism. Proc Natl Acad Sci USA 102:10658–10663PubMedCrossRefGoogle Scholar
  192. Ness RB, Markovic N, Carlson CL, Coughlin MT (1997) Do men become infertile after having sexually transmitted urethritis? An epidemiologic examination. Fertil Steril 68:205–213PubMedCrossRefGoogle Scholar
  193. Nieuwenhuis RF, Ossewaarde JM, Gotz HM, Dees J, Thio HB, Thomeer MG, den Hollander JC, Neumann MH, van der Meijden WI (2004) Resurgence of lymphogranuloma venereum in Western Europe: an outbreak of Chlamydia trachomatis serovar l2 proctitis in The Netherlands among men who have sex with men. Clin Infect Dis 39:996–1003PubMedCrossRefGoogle Scholar
  194. Novy FG (1935) Lymphogranuloma Inguinale: Report of a Case Originating in Northern California. Cal West Med 42:149–154PubMedGoogle Scholar
  195. O'Connell CM, Ingalls RR, Andrews CW Jr, Scurlock AM, Darville T (2007) Plasmid-deficient Chlamydia muridarum fail to induce immune pathology and protect against oviduct disease. J Immunol 179:4027–4034PubMedGoogle Scholar
  196. O'Connor CM, Dunne MW, Pfeffer MA, Muhlestein JB, Yao L, Gupta S, Benner RJ, Fisher MR, Cook TD (2003) Azithromycin for the secondary prevention of coronary heart disease events: the WIZARD study: a randomized controlled trial. JAMA 290:1459–1466PubMedCrossRefGoogle Scholar
  197. Ortiz L, Demick KP, Petersen JW, Polka M, Rudersdorf RA, Van der Pol B, Jones R, Angevine M, DeMars R (1996) Chlamydia trachomatis major outer membrane protein (MOMP) epitopes that activate HLA class II-restricted T cells from infected humans. J Immunol 157:4554–4567PubMedGoogle Scholar
  198. Paavonen J, Eggert-Kruse W (1999) Chlamydia trachomatis: impact on human reproduction. Hum Reprod Update 5:433–447PubMedCrossRefGoogle Scholar
  199. Paavonen J, Lehtinen M (1996) Chlamydial pelvic inflammatory disease. Hum Reprod Update 2:519–529PubMedCrossRefGoogle Scholar
  200. Paguirigan AM, Byrne GI, Becht S, Carlin JM (1994) Cytokine-mediated indoleamine 2,3-dioxygenase induction in response to Chlamydia infection in human macrophage cultures. Infect Immun 62:1131–1136PubMedGoogle Scholar
  201. Pal S, Peterson EM, de la Maza LM (2005) Vaccination with the Chlamydia trachomatis major outer membrane protein can elicit an immune response as protective as that resulting from inoculation with live bacteria. Infect Immun 73:8153–8160PubMedCrossRefGoogle Scholar
  202. Paludan SR, Malmgaard L, Ellermann-Eriksen S, Bosca L, Mogensen SC (2001) Interferon (IFN)-gamma and Herpes simplex virus/tumor necrosis factor-alpha synergistically induce nitric oxide synthase 2 in macrophages through cooperative action of nuclear factor-kappa B and IFN regulatory factor-1. Eur Cytokine Netw 12:297–308PubMedGoogle Scholar
  203. Patton DL, Askienazy-Elbhar M, Henry-Suchet J, Campbell LA, Cappuccio A, Tannous W, Wang SP, Kuo CC (1994) Detection of Chlamydia trachomatis in fallopian tube tissue in women with postinfectious tubal infertility. Am J Obstet Gynecol 171:95–101PubMedGoogle Scholar
  204. Peeling RW, Kimani J, Plummer F, Maclean I, Cheang M, Bwayo J, Brunham RC (1997) Antibody to chlamydial hsp60 predicts an increased risk for chlamydial pelvic inflammatory disease. J Infect Dis 175:1153–1158PubMedCrossRefGoogle Scholar
  205. Penttila JM, Anttila M, Varkila K, Puolakkainen M, Sarvas M, Makela PH, Rautonen N (1999) Depletion of CD8+ cells abolishes memory in acquired immunity against Chlamydia pneumoniae in BALB/c mice. Immunology 97:490–496PubMedCrossRefGoogle Scholar
  206. Perry LL, Feilzer K, Caldwell HD (1997) Immunity to Chlamydia trachomatis is mediated by T helper 1 cells through IFN-gamma-dependent and -independent pathways. J Immunol 158:3344–3352PubMedGoogle Scholar
  207. Perry LL, Feilzer K, Caldwell HD (1998) Neither interleukin-6 nor inducible nitric oxide synthase is required for clearance of Chlamydia trachomatis from the murine genital tract epithelium. Infect Immun 66:1265–1269PubMedGoogle Scholar
  208. Perry LL, Su H, Feilzer K, Messer R, Hughes S, Whitmire W, Caldwell HD (1999a) Differential sensitivity of distinct Chlamydia trachomatis isolates to IFN-gamma-mediated inhibition. J Immunol 162:3541–3548PubMedGoogle Scholar
  209. Perry LL, Feilzer K, Hughes S, Caldwell HD (1999b) Clearance of Chlamydia trachomatis from the murine genital mucosa does not require perforin-mediated cytolysis or Fas-mediated apoptosis. Infect Immun 67:1379–1385PubMedGoogle Scholar
  210. Porter E, Yang H, Yavagal S, Preza GC, Murillo O, Lima H, Greene S, Mahoozi L, Klein-Patel M, Diamond G, Gulati S, Ganz T, Rice PA, Quayle AJ (2005) Distinct defensin profiles in Neisseria gonorrhoeae and Chlamydia trachomatis urethritis reveal novel epithelial cell-neutrophil interactions. Infect Immun 73:4823–4833PubMedCrossRefGoogle Scholar
  211. Prantner D, Darville T, Sikes JD, Andrews CW Jr, Brade H, Rank RG, Nagarajan UM (2009) Critical role for interleukin-1beta (IL-1beta) during Chlamydia muridarum genital infection and bacterial replication-independent secretion of IL-1beta in mouse macrophages. Infect Immun 77:5334–5346PubMedCrossRefGoogle Scholar
  212. Prantner D, Sikes JD, Hennings L, Savenka AV, Basnakian AG, Nagarajan UM (2011) Interferon regulatory transcription factor 3 protects mice from uterine horn pathology during Chlamydia muridarum genital infection. Infect Immun 79:3922–3933PubMedCrossRefGoogle Scholar
  213. Prebeck S, Kirschning C, Durr S, da Costa C, Donath B, Brand K, Redecke V, Wagner H, Miethke T (2001) Predominant role of toll-like receptor 2 versus 4 in Chlamydia pneumoniae-induced activation of dendritic cells. J Immunol 167:3316–3323PubMedGoogle Scholar
  214. Punnonen J, Aversa G, Cocks BG, McKenzie AN, Menon S, Zurawski G, de Waal Malefyt R, de Vries JE (1993) Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci USA 90:3730–3734PubMedCrossRefGoogle Scholar
  215. Puolakkainen M, Parker J, Kuo CC, Grayston JT, Campbell LA (1995) Further characterization of Chlamydia pneumoniae specific monoclonal antibodies. Microbiol Immunol 39:551–554PubMedGoogle Scholar
  216. Quinn TC, Gaydos C, Shepherd M, Bobo L, Hook EW 3rd, Viscidi R, Rompalo A (1996) Epidemiologic and microbiologic correlates of Chlamydia trachomatis infection in sexual partnerships. JAMA 276:1737–1742PubMedCrossRefGoogle Scholar
  217. Ramsey KH, Rank RG (1991) Resolution of chlamydial genital infection with antigen-specific T-lymphocyte lines. Infect Immun 59:925–931PubMedGoogle Scholar
  218. Ramsey KH, Miranpuri GS, Poulsen CE, Marthakis NB, Braune LM, Byrne GI (1998) Inducible nitric oxide synthase does not affect resolution of murine chlamydial genital tract infections or eradication of chlamydiae in primary murine cell culture. Infect Immun 66:835–838PubMedGoogle Scholar
  219. Ramsey KH, Sigar IM, Rana SV, Gupta J, Holland SM, Byrne GI (2001a) Role for inducible nitric oxide synthase in protection from chronic Chlamydia trachomatis urogenital disease in mice and its regulation by oxygen free radicals. Infect Immun 69:7374–7379PubMedCrossRefGoogle Scholar
  220. Ramsey KH, Miranpuri GS, Sigar IM, Ouellette S, Byrne GI (2001b) Chlamydia trachomatis persistence in the female mouse genital tract: inducible nitric oxide synthase and infection outcome. Infect Immun 69:5131–5137PubMedCrossRefGoogle Scholar
  221. Ramsey KH, Sigar IM, Schripsema JH, Denman CJ, Bowlin AK, Myers GA, Rank RG (2009) Strain and virulence diversity in the mouse pathogen Chlamydia muridarum. Infect Immun 77:3284–3293PubMedCrossRefGoogle Scholar
  222. Rank RG, Barron AL (1983) Effect of antithymocyte serum on the course of chlamydial genital infection in female guinea pigs. Infect Immun 41:876–879PubMedGoogle Scholar
  223. Rank RG, Batteiger BE (1989) Protective role of serum antibody in immunity to chlamydial genital infection. Infect Immun 57:299–301PubMedGoogle Scholar
  224. Rank RG, Soderberg LS, Barron AL (1985) Chronic chlamydial genital infection in congenitally athymic nude mice. Infect Immun 48:847–849PubMedGoogle Scholar
  225. Rank RG, Sanders MM (1992) Pathogenesis of endometritis and salpingitis in a guinea pig model of chlamydial genital infection. Am J Pathol 140:927–936PubMedGoogle Scholar
  226. Rank RG, Bowlin AK, Reed RL, Darville T (2003) Characterization of chlamydial genital infection resulting from sexual transmission from male to female guinea pigs and determination of infectious dose. Infect Immun 71:6148–6154PubMedCrossRefGoogle Scholar
  227. Rapoza PA, Quinn TC, Terry AC, Gottsch JD, Kiessling LA, Taylor HR (1990) A systematic approach to the diagnosis and treatment of chronic conjunctivitis. Am J Ophthalmol 109:138–142PubMedGoogle Scholar
  228. Rasmussen SJ, Eckmann L, Quayle AJ, Shen L, Zhang YX, Anderson DJ, Fierer J, Stephens RS, Kagnoff MF (1997) Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. J Clin Invest 99:77–87PubMedCrossRefGoogle Scholar
  229. Raso TF, Carrasco AO, Silva JC, Marvulo MF, Pinto AA (2010) Seroprevalence of antibodies to Chlamydophila psittaci in zoo workers in Brazil. Zoonoses Public Health 57:411–416PubMedCrossRefGoogle Scholar
  230. Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Utterback T, Berry K, Bass S, Linher K, Weidman J, Khouri H, Craven B, Bowman C, Dodson R, Gwinn M, Nelson W, DeBoy R, Kolonay J, McClarty G, Salzberg SL, Eisen J, Fraser CM (2000) Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28:1397–1406PubMedCrossRefGoogle Scholar
  231. Read TD, Myers GS, Brunham RC, Nelson WC, Paulsen IT, Heidelberg J, Holtzapple E, Khouri H, Federova NB, Carty HA, Umayam LA, Haft DH, Peterson J, Beanan MJ, White O, Salzberg SL, Hsia RC, McClarty G, Rank RG, Bavoil PM, Fraser CM (2003) Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. Nucleic Acids Res 31:2134–2147PubMedCrossRefGoogle Scholar
  232. Rekart ML, Brunham RC (2008) Epidemiology of chlamydial infection: are we losing ground? Sex Transm Infect 84:87–91PubMedCrossRefGoogle Scholar
  233. Ribeiro CM, Hurd H, Wu Y, Martino ME, Jones L, Brighton B, Boucher RC, O'Neal WK (2009) Azithromycin treatment alters gene expression in inflammatory, lipid metabolism, and cell cycle pathways in well-differentiated human airway epithelia. PLoS One 4:e5806PubMedCrossRefGoogle Scholar
  234. Rock KL, Benacerraf B, Abbas AK (1984) Antigen presentation by hapten-specific B lymphocytes. I. Role of surface immunoglobulin receptors. J Exp Med 160:1102–1113PubMedCrossRefGoogle Scholar
  235. Rodriguez N, Fend F, Jennen L, Schiemann M, Wantia N, Prazeres da Costa CU, Durr S, Heinzmann U, Wagner H, Miethke T (2005) Polymorphonuclear neutrophils improve replication of Chlamydia pneumoniae in vivo upon MyD88-dependent attraction. J Immunol 174:4836–4844PubMedGoogle Scholar
  236. Rodriguez A, Rottenberg M, Tjarnlund A, Fernandez C (2006) Immunoglobulin A and CD8 T-cell mucosal immune defenses protect against intranasal infection with Chlamydia pneumoniae. Scand J Immunol 63:177–183PubMedCrossRefGoogle Scholar
  237. Ronn MM, Ward H (2011) The association between lymphogranuloma venereum and HIV among men who have sex with men: systematic review and meta-analysis. BMC Infect Dis 11:70PubMedCrossRefGoogle Scholar
  238. Roshick C, Wood H, Caldwell HD, McClarty G (2006) Comparison of gamma interferon-mediated antichlamydial defense mechanisms in human and mouse cells. Infect Immun 74:225–238PubMedCrossRefGoogle Scholar
  239. Rothermel CD, Rubin BY, Murray HW (1983) Gamma-interferon is the factor in lymphokine that activates human macrophages to inhibit intracellular Chlamydia psittaci replication. J Immunol 131:2542–2544PubMedGoogle Scholar
  240. Rothfuchs AG, Kreuger MR, Wigzell H, Rottenberg ME (2004) Macrophages, CD4+ or CD8+ cells are each sufficient for protection against Chlamydia pneumoniae infection through their ability to secrete IFN-gamma. J Immunol 172:2407–2415PubMedGoogle Scholar
  241. Rottenberg ME, Gigliotti Rothfuchs AC, Gigliotti D, Svanholm C, Bandholtz L, Wigzell H (1999) Role of innate and adaptive immunity in the outcome of primary infection with Chlamydia pneumoniae, as analyzed in genetically modified mice. J Immunol 162:2829–2836PubMedGoogle Scholar
  242. Rupp J, Pfleiderer L, Jugert C, Moeller S, Klinger M, Dalhoff K, Solbach W, Stenger S, Laskay T, van Zandbergen G (2009) Chlamydia pneumoniae hides inside apoptotic neutrophils to silently infect and propagate in macrophages. PLoS One 4:e6020PubMedCrossRefGoogle Scholar
  243. Rutella S, Danese S, Leone G (2006) Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 108:1435–1440PubMedCrossRefGoogle Scholar
  244. Saikku P, Leinonen M, Mattila K, Ekman MR, Nieminen MS, Makela PH, Huttunen JK, Valtonen V (1988) Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 2:983–986PubMedCrossRefGoogle Scholar
  245. Schachter J (1985) Overview of Chlamydia trachomatis infection and the requirements for a vaccine. Rev Infect Dis 7:713–716PubMedCrossRefGoogle Scholar
  246. Schachter J, Grossman M, Sweet RL, Holt J, Jordan C, Bishop E (1986) Prospective study of perinatal transmission of Chlamydia trachomatis. JAMA 255:3374–3377PubMedCrossRefGoogle Scholar
  247. Scurlock AM, Frazer LC, Andrews CW Jr, O'Connell CM, Foote IP, Bailey SL, Chandra-Kuntal K, Kolls JK, Darville T (2011) Interleukin-17 contributes to generation of Th1 immunity and neutrophil recruitment during Chlamydia muridarum genital tract infection but is not required for macrophage influx or normal resolution of infection. Infect Immun 79:1349–1362PubMedCrossRefGoogle Scholar
  248. Seth-Smith HM, Harris SR, Rance R, West AP, Severin JA, Ossewaarde JM, Cutcliffe LT, Skilton RJ, Marsh P, Parkhill J, Clarke IN, Thomson NR (2011) Genome sequence of the zoonotic pathogen Chlamydophila psittaci. J Bacteriol 193:1282–1283PubMedCrossRefGoogle Scholar
  249. Shao F, Merritt PM, Bao Z, Innes RW, Dixon JE (2002) A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109:575–588PubMedCrossRefGoogle Scholar
  250. Shaw J, Grund V, Durling L, Crane D, Caldwell HD (2002) Dendritic cells pulsed with a recombinant chlamydial major outer membrane protein antigen elicit a CD4(+) type 2 rather than type 1 immune response that is not protective. Infect Immun 70:1097–1105PubMedCrossRefGoogle Scholar
  251. Shedlock DJ, Shen H (2003) Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300:337–339PubMedCrossRefGoogle Scholar
  252. Simpson JL, Powell H, Boyle MJ, Scott RJ, Gibson PG (2008) Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am J Respir Crit Care Med 177:148–155PubMedCrossRefGoogle Scholar
  253. Skwor TA, Atik B, Kandel RP, Adhikari HK, Sharma B, Dean D (2008) Role of secreted conjunctival mucosal cytokine and chemokine proteins in different stages of trachomatous disease. PLoS Negl Trop Dis 2:e264PubMedCrossRefGoogle Scholar
  254. Somboonna N, Wan R, Ojcius DM, Pettengill MA, Joseph SJ, Chang A, Hsu R, Read TD, Dean D (2011) Hypervirulent Chlamydia trachomatis clinical strain is a recombinant between lymphogranuloma venereum (L(2)) and D lineages. MBio 2:e00045–e00011PubMedCrossRefGoogle Scholar
  255. Song Z, Brassard P, Brophy JM (2008) A meta-analysis of antibiotic use for the secondary prevention of cardiovascular diseases. Can J Cardiol 24:391–395PubMedCrossRefGoogle Scholar
  256. Spaargaren J, Schachter J, Moncada J, de Vries HJ, Fennema HS, Pena AS, Coutinho RA, Morre SA (2005) Slow epidemic of lymphogranuloma venereum L2b strain. Emerg Infect Dis 11:1787–1788PubMedCrossRefGoogle Scholar
  257. Spandorfer SD, Neuer A, LaVerda D, Byrne G, Liu HC, Rosenwaks Z, Witkin SS (1999) Previously undetected Chlamydia trachomatis infection, immunity to heat shock proteins and tubal occlusion in women undergoing in-vitro fertilization. Hum Reprod 14:60–64PubMedCrossRefGoogle Scholar
  258. Srivastava P, Jha R, Bas S, Salhan S, Mittal A (2008) In infertile women, cells from Chlamydia trachomatis infected sites release higher levels of interferon-gamma, interleukin-10 and tumor necrosis factor-alpha upon heat-shock-protein stimulation than fertile women. Reprod Biol Endocrinol 6:20PubMedCrossRefGoogle Scholar
  259. Starnbach MN, Bevan MJ, Lampe MF (1994) Protective cytotoxic T lymphocytes are induced during murine infection with Chlamydia trachomatis. J Immunol 153:5183–5189PubMedGoogle Scholar
  260. Stephens RS (2003) The cellular paradigm of chlamydial pathogenesis. Trends Microbiol 11:44–51PubMedCrossRefGoogle Scholar
  261. Sturdevant GL, Kari L, Gardner DJ, Olivares-Zavaleta N, Randall LB, Whitmire WM, Carlson JH, Goheen MM, Selleck EM, Martens C, Caldwell HD (2010) Frameshift mutations in a single novel virulence factor alter the in vivo pathogenicity of Chlamydia trachomatis for the female murine genital tract. Infect Immun 78:3660–3668PubMedCrossRefGoogle Scholar
  262. Su H, Caldwell HD (1991) In vitro neutralization of Chlamydia trachomatis by monovalent Fab antibody specific to the major outer membrane protein. Infect Immun 59:2843–2845PubMedGoogle Scholar
  263. Su H, Parnell M, Caldwell HD (1995) Protective efficacy of a parenterally administered MOMP-derived synthetic oligopeptide vaccine in a murine model of Chlamydia trachomatis genital tract infection: serum neutralizing IgG antibodies do not protect against chlamydial genital tract infection. Vaccine 13:1023–1032PubMedCrossRefGoogle Scholar
  264. Su H, Feilzer K, Caldwell HD, Morrison RP (1997) Chlamydia trachomatis genital tract infection of antibody-deficient gene knockout mice. Infect Immun 65:1993–1999PubMedGoogle Scholar
  265. Su H, Morrison R, Messer R, Whitmire W, Hughes S, Caldwell HD (1999) The effect of doxycycline treatment on the development of protective immunity in a murine model of chlamydial genital infection. J Infect Dis 180:1252–1258PubMedCrossRefGoogle Scholar
  266. Sutherland ER, King TS, Icitovic N, Ameredes BT, Bleecker E, Boushey HA, Calhoun WJ, Castro M, Cherniack RM, Chinchilli VM, Craig TJ, Denlinger L, DiMango EA, Fahy JV, Israel E, Jarjour N, Kraft M, Lazarus SC, Lemanske RF Jr, Peters SP, Ramsdell J, Sorkness CA, Szefler SJ, Walter MJ, Wasserman SI, Wechsler ME, Chu HW, Martin RJ (2010) A trial of clarithromycin for the treatment of suboptimally controlled asthma. J Allergy Clin Immunol 126:747–753PubMedCrossRefGoogle Scholar
  267. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH (2009) Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31:331–341PubMedCrossRefGoogle Scholar
  268. Taylor HR, Prendergast RA, Dawson CR, Schachter J, Silverstein AM (1981) An animal model for cicatrizing trachoma. Invest Ophthalmol Vis Sci 21:422–433PubMedGoogle Scholar
  269. Taylor GA, Feng CG, Sher A (2007) Control of IFN-gamma-mediated host resistance to intracellular pathogens by immunity-related GTPases (p47 GTPases). Microbes Infect 9:1644–1651PubMedCrossRefGoogle Scholar
  270. Thomson NR, Holden MT, Carder C, Lennard N, Lockey SJ, Marsh P, Skipp P, O'Connor CD, Goodhead I, Norbertzcak H, Harris B, Ormond D, Rance R, Quail MA, Parkhill J, Stephens RS, Clarke IN (2008) Chlamydia trachomatis: genome sequence analysis of lymphogranuloma venereum isolates. Genome Res 18:161–171PubMedCrossRefGoogle Scholar
  271. Tiitinen A, Surcel HM, Halttunen M, Birkelund S, Bloigu A, Christiansen G, Koskela P, Morrison SG, Morrison RP, Paavonen J (2006) Chlamydia trachomatis and chlamydial heat shock protein 60-specific antibody and cell-mediated responses predict tubal factor infertility. Hum Reprod 21:1533–1538PubMedCrossRefGoogle Scholar
  272. Toye B, Laferriere C, Claman P, Jessamine P, Peeling R (1993) Association between antibody to the chlamydial heat-shock protein and tubal infertility. J Infect Dis 168:1236–1240PubMedCrossRefGoogle Scholar
  273. Troy CJ, Peeling RW, Ellis AG, Hockin JC, Bennett DA, Murphy MR, Spika JS (1997) Chlamydia pneumoniae as a new source of infectious outbreaks in nursing homes. JAMA 277:1214–1218PubMedCrossRefGoogle Scholar
  274. Tschugguel W, Schneeberger C, Unfried G, Czerwenka K, Weninger W, Mildner M, Bishop JR, Huber JC (1998) Induction of inducible nitric oxide synthase expression in human secretory endometrium. Hum Reprod 13:436–444PubMedCrossRefGoogle Scholar
  275. Tseng CT, Rank RG (1998) Role of NK cells in early host response to chlamydial genital infection. Infect Immun 66:5867–5875PubMedGoogle Scholar
  276. Tuppo EE, Arias HR (2005) The role of inflammation in Alzheimer's disease. Int J Biochem Cell Biol 37:289–305PubMedCrossRefGoogle Scholar
  277. Tvinnereim A, Wizel B (2007) CD8+ T cell protective immunity against Chlamydia pneumoniae includes an H2-M3-restricted response that is largely CD4+ T cell-independent. J Immunol 179:3947–3957PubMedGoogle Scholar
  278. van den Brule AJ, Munk C, Winther JF, Kjaer SK, Jorgensen HO, Meijer CJ, Morre SA (2002) Prevalence and persistence of asymptomatic Chlamydia trachomatis infections in urine specimens from Danish male military recruits. Int J STD AIDS 13(Suppl 2):19–22PubMedCrossRefGoogle Scholar
  279. van Nieuwkoop C, Gooskens J, Smit VT, Claas EC, van Hogezand RA, Kroes AC, Kroon FP (2007) Lymphogranuloma venereum proctocolitis: mucosal T cell immunity of the rectum associated with chlamydial clearance and clinical recovery. Gut 56:1476–1477PubMedCrossRefGoogle Scholar
  280. Vanrompay D, Ducatelle R, Haesebrouck F (1994) Pathogenicity for turkeys of Chlamydia psittaci strains belonging to the avian serovars A, B and D. Avian Pathol 23:247–262PubMedCrossRefGoogle Scholar
  281. Vila-del Sol V, Diaz-Munoz MD, Fresno M (2007) Requirement of tumor necrosis factor alpha and nuclear factor-kappaB in the induction by IFN-gamma of inducible nitric oxide synthase in macrophages. J Leukoc Biol 81:272–283PubMedCrossRefGoogle Scholar
  282. Voth DE, Ballard JD (2005) Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 18:247–263PubMedCrossRefGoogle Scholar
  283. Warner L, Stone KM, Macaluso M, Buehler JW, Austin HD (2006) Condom use and risk of gonorrhea and Chlamydia: a systematic review of design and measurement factors assessed in epidemiologic studies. Sex Transm Dis 33:36–51PubMedCrossRefGoogle Scholar
  284. Watkins NG, Hadlow WJ, Moos AB, Caldwell HD (1986) Ocular delayed hypersensitivity: a pathogenetic mechanism of chlamydial-conjunctivitis in guinea pigs. Proc Natl Acad Sci USA 83:7480–7484PubMedCrossRefGoogle Scholar
  285. Westrom LV (1994) Sexually transmitted diseases and infertility. Sex Transm Dis 21:S32–S37PubMedGoogle Scholar
  286. Willcox RR (1975) Importance of the so-called ‘other’ sexually-transmitted diseases. Br J Vener Dis 51:221–226PubMedGoogle Scholar
  287. Williams DM, Grubbs BG, Pack E, Kelly K, Rank RG (1997) Humoral and cellular immunity in secondary infection due to murine Chlamydia trachomatis. Infect Immun 65:2876–2882PubMedGoogle Scholar
  288. Williams DM, Grubbs BG, Darville T, Kelly K, Rank RG (1998) A role for interleukin-6 in host defense against murine Chlamydia trachomatis infection. Infect Immun 66:4564–4567PubMedGoogle Scholar
  289. Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R (2004) IL-22 increases the innate immunity of tissues. Immunity 21:241–254PubMedCrossRefGoogle Scholar
  290. Wolner-Hanssen P (1995) Silent pelvic inflammatory disease: is it overstated? Obstet Gynecol 86:321–325PubMedCrossRefGoogle Scholar
  291. Wood H, Fehlner-Gardner C, Berry J, Fischer E, Graham B, Hackstadt T, Roshick C, McClarty G (2003) Regulation of tryptophan synthase gene expression in Chlamydia trachomatis. Mol Microbiol 49:1347–1359PubMedCrossRefGoogle Scholar
  292. Worm HC, Wirnsberger GH, Mauric A, Holzer H (2004) High prevalence of Chlamydia pneumoniae infection in cyclosporin A-induced post-transplant gingival overgrowth tissue and evidence for the possibility of persistent infection despite short-term treatment with azithromycin. Nephrol Dial Transplant 19:1890–1894PubMedCrossRefGoogle Scholar
  293. Wyrick PB, Knight ST (2004) Pre-exposure of infected human endometrial epithelial cells to penicillin in vitro renders Chlamydia trachomatis refractory to azithromycin. J Antimicrob Chemother 54:79–85PubMedCrossRefGoogle Scholar
  294. Yamazaki T, Nakada H, Sakurai N, Kuo CC, Wang SP, Grayston JT (1990) Transmission of Chlamydia pneumoniae in young children in a Japanese family. J Infect Dis 162:1390–1392PubMedCrossRefGoogle Scholar
  295. Yong EC, Chi EY, Kuo CC (1987) Differential antimicrobial activity of human mononuclear phagocytes against the human biovars of Chlamydia trachomatis. J Immunol 139:1297–1302PubMedGoogle Scholar
  296. Yu H, Jiang X, Shen C, Karunakaran KP, Brunham RC (2009) Novel Chlamydia muridarum T cell antigens induce protective immunity against lung and genital tract infection in murine models. J Immunol 182:1602–1608PubMedGoogle Scholar
  297. Yu H, Jiang X, Shen C, Karunakaran KP, Jiang J, Rosin NL, Brunham RC (2010) Chlamydia muridarum T-cell antigens formulated with the adjuvant DDA/TDB induce immunity against infection that correlates with a high frequency of gamma interferon (IFN-gamma)/tumor necrosis factor alpha and IFN-gamma/interleukin-17 double-positive CD4+ T cells. Infect Immun 78:2272–2282PubMedCrossRefGoogle Scholar
  298. Yu H, Karunakaran KP, Kelly I, Shen C, Jiang X, Foster LJ, Brunham RC (2011) Immunization with live and dead Chlamydia muridarum induces different levels of protective immunity in a murine genital tract model: correlation with MHC class II peptide presentation and multifunctional Th1 cells. J Immunol 186:3615–3621PubMedCrossRefGoogle Scholar
  299. Yung AP, Grayson ML (1988) Psittacosis–a review of 135 cases. Med J Aust 148:228–233PubMedGoogle Scholar
  300. Zeitz M, Quinn TC, Graeff AS, James SP (1988) Mucosal T cells provide helper function but do not proliferate when stimulated by specific antigen in lymphogranuloma venereum proctitis in nonhuman primates. Gastroenterology 94:353–366PubMedGoogle Scholar
  301. Zeitz M, Quinn TC, Graeff AS, Schwarting R, James SP (1989) Oral administration of cyclosporin does not prevent expansion of antigen-specific, gut-associated, and spleen lymphocyte populations during Chlamydia trachomatis proctitis in nonhuman primates. Dig Dis Sci 34:585–595PubMedCrossRefGoogle Scholar
  302. Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, Ouyang W (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445:648–651PubMedCrossRefGoogle Scholar
  303. Zimmerman HL, Potterat JJ, Dukes RL, Muth JB, Zimmerman HP, Fogle JS, Pratts CI (1990) Epidemiologic differences between chlamydia and gonorrhea. Am J Public Health 80:1338–1342PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Departments of Medicine, Microbiology and ImmunologyIndiana University, School of MedicineIndianapolisUSA

Personalised recommendations