Advertisement

Typhoid

Reference work entry

Abstract

Typhoid fever is a severe systemic infection caused by the human-adapted Salmonella enterica serovar Typhi (S. Typhi). Paratyphoid fever is indistinguishable from typhoid fever in its clinical presentation but is associated with other typhoidal Salmonella serovars, including the human-adapted S. enterica serovars Paratyphi A, Paratyphi B, Paratyphi C, or Sendai. Although eradicated in most developed countries, these illnesses continue to be a major contributor to morbidity and mortality worldwide, and the emergence of antibiotic resistance is beginning to limit treatment options. Sanitation of drinking water is effective in reducing transmission of typhoid and paratyphoid fever, but eradication of these diseases also requires management of human carriers. Typhoidal Salmonella serovars are closely related genetically to nontyphoidal Salmonella serovars, which are associated with a localized gastroenteritis in humans. Recent studies suggest that differences in the clinical presentation of typhoid fever and gastroenteritis can be attributed to virulence mechanisms that enable typhoidal Salmonella serovars to evade innate immunity but that are absent from nontyphoidal Salmonella serovars. One such factor is the virulence capsular polysaccharide (Vi antigen) of S. Typhi and S. Paratyphi C. Studies on immunity to typhoid fever have resulted in licensing of a killed whole-cell parenteral typhoid vaccine, a live-attenuated oral typhoid vaccine, and a parenteral vaccine consisting of purified Vi antigen. Our entry will review basic and applied research on this enigmatic human disease.

Keywords

Mesenteric Lymph Node Typhoid Fever Paratyphoid Fever Citrobacter Species Typhoid Fever Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Work in A.J.B.’s laboratory is supported by Public Health Service Grants AI040124, AI044170, AI076246, AI088122, and AI096528.

References

  1. Abdool Gaffar MS, Seedat YK, Coovadia YM, Khan Q (1992) The white cell count in typhoid fever. Trop Geogr Med 44:23–27PubMedGoogle Scholar
  2. Abrahams GL, Hensel M (2006) Manipulating cellular transport and immune responses: dynamic interactions between intracellular Salmonella enterica and its host cells. Cell Microbiol 8:728–737PubMedCrossRefGoogle Scholar
  3. Achard C, Bensaude R (1896) Infections paratyphoidiques. Bulletin et Memoires de la Societe de Medicine des Hotitaux de Paris 13:820–833Google Scholar
  4. Acharya IL, Lowe CU, Thapa R, Gurubacharya VL, Shrestha MB, Cadoz M, Schulz D, Armand J, Bryla DA, Trollfors B et al (1987) Prevention of typhoid fever in Nepal with the Vi capsular polysaccharide of Salmonella typhi. A preliminary report. N Engl J Med 317:1101–1104PubMedCrossRefGoogle Scholar
  5. Aleksic S, Heinzerling F, Bockemühl J (1996) Human infection caused by salmonellae of subspecies II to VI in Germany, 1977-1992. Zentralbl Bakteriol 283:391–398PubMedCrossRefGoogle Scholar
  6. Alvarado T (1983) Faecal leucocytes in patients with infectious diarrhoea. Trans R Soc Trop Med Hyg 77:316–320PubMedCrossRefGoogle Scholar
  7. Anand AC, Kataria VK, Singh W, Chatterjee SK (1990) Epidemic multiresistant enteric fever in eastern India. Lancet 335:352PubMedCrossRefGoogle Scholar
  8. Anderson ES, Smith HR (1972) Chloramphenicol resistance in the typhoid bacillus. Br Med J 3:329–331PubMedCrossRefGoogle Scholar
  9. Anderson ES, Williams RE (1956) Bacteriophage typing of enteric pathogens and staphylococci and its use in epidemiology. J Clin Pathol 9:94–127PubMedCrossRefGoogle Scholar
  10. Andrews FW (1922) Studies in group-agglutination. I. The Salmonella group and its antigenic structure. J Pathol Bacteriol 25:515–521Google Scholar
  11. Anton B, Fütterer G (1888) Untersuchungen über Typhus abdominalis. Munch Med Wochenschr 35:315–318Google Scholar
  12. Armstrong GL, Conn LA, Pinner RW (1999) Trends in infectious disease mortality in the United States during the 20th century. JAMA 281:61–66PubMedCrossRefGoogle Scholar
  13. Ashcroft MT, Ritchie JM, Nicholson CC (1964) Controlled field trial in British Guiana school children of heat-killed-phenolized and acetone-killed lyophilized typhoid vaccines. Am J Hyg 79:196–206PubMedGoogle Scholar
  14. Ausubel JH, Meyer PS, Wernick IK (2001) Death and the human environment: The United States in the 20th century. Technol Soc 23:131–146CrossRefGoogle Scholar
  15. Avendano A, Herrera P, Horwitz I, Duarte E, Prenzel I, Lanata C, Levine ML (1986) Duodenal string cultures: practicality and sensitivity for diagnosing enteric fever in children. J Infect Dis 153:359–362PubMedCrossRefGoogle Scholar
  16. Baker S, Hardy J, Sanderson KE, Quail M, Goodhead I, Kingsley RA, Parkhill J, Stocker B, Dougan G (2007) A novel linear plasmid mediates flagellar variation in Salmonella Typhi. PLoS Pathog 3:e59PubMedCrossRefGoogle Scholar
  17. Baker S, Holt K, van de Vosse E, Roumagnac P, Whitehead S, King E, Ewels P, Keniry A, Weill FX, Lightfoot D, van Dissel JT, Sanderson KE, Farrar J, Achtman M, Deloukas P, Dougan G (2008) High-throughput genotyping of Salmonella enterica serovar Typhi allowing geographical assignment of haplotypes and pathotypes within an urban District of Jakarta, Indonesia. J Clin Microbiol 46:1741–1746PubMedCrossRefGoogle Scholar
  18. Barman M, Unold D, Shifley K, Amir E, Hung K, Bos N, Salzman N (2008) Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect Immun 76:907–915PubMedCrossRefGoogle Scholar
  19. Barrett EL, Clark MA (1987) Tetrathionate reduction and production of hydrogen sulfide from thiosulfate. Microbiol Rev 51:192–205PubMedGoogle Scholar
  20. Bäumler AJ (1997) The record of horizontal gene transfer in Salmonella. Trends Microbiol 5:318–322PubMedCrossRefGoogle Scholar
  21. Benavente L, Gotuzzo E, Guerra J, Grados O, Guerra H, Bravo N (1984) Diagnosis of typhoid fever using a string capsule device. Trans R Soc Trop Med Hyg 78:404–406PubMedCrossRefGoogle Scholar
  22. Beuzon CR, Meresse S, Unsworth KE, Ruiz-Albert J, Garvis S, Waterman SR, Ryder TA, Boucrot E, Holden DW (2000) Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J 19:3235–3249PubMedCrossRefGoogle Scholar
  23. Bitar R, Tarpley J (1985) Intestinal perforation in typhoid fever: a historical and state-of-the-art review. Rev Infect Dis 7:257–271PubMedCrossRefGoogle Scholar
  24. Black R, Levine MM, Young C, Rooney J, Levine S, Clements ML, O'Donnell S, Hugues T, Germanier R (1983) Immunogenicity of Ty21a attenuated “Salmonella typhi” given with sodium bicarbonate or in enteric-coated capsules. Dev Biol Stand 53:9–14PubMedGoogle Scholar
  25. Black RE, Levine MM, Ferreccio C, Clements ML, Lanata C, Rooney J, Germanier R (1990) Efficacy of one or two doses of Ty21a Salmonella typhi vaccine in enteric-coated capsules in a controlled field trial. Chilean Typhoid Committee. Vaccine 8:81–84PubMedCrossRefGoogle Scholar
  26. Bonifield HR, Hughes KT (2003) Flagellar phase variation in Salmonella enterica is mediated by a posttranscriptional control mechanism. J Bacteriol 185:3567–3574PubMedCrossRefGoogle Scholar
  27. Boyd EF, Nelson K, Wang FS, Whittam TS, Selander RK (1994) Molecular genetic basis of allelic polymorphism in malate dehydrogenase (mdh) in natural populations of Escherichia coli and Salmonella enterica. Proc Natl Acad Sci USA 91:1280–1284PubMedCrossRefGoogle Scholar
  28. Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B (2000) Salmonella nomenclature. J Clin Microbiol 38:2465–2467PubMedGoogle Scholar
  29. Broz P, Newton K, Lamkanfi M, Mariathasan S, Dixit VM, Monack DM (2010) Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J Exp Med 207:1745–1755PubMedCrossRefGoogle Scholar
  30. Buchanan RE (1918) Studies in the nomenclature and classification of the bacteria: V. Subgroups and genera of the bacteriaceae. J Bacteriol 3:27–61PubMedGoogle Scholar
  31. Budd W (1856) The fever at the clergy orphan asylum. Lancet 68:617–619CrossRefGoogle Scholar
  32. Bueno SM, Santiviago CA, Murillo AA, Fuentes JA, Trombert AN, Rodas PI, Youderian P, Mora GC (2004) Precise excision of the large pathogenicity island, SPI7, in Salmonella enterica serovar Typhi. J Bacteriol 186:3202–3213PubMedCrossRefGoogle Scholar
  33. Butler T (2011) Treatment of typhoid fever in the 21st century: promises and shortcomings. Clin Microbiol Infect 17:959–963PubMedCrossRefGoogle Scholar
  34. Butler T, Bell WR, Levin J, Linh NN, Arnold K (1978) Typhoid fever. Studies of blood coagulation, bacteremia, and endotoxemia. Arch Intern Med 138:407–410PubMedCrossRefGoogle Scholar
  35. Butler T, Knight J, Nath SK, Speelman P, Roy SK, Azad MA (1985) Typhoid fever complicated by intestinal perforation: a persisting fatal disease requiring surgical management. Rev Infect Dis 7:244–256PubMedCrossRefGoogle Scholar
  36. Calderon E (1974) Amoxicillin in the treatment of typhoid fever due to chloramphenicol-resistance Salmonella typhi. J Infect Dis 129(suppl):S219–S221PubMedCrossRefGoogle Scholar
  37. Campo N, Dias MJ, Daveran-Mingot ML, Ritzenthaler P, Le Bourgeois P (2004) Chromosomal constraints in Gram-positive bacteria revealed by artificial inversions. Mol Microbiol 51:511–522PubMedCrossRefGoogle Scholar
  38. Canh DG, Lin FY, Thiem VD, Trach DD, Trong ND, Mao ND, Hunt S, Schneerson R, Robbins JB, Chu C, Shiloach J, Bryla DA, Bonnet MC, Schulz D, Szu SC (2004) Effect of dosage on immunogenicity of a Vi conjugate vaccine injected twice into 2- to 5-year-old Vietnamese children. Infect Immun 72:6586–6588PubMedCrossRefGoogle Scholar
  39. Cano DA, Dominguez-Bernal G, Tierrez A, Garcia-Del Portillo F, Casadesus J (2002) Regulation of capsule synthesis and cell motility in Salmonella enterica by the essential gene igaA. Genetics 162:1513–1523PubMedGoogle Scholar
  40. Carter PB, Collins FM (1974) Growth of typhoid and paratyphoid bacilli in intravenously infected mice. Infect Immun 10:816–822PubMedGoogle Scholar
  41. Caygill CP, Braddick M, Hill MJ, Knowles RL, Sharp JC (1995) The association between typhoid carriage, typhoid infection and subsequent cancer at a number of sites. Eur J Cancer Prev 4:187–193PubMedCrossRefGoogle Scholar
  42. Caygill CP, Hill MJ, Braddick M, Sharp JC (1994) Cancer mortality in chronic typhoid and paratyphoid carriers. Lancet 343:83–84PubMedCrossRefGoogle Scholar
  43. Chan K, Baker S, Kim CC, Detweiler CS, Dougan G, Falkow S (2003) Genomic comparison of Salmonella enterica serovars and Salmonella bongori by use of an S. enterica serovar typhimurium DNA microarray. J Bacteriol 185:553–563PubMedCrossRefGoogle Scholar
  44. Chau PY, Huang CT (1979) Biochemical characterization of H2S-positive Salmonella sendai strains isolated in Hong Kong. Microbiol Immunol 23:125–129PubMedGoogle Scholar
  45. Chinh NT, Parry CM, Ly NT, Ha HD, Thong MX, Diep TS, Wain J, White NJ, Farrar JJ (2000) A randomized controlled comparison of azithromycin and ofloxacin for treatment of multidrug-resistant or nalidixic acid-resistant enteric fever. Antimicrob Agents Chemother 44:1855–1859PubMedCrossRefGoogle Scholar
  46. Chiu CH, Su LH, Chu C (2004) Salmonella enterica serotype Choleraesuis: epidemiology, pathogenesis, clinical disease, and treatment. Clin Microbiol Rev 17:311–322PubMedCrossRefGoogle Scholar
  47. Chow CB, Wang PS, Leung NK (1989) Typhoid fever in Hong Kong children. Aust Paediatr J 25:147–150PubMedGoogle Scholar
  48. Craigie J, Felix A (1947) Typing of typhoid bacilli with Vi bacteriophage; suggestions for its standardisation. Lancet 1:823–827PubMedCrossRefGoogle Scholar
  49. Craigie J, Yen CE (1938) The demonstration of types of B. typhosus by means of preparations of type II Vi-phage. Can Public Health J 29:484Google Scholar
  50. Crawford RW, Gibson DL, Kay WW, Gunn JS (2008) Identification of a bile-induced exopolysaccharide required for Salmonella biofilm formation on gallstone surfaces. Infect Immun 76:5341–5349PubMedCrossRefGoogle Scholar
  51. Crawford RW, Rosales-Reyes R, Ramirez-Aguilar Mde L, Chapa-Azuela O, Alpuche-Aranda C, Gunn JS (2010) Gallstones play a significant role in Salmonella spp. gallbladder colonization and carriage. Proc Natl Acad Sci USA 107:4353–4358PubMedCrossRefGoogle Scholar
  52. Crosa JH, Brenner DJ, Ewing WH, Falkow S (1973) Molecular relationship among the salmonellae. J Bacteriol 115:307–315PubMedGoogle Scholar
  53. Crump JA, Luby SP, Mintz ED (2004) The global burden of typhoid fever. Bull World Health Organ 82:346–353PubMedGoogle Scholar
  54. Crump JA, Ram PK, Gupta SK, Miller MA, Mintz ED (2008) Part I. Analysis of data gaps pertaining to Salmonella enterica serotype Typhi infections in low and medium human development index countries, 1984-2005. Epidemiol Infect 136:436–448PubMedCrossRefGoogle Scholar
  55. Deng W, Liou SR, Plunkett G 3rd, Mayhew GF, Rose DJ, Burland V, Kodoyianni V, Schwartz DC, Blattner FR (2003) Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J Bacteriol 185:2330–2337PubMedCrossRefGoogle Scholar
  56. Didelot X, Achtman M, Parkhill J, Thomson NR, Falush D (2007) A bimodal pattern of relatedness between the Salmonella Paratyphi A and Typhi genomes: convergence or divergence by homologous recombination? Genome Res 17:61–68PubMedCrossRefGoogle Scholar
  57. Dorsey CW, Laarakker MC, Humphries AD, Weening EH, Bäumler AJ (2005) Salmonella enterica serotype Typhimurium MisL is an intestinal colonization factor that binds fibronectin. Mol Microbiol 57:196–211PubMedCrossRefGoogle Scholar
  58. Drigalski V (1904) Ueber Ergebnisse bei der Bekämpfung des Typhus nach Robert Koch. Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten 35:776–798Google Scholar
  59. Durrani AB (1995) Typhoid hepatitis. J Pak Med Assoc 45:317–318PubMedGoogle Scholar
  60. Dutta P, Rasaily R, Saha MR, Mitra U, Bhattacharya SK, Bhattacharya MK, Lahiri M (1993) Ciprofloxacin for treatment of severe typhoid fever in children. Antimicrob Agents Chemother 37:1197–1199PubMedCrossRefGoogle Scholar
  61. Dutta TK, Beeresha, Ghotekar LH (2001) Atypical manifestations of typhoid fever. J Postgrad Med 47:248–251PubMedGoogle Scholar
  62. Eberth KJ (1880) Die Organismen in den Organen bei Typhus abdominalis. Virchows Arch 81:58–74CrossRefGoogle Scholar
  63. Edsall G, Gaines S, Landy M, Tigertt WD, Sprinz H, Trapani RJ, Mandel AD, Benenson AS (1960) Studies on infection and immunity in experimental typhoid fever. I. Typhoid fever in chimpanzees orally infected with Salmonella typhosa. J Exp Med 112:143–166PubMedCrossRefGoogle Scholar
  64. Edwards PR, Moran AB (1945) Salmonella cultures which resemble the Sendai type. J Bacteriol 50:257–260Google Scholar
  65. Elsinghorst EA, Baron LS, Kopecko DJ (1989) Penetration of human intestinal epithelial cells by Salmonella: molecular cloning and expression of Salmonella typhi invasion determinants in Escherichia coli. Proc Natl Acad Sci USA 86:5173–5177PubMedCrossRefGoogle Scholar
  66. Engelhardt H (1972) Study on chimpanzees on the efficacy of an oral typhoid immunization with an inactivated antigen. Ann Sclavo 14:626–631PubMedGoogle Scholar
  67. Ezquerra E, Burnens A, Jones C, Stanley J (1993) Genotypic typing and phylogenetic analysis of Salmonella paratyphi B and S. java with IS200. J Gen Microbiol 139:2409–2414PubMedGoogle Scholar
  68. Farooqui BJ, Khurshid M, Ashfaq MK, Khan MA (1991) Comparative yield of Salmonella typhi from blood and bone marrow cultures in patients with fever of unknown origin. J Clin Pathol 44:258–259PubMedCrossRefGoogle Scholar
  69. Felix A, Bhatnagar SS, Pitt RM (1934) Observations on the properties of the Vi antigen of B. typhosus. Br J Exp Pathol 15:346–354Google Scholar
  70. Felix A, Krikorian KS, Reitler R (1935) The occurrence of typhoid bacilli containing Vi antigen in cases of typhoid fever and of Vi antibody in their Sera. J Hyg (Lond) 35:421–427CrossRefGoogle Scholar
  71. Felix A, Pitt RM (1934) A new antigen of B. typhosus. Lancet 227:186–191CrossRefGoogle Scholar
  72. Ferrie JP, Troesken W (2008) Water and Chicago’s mortality transition, 1850–1925. Explorations Econ Hist 45:1–16CrossRefGoogle Scholar
  73. Findlay HT (1951) Mouse-virulence of strains of Salmonella typhi from a mild and a severe outbreak of typhoid fever. J Hyg (Lond) 49:111–113CrossRefGoogle Scholar
  74. Firoz Mian M, Pek EA, Chenoweth MJ, Ashkar AA (2011) Humanized mice are susceptible to Salmonella typhi infection. Cell Mol Immunol 8:83–87PubMedCrossRefGoogle Scholar
  75. Fleisher GR (1991) Management of children with occult bacteremia who are treated in the emergency department. Rev Infect Dis 13(Suppl 2):S156–S159PubMedCrossRefGoogle Scholar
  76. Forest CG, Ferraro E, Sabbagh SC, Daigle F (2010) Intracellular survival of Salmonella enterica serovar Typhi in human macrophages is independent of Salmonella pathogenicity island (SPI)-2. Microbiology 156:3689–3698PubMedCrossRefGoogle Scholar
  77. Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozoren N, Jagirdar R, Inohara N, Vandenabeele P, Bertin J, Coyle A, Grant EP, Nunez G (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7:576–582PubMedCrossRefGoogle Scholar
  78. Freitag JL (1964) Treatment of chronic typhoid carriers by cholecystectomy. Public Health Rep 79:567–570PubMedCrossRefGoogle Scholar
  79. Friebel A, Ilchmann H, Aepfelbacher M, Ehrbar K, Machleidt W, Hardt WD (2001) SopE and SopE2 from Salmonella typhimurium activate different sets of RhoGTPases of the host cell. J Biol Chem 276:34035–34040PubMedCrossRefGoogle Scholar
  80. Frye J, Karlinsey JE, Felise HR, Marzolf B, Dowidar N, McClelland M, Hughes KT (2006) Identification of new flagellar genes of Salmonella enterica serovar Typhimurium. J Bacteriol 188:2233–2243PubMedCrossRefGoogle Scholar
  81. Fu Y, Galan JE (1998) The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton. Mol Microbiol 27:359–368PubMedCrossRefGoogle Scholar
  82. Furman M, Fica A, Saxena M, Di Fabio JL, Cabello FC (1994) Salmonella typhi iron uptake mutants are attenuated in mice. Infect Immun 62:4091–4094PubMedGoogle Scholar
  83. Gaffky G (1884) Zur Ätiologie des Abdominaltyphus. Mitteilungen aus dem Kaiserlichen Gesundheitsamt 2:372–420Google Scholar
  84. Gaines S, Landy M, Edsall G, Mandel AD, Trapani RJ, Benenson AS (1961) Studies on infection and immunity in experimental typhoid fever. III. Effect of prophylactic immunization. J Exp Med 114:327–342PubMedCrossRefGoogle Scholar
  85. Gaines S, Sprinz H, Tully JG, Tigertt WD (1968) Studies on infection and immunity in experimental typhoid fever. VII. The distribution of Salmonella typhi in chimpanzee tissue following oral challenge, and the relationship between the numbers of bacilli and morphologic lesions. J Infect Dis 118:293–306PubMedCrossRefGoogle Scholar
  86. Galán JE, Curtiss R III (1989) Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA 86:6383–6387PubMedCrossRefGoogle Scholar
  87. Geddes K, Rubino S, Streutker C, Cho JH, Magalhaes JG, Le Bourhis L, Selvanantham T, Girardin SE, Philpott DJ (2010) Nod1 and Nod2 regulation of inflammation in the Salmonella colitis model. Infect Immun 78:5107–5115PubMedCrossRefGoogle Scholar
  88. Geddes K, Rubino SJ, Magalhaes JG, Streutker C, Le Bourhis L, Cho JH, Robertson SJ, Kim CJ, Kaul R, Philpott DJ, Girardin SE (2011) Identification of an innate T helper type 17 response to intestinal bacterial pathogens. Nat Med 17(7):837–844PubMedCrossRefGoogle Scholar
  89. Germanier R (1970) Immunity in experimental Salmonellosis I. Protection induced by rough mutants of Salmonella typhimurium. Infect Immun 2:309–315PubMedGoogle Scholar
  90. Germanier R (1972) Immunity in experimental salmonellosis. 3. Comparative immunization with viable and heat-inactivated cells of Salmonella typhimurium. Infect Immun 5:792–797PubMedGoogle Scholar
  91. Germanier R, Fuer E (1975) Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi: a candidate strain for a live, oral typhoid vaccine. J Infect Dis 131:553–558PubMedCrossRefGoogle Scholar
  92. Germanier R, Furer E (1983) Characteristics of the attenuated oral vaccine strain “S. typhi” Ty 21a. Dev Biol Stand 53:3–7PubMedGoogle Scholar
  93. Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL (2001) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167:1882–1885PubMedGoogle Scholar
  94. Gilman RH (1989) General considerations in the management of typhoid fever and dysentery. Scand J Gastroenterol Suppl 169:11–18PubMedCrossRefGoogle Scholar
  95. Gilman RH, Hornick RB (1976) Duodenal isolation of Salmonella typhi by string capsule in acute typhoid fever. J Clin Microbiol 3:456–457PubMedGoogle Scholar
  96. Gilman RH, Terminel M, Levine MM, Hernandez-Mendoza P, Hornick RB (1975) Relative efficacy of blood, urine, rectal swab, bone-marrow, and rose-spot cultures for recovery of Salmonella typhi in typhoid fever. Lancet 1:1211–1213PubMedCrossRefGoogle Scholar
  97. Glynn JR, Palmer SR (1992) Incubation period, severity of disease, and infecting dose: evidence from a Salmonella outbreak. Am J Epidemiol 136:1369–1377PubMedGoogle Scholar
  98. Gordon MA (2008) Salmonella infections in immunocompromised adults. J Infect 56:413–422PubMedCrossRefGoogle Scholar
  99. Gould CW, Qualls GL (1912) A study of the convalescent carriers of typhoid. JAMA 58(8):542–546CrossRefGoogle Scholar
  100. Graham E (1916) Death rate in acute infections – A study of the mortality in philadelphia during 1911-1915 from measles, pertussis, diphtheria, scarlet fever and typhoid fever. J Am Med Assoc 67:1272–1275CrossRefGoogle Scholar
  101. Gregg D (1908) A typhoid carrier fifty-two years after recovery. Boston Med Surg J 158:80CrossRefGoogle Scholar
  102. Greisman SE, Wagner HN, Iio M, Hornick RB (1964) Mechanisms of Endotoxin Tolerance. II Relationship between endotoxin tolerance and reticuloendothelial system phagocytic activity in man. J Exp Med 119:241–264PubMedCrossRefGoogle Scholar
  103. Grimont PAD, Weill F-X (2007) Antigenic formulae of the Salmonella serovars. WHO Collaborating Centre for Reference and Research on Salmonella, ParisGoogle Scholar
  104. Groschel DH, Hornick RB (1981) Who introduced typhoid vaccination: Almroth Write or Richard Pfeiffer? Rev Infect Dis 3:1251–1254PubMedCrossRefGoogle Scholar
  105. Grunbaum AS (1904) Report LXXXIII: some experiments on enterica, scarlet fever, and measles in the chimpanzee: [A preliminary communication]. Br Med J 1:817–819PubMedCrossRefGoogle Scholar
  106. Haas PJ, van Strijp J (2007) Anaphylatoxins: their role in bacterial infection and inflammation. Immunol Res 37:161–175PubMedCrossRefGoogle Scholar
  107. Haneda T, Winter SE, Butler BP, Wilson RP, Tukel C, Winter MG, Godinez I, Tsolis RM, Baumler AJ (2009) The capsule-encoding viaB locus reduces intestinal inflammation by a Salmonella pathogenicity island 1-independent mechanism. Infect Immun 77:2932–2942PubMedCrossRefGoogle Scholar
  108. Haraga A, Ohlson MB, Miller SI (2008) Salmonellae interplay with host cells. Nat Rev Microbiol 6:53–66PubMedCrossRefGoogle Scholar
  109. Hardt WD, Chen LM, Schuebel KE, Bustelo XR, Galan JE (1998) S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93:815–826PubMedCrossRefGoogle Scholar
  110. Harris JC, Dupont HL, Hornick RB (1972) Fecal leukocytes in diarrheal illness. Ann Intern Med 76:697–703PubMedGoogle Scholar
  111. Hayward RD, Koronakis V (1999) Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J 18:4926–4934PubMedCrossRefGoogle Scholar
  112. Heinzinger NK, Fujimoto SY, Clark MA, Moreno MS, Barrett EL (1995) Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism. J Bacteriol 177:2813–2820PubMedGoogle Scholar
  113. Hensel M, Shea JE, Bäumler AJ, Gleeson C, Blattner F, Holden DW (1997) Analysis of the boundaries of Salmonella pathogenicity island 2 and the corresponding chromosomal region of Escherichia coli K-12. J Bacteriol 179:1105–1111PubMedGoogle Scholar
  114. Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–403PubMedCrossRefGoogle Scholar
  115. Hessel L, Debois H, Fletcher M, Dumas R (1999) Experience with Salmonella typhi Vi capsular polysaccharide vaccine. Eur J Clin Microbiol Infect Dis 18:609–620PubMedCrossRefGoogle Scholar
  116. Heyns K, Kiessling G (1967) Strukturaufklarung des Vi-antigens aus Citrobacter freundii (E. coli) 5396/38. Carbohydr Res 3:340–353CrossRefGoogle Scholar
  117. Hill CW, Gray JA (1988) Effects of chromosomal inversion on cell fitness in Escherichia coli K-12. Genetics 119:771–778PubMedGoogle Scholar
  118. Hindle Z, Chatfield SN, Phillimore J, Bentley M, Johnson J, Cosgrove CA, Ghaem-Maghami M, Sexton A, Khan M, Brennan FR, Everest P, Wu T, Pickard D, Holden DW, Dougan G, Griffin GE, House D, Santangelo JD, Khan SA, Shea JE, Feldman RG, Lewis DJ (2002) Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella pathogenicity island 2 type III secretion system (ssaV) mutations by immunization of healthy volunteers. Infect Immun 70:3457–3467PubMedCrossRefGoogle Scholar
  119. Hirose K, Ezaki T, Miyake M, Li T, Khan AQ, Kawamura Y, Yokoyama H, Takami T (1997) Survival of Vi-capsulated and Vi-deleted Salmonella typhi strains in cultured macrophage expressing different levels of CD14 antigen. FEMS Microbiol Lett 147:259–265PubMedCrossRefGoogle Scholar
  120. Hoffman SL, Punjabi NH, Rockhill RC, Sutomo A, Rivai AR, Pulungsih SP (1984) Duodenal string-capsule culture compared with bone-marrow, blood, and rectal-swab cultures for diagnosing typhoid and paratyphoid fever. J Infect Dis 149:157–161PubMedCrossRefGoogle Scholar
  121. Hohmann EL, Oletta CA, Killeen KP, Miller SI (1996) phoP/phoQ-deleted Salmonella typhi (Ty800) is a safe and immunogenic single-dose typhoid fever vaccine in volunteers. J Infect Dis 173:1408–1414PubMedCrossRefGoogle Scholar
  122. Holt KE, Baker S, Dongol S, Basnyat B, Adhikari N, Thorson S, Pulickal AS, Song Y, Parkhill J, Farrar JJ, Murdoch DR, Kelly DF, Pollard AJ, Dougan G (2010) High-throughput bacterial SNP typing identifies distinct clusters of Salmonella Typhi causing typhoid in Nepalese children. BMC Infect Dis 10:144PubMedCrossRefGoogle Scholar
  123. Holt KE, Parkhill J, Mazzoni CJ, Roumagnac P, Weill FX, Goodhead I, Rance R, Baker S, Maskell DJ, Wain J, Dolecek C, Achtman M, Dougan G (2008) High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat Genet 40:987–993PubMedCrossRefGoogle Scholar
  124. Holt KE, Thomson NR, Wain J, Langridge GC, Hasan R, Bhutta ZA, Quail MA, Norbertczak H, Walker D, Simmonds M, White B, Bason N, Mungall K, Dougan G, Parkhill J (2009) Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi. BMC Genomics 10:36PubMedCrossRefGoogle Scholar
  125. Hone DM, Attridge SR, Forrest B, Morona R, Daniels D, LaBrooy JT, Bartholomeusz RC, Shearman DJ, Hackett J (1988) A galE via (Vi antigen-negative) mutant of Salmonella typhi Ty2 retains virulence in humans. Infect Immun 56:1326–1333PubMedGoogle Scholar
  126. Hong KH, Miller VL (1998) Identification of a novel Salmonella invasion locus homologous to Shigella ipgDE. J Bacteriol 180:1793–1802PubMedGoogle Scholar
  127. Hornick RB, Greisman SE, Woodward TE, DuPont HL, Dawkins AT, Snyder MJ (1970) Typhoid fever: pathogenesis and immunologic control (second of two parts). N Engl J Med 283:739–746PubMedCrossRefGoogle Scholar
  128. Hornick RB, Woodward TE (1967) Appraisal of typhoid vaccine in experimentally infected human subjects. Trans Am Clin Climatol Assoc 78:70–78PubMedGoogle Scholar
  129. Hornick RB, Woodward TE, McCrumb FR, Snyder MJ, Dawkins AT, Bulkeley JT, De la Macorra F, Corozza FA (1966) Study of induced typhoid fever in man. I. Evaluation of vaccine effectiveness. Trans Assoc Am Physicians 79:361–367PubMedGoogle Scholar
  130. Horton-Smith P (1900) The Goulstonian Lectures on the typhoid bacillus and typhoid fever: delivered before the Royal College of Physicians of London. Br Med J 1:827–834PubMedCrossRefGoogle Scholar
  131. Houston T (1901) On anaemia in typhoid fever. Br Med J 1:1468–1470PubMedCrossRefGoogle Scholar
  132. Howard WT (1920) The natural history of typhoid fever in Baltimore, 1851-1919. Johns Hopkins Hospital Bulletin 354:276–286Google Scholar
  133. Huang CJ, Barrett EL (1991) Sequence analysis and expression of the Salmonella typhimurium asr operon encoding production of hydrogen sulfide from sulfite. J Bacteriol 173:1544–1553PubMedGoogle Scholar
  134. Huang DB, DuPont HL (2005) Problem pathogens: extra-intestinal complications of Salmonella enterica serotype Typhi infection. Lancet Infect Dis 5:341–348PubMedCrossRefGoogle Scholar
  135. Huang X, le Phung V, Dejsirilert S, Tishyadhigama P, Li Y, Liu H, Hirose K, Kawamura Y, Ezaki T (2004) Cloning and characterization of the gene encoding the z66 antigen of Salmonella enterica serovar Typhi. FEMS Microbiol Lett 234:239–246PubMedCrossRefGoogle Scholar
  136. Islam A, Butler T, Nath SK, Alam NH, Stoeckel K, Houser HB, Smith AL (1988) Randomized treatment of patients with typhoid fever by using ceftriaxone or chloramphenicol. J Infect Dis 158:742–747PubMedCrossRefGoogle Scholar
  137. Jansen AM, Hall LJ, Clare S, Goulding D, Holt KE, Grant AJ, Mastroeni P, Dougan G, Kingsley RA (2011) A Salmonella Typhimurium-Typhi genomic chimera: a model to study VI polysaccharide capsule function in vivo. PLoS Pathog 7:e1002131PubMedCrossRefGoogle Scholar
  138. Jarvik T, Smillie C, Groisman EA, Ochman H (2010) Short-term signatures of evolutionary change in the Salmonella enterica serovar typhimurium 14028 genome. J Bacteriol 192:560–567PubMedCrossRefGoogle Scholar
  139. Jenner W (1849) Typhus and typhoid: an attempt to determine the question of their identity or non-identity by an analysis of the symptoms, and of the appearances found after death in sixty-six fatal of continued fever, observed at the London fever hospital from January 1847 to February 1849. The Edinburgh Monthly Journal of Medical Sciences 3:663, 726, 816, 954, 1095, 1264Google Scholar
  140. Jepson MA, Kenny B, Leard AD (2001) Role of sipA in the early stages of Salmonella typhimurium entry into epithelial cells. Cell Microbiol 3:417–426PubMedCrossRefGoogle Scholar
  141. Joiner KA, Ganz T, Albert J, Rotrosen D (1989) The opsonizing ligand on Salmonella typhimurium influences incorporation of specific, but not azurophil, granule constituents into neutrophil phagosomes. J Cell Biol 109:2771–2782PubMedCrossRefGoogle Scholar
  142. Jones BD, Lee CA, Falkow S (1992) Invasion of Salmonella typhimurium is affected by the direction of flagellar rotation. Infect Immun 60:2475–2480PubMedGoogle Scholar
  143. Kariuki S, Revathi G, Kiiru J, Mengo DM, Mwituria J, Muyodi J, Munyalo A, Teo YY, Holt KE, Kingsley RA, Dougan G (2010) Typhoid in Kenya is associated with a dominant multidrug-resistant Salmonella enterica serovar Typhi haplotype that is also widespread in Southeast Asia. J Clin Microbiol 48:2171–2176PubMedCrossRefGoogle Scholar
  144. Kauffmann F (1935) Weitere Erfahrungen mit dem Kombinierten Anreicherungsverfahren für Salmonellabacillen. Z Hyg Infektionskr 117:26CrossRefGoogle Scholar
  145. Kauffmann F (1955) Differential diagnosis and pathogenicity of Salmonella java and Salmonella paratyphi B. Z Hyg Infektionskr 141:546–550PubMedCrossRefGoogle Scholar
  146. Kayser H (1906) Über die Gefährlichkeit von Typhusbazillenträgern. Arb a d Kais Gesundh 24:176–180Google Scholar
  147. Kelly AOJ (1906) Infections of the biliary tract, with special reference to latent (or masked) and typhoid infections. Am J Med Sci 132:446–462CrossRefGoogle Scholar
  148. Kelterborn E (1967) Salmonella-species. First isolations, names and occurrence. S. Hirzel Verlag Leipzig, Karl-Marx-StadtGoogle Scholar
  149. Khoramian-Falsafi T, Harayama S, Kutsukake K, Pechere JC (1990) Effect of motility and chemotaxis on the invasion of Salmonella typhimurium into HeLa cells. Microb Pathog 9:47–53PubMedCrossRefGoogle Scholar
  150. Khosla SN, Anand A, Singh U, Khosla A (1995) Haematological profile in typhoid fever. Trop Doct 25:156–158PubMedGoogle Scholar
  151. Khourieh M, Schlesinger M, Tabachnik E, Bibi H, Armoni M, Pollak S (1989) Typhoid fever diagnosed by isolation of S. typhi from gastric aspirate. Acta Paediatr Scand 78:653–655PubMedCrossRefGoogle Scholar
  152. Kidgell C, Reichard U, Wain J, Linz B, Torpdahl M, Dougan G, Achtman M (2002) Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. Infect Genet Evol 2:39–45PubMedCrossRefGoogle Scholar
  153. Kingsley RA, Bäumler AJ (2000) Host adaptation and the emergence of infectious disease: the salmonella paradigm. Mol Microbiol 36:1006–1014PubMedCrossRefGoogle Scholar
  154. Kingsley RA, Santos RL, Keestra AM, Adams LG, Bäumler AJ (2002) Salmonella enterica serotype Typhimurium ShdA is an outer membrane fibronectin-binding protein that is expressed in the intestine. Mol Microbiol 43:895–905PubMedCrossRefGoogle Scholar
  155. Kingsley RA, van Amsterdam K, Kramer N, Baumler AJ (2000) The shdA gene is restricted to serotypes of Salmonella enterica subspecies I and contributes to efficient and prolonged fecal shedding. Infect Immun 68:2720–2727PubMedCrossRefGoogle Scholar
  156. Klugman KP, Gilbertson IT, Koornhof HJ, Robbins JB, Schneerson R, Schulz D, Cadoz M, Armand J (1987) Protective activity of Vi capsular polysaccharide vaccine against typhoid fever. Lancet 2:1165–1169PubMedCrossRefGoogle Scholar
  157. Klugman KP, Koornhof HJ, Robbins JB, Le Cam NN (1996) Immunogenicity, efficacy and serological correlate of protection of Salmonella typhi Vi capsular polysaccharide vaccine three years after immunization. Vaccine 14:435–438PubMedCrossRefGoogle Scholar
  158. Kossack RE, Guerrant RL, Densen P, Schadelin J, Mandell GL (1981) Diminished neutrophil oxidative metabolism after phagocytosis of virulent Salmonella typhi. Infect Immun 31:674–678PubMedGoogle Scholar
  159. Kothapalli S, Nair S, Alokam S, Pang T, Khakhria R, Woodward D, Johnson W, Stocker BA, Sanderson KE, Liu SL (2005) Diversity of genome structure in Salmonella enterica serovar Typhi populations. J Bacteriol 187:2638–2650PubMedCrossRefGoogle Scholar
  160. Kraus MD, Amatya B, Kimula Y (1999) Histopathology of typhoid enteritis: morphologic and immunophenotypic findings. Mod Pathol 12:949–955PubMedGoogle Scholar
  161. Kutsukake K, Nakashima H, Tominaga A, Abo T (2006) Two DNA invertases contribute to flagellar phase variation in Salmonella enterica serovar Typhimurium strain LT2. J Bacteriol 188:950–957PubMedCrossRefGoogle Scholar
  162. Lan R, Reeves PR, Octavia S (2009) Population structure, origins and evolution of major Salmonella enterica clones. Infect Genet Evol 9:996–1005PubMedCrossRefGoogle Scholar
  163. Landy M (1954) Studies on Vi antigen. VI. Immunization of human beings with purified Vi antigen. Am J Hyg 60:52–62PubMedGoogle Scholar
  164. Landy M (1957) Studies on Vi antigen. VII. Characteristics of the immune response in the mouse. Am J Hyg 65:81–93PubMedGoogle Scholar
  165. Landy M, Webster ME (1952) Studies on Vi antigen. III. Immunological properties of purified Vi antigen derived from Escherichia coli 5396/38. J Immunol 69:143–154PubMedGoogle Scholar
  166. Lawley TD, Bouley DM, Hoy YE, Gerke C, Relman DA, Monack DM (2008) Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect Immun 76:403–416PubMedCrossRefGoogle Scholar
  167. Le Bourhis L, Magalhaes JG, Selvanantham T, Travassos LH, Geddes K, Fritz JH, Viala J, Tedin K, Girardin SE, Philpott DJ (2009) Role of Nod1 in mucosal dendritic cells during Salmonella pathogenicity island 1-independent Salmonella enterica serovar Typhimurium infection. Infect Immun 77:4480–4486PubMedCrossRefGoogle Scholar
  168. Le Minor L, Popoff MY (1987) Designation of Salmonella enterica sp. nov., nom. rev., as the type and only species of the geneus Salmonella. Int J Syst Bacteriol 37:465–468CrossRefGoogle Scholar
  169. Leavitt JW (1992) “Typhoid Mary” strikes back. Bacteriological theory and practice in early twentieth-century public health. Isis 83:608–629PubMedCrossRefGoogle Scholar
  170. Levin DM, Wong KH, Reynolds HY, Sutton A, Northrup RS (1975) Vi antigen from Salmonella typhosa and immunity against typhoid fever. 11. Safety and antigenicity in humans. Infect Immun 12:1290–1294PubMedGoogle Scholar
  171. Levy E, Gaehtgens W (1908) Über die Verbreitung der Typhusbazillen in den Lymphdrüsen bei Typhusleichen. Arb Kaiserl Gesundh 28:168–171Google Scholar
  172. Li J, Nelson K, McWhorter AC, Whittam TS, Selander RK (1994) Recombinational basis of serovar diversity in Salmonella enterica. Proc Natl Acad Sci USA 91:2552–2556PubMedCrossRefGoogle Scholar
  173. Li J, Ochman H, Groisman EA, Boyd EF, Solomon F, Nelson K, Selander RK (1995) Relationship between evolutionary rate and cellular location among the Inv/Spa invasion proteins of Salmonella enterica. Proc Natl Acad Sci USA 92:7252–7256PubMedCrossRefGoogle Scholar
  174. Li S, Boackle SA, Holers VM, Lambris JD, Blatteis CM (2005) Complement component c5a is integral to the febrile response of mice to lipopolysaccharide. Neuroimmunomodulation 12:67–80PubMedCrossRefGoogle Scholar
  175. Libby SJ, Brehm MA, Greiner DL, Shultz LD, McClelland M, Smith KD, Cookson BT, Karlinsey JE, Kinkel TL, Porwollik S, Canals R, Cummings LA, Fang FC (2010) Humanized nonobese diabetic-scid IL2rgammanull mice are susceptible to lethal Salmonella Typhi infection. Proc Natl Acad Sci USA 107:15589–15594PubMedCrossRefGoogle Scholar
  176. Lin FY, Ho VA, Khiem HB, Trach DD, Bay PV, Thanh TC, Kossaczka Z, Bryla DA, Shiloach J, Robbins JB, Schneerson R, Szu SC (2001) The efficacy of a Salmonella typhi Vi conjugate vaccine in two-to-five-year-old children. N Engl J Med 344:1263–1269PubMedCrossRefGoogle Scholar
  177. Lindberg B, Leontein K, Lindquist U, Svenson SB, Wrangsell G, Dell A, Rogers M (1988) Structural studies of the O-antigen polysaccharide of Salmonella thompson, serogroup C1 (6,7). Carbohydr Res 174:313–322PubMedCrossRefGoogle Scholar
  178. Liu SL, Ezaki T, Miura H, Matsui K, Yabuuchi E (1988) Intact motility as a Salmonella typhi invasion-related factor. Infect Immun 56:1967–1973PubMedGoogle Scholar
  179. Liu SL, Sanderson KE (1995) Rearrangements in the genome of the bacterium Salmonella typhi. Proc Natl Acad Sci USA 92:1018–1022PubMedCrossRefGoogle Scholar
  180. Liu SL, Sanderson KE (1996) Highly plastic chromosomal organization in Salmonella typhi. Proc Natl Acad Sci USA 93:10303–10308PubMedCrossRefGoogle Scholar
  181. Liu SL, Sanderson KE (1998) Homologous recombination between rrn operons rearranges the chromosome in host-specialized species of Salmonella. FEMS Microbiol Lett 164:275–281PubMedCrossRefGoogle Scholar
  182. Liu WQ, Feng Y, Wang Y, Zou QH, Chen F, Guo JT, Peng YH, Jin Y, Li YG, Hu SN, Johnston RN, Liu GR, Liu SL (2009) Salmonella paratyphi C: genetic divergence from Salmonella choleraesuis and pathogenic convergence with Salmonella typhi. PLoS One 4:e4510PubMedCrossRefGoogle Scholar
  183. Loeffler F (1892) Ueber Epidemieen unter den im hygienishcen Institute zu Greifswald gehaltenen Mäusen und über die Bekämpfung der Feldmausplage. Zbl Bakt Parasitenkunde 11:129–141Google Scholar
  184. Looney RJ, Steigbigel RT (1986) Role of the Vi antigen of Salmonella typhi in resistance to host defense in vitro. J Lab Clin Med 108:506–516PubMedGoogle Scholar
  185. Louis PCA (1836) Anatomical, pathological and therapeutic researches upon the disease known under the name of gastro-enterite putrid, adynamic, ataxic, or typhoid fever, etc.; Compared with the most common acute diseases. Issac R. Butts, BostonGoogle Scholar
  186. Lynch MF, Blanton EM, Bulens S, Polyak C, Vojdani J, Stevenson J, Medalla F, Barzilay E, Joyce K, Barrett T, Mintz ED (2009) Typhoid fever in the United States, 1999-2006. JAMA 302:859–865PubMedCrossRefGoogle Scholar
  187. Mallory FB (1898) A histological study of typhoid fever. J Exp Med 3:611–638PubMedCrossRefGoogle Scholar
  188. Mallouh AA, Sa'di AR (1987) White blood cells and bone marrow in typhoid fever. Pediatr Infect Dis J 6:527–529PubMedCrossRefGoogle Scholar
  189. Malorny B, Bunge C, Helmuth R (2003) Discrimination of d-tartrate-fermenting and -nonfermenting Salmonella enterica subsp. enterica isolates by genotypic and phenotypic methods. J Clin Microbiol 41:4292–4297PubMedCrossRefGoogle Scholar
  190. Mathai E, John TJ, Rani M, Mathai D, Chacko N, Nath V, Cherian AM (1995) Significance of Salmonella typhi bacteriuria. J Clin Microbiol 33:1791–1792PubMedGoogle Scholar
  191. Matthews TD, Rabsch W, Maloy S (2011) Chromosomal rearrangements in Salmonella enterica Serovar Typhi Strains Isolated from Asymptomatic Human Carriers. MBio 2(3):e00060PubMedCrossRefGoogle Scholar
  192. McClelland M, Sanderson KE, Clifton SW, Latreille P, Porwollik S, Sabo A, Meyer R, Bieri T, Ozersky P, McLellan M, Harkins CR, Wang C, Nguyen C, Berghoff A, Elliott G, Kohlberg S, Strong C, Du F, Carter J, Kremizki C, Layman D, Leonard S, Sun H, Fulton L, Nash W, Miner T, Minx P, Delehaunty K, Fronick C, Magrini V, Nhan M, Warren W, Florea L, Spieth J, Wilson RK (2004) Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet 36:1268–1274PubMedCrossRefGoogle Scholar
  193. McGhie EJ, Hayward RD, Koronakis V (2001) Cooperation between actin-binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin. EMBO J 20:2131–2139PubMedCrossRefGoogle Scholar
  194. McGovern VJ, Slavutin LJ (1979) Pathology of salmonella colitis. Am J Surg Pathol 3:483–490PubMedCrossRefGoogle Scholar
  195. McQuiston JR, Herrera-Leon S, Wertheim BC, Doyle J, Fields PI, Tauxe RV, Logsdon JM Jr (2008) Molecular phylogeny of the salmonellae: relationships among Salmonella species and subspecies determined from four housekeeping genes and evidence of lateral gene transfer events. J Bacteriol 190:7060–7067PubMedCrossRefGoogle Scholar
  196. Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, Aderem A (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7:569–575PubMedCrossRefGoogle Scholar
  197. Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A, Warren SE, Wewers MD, Aderem A (2010a) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 11(12):1136–1142PubMedCrossRefGoogle Scholar
  198. Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, Leaf IA, Aderem A (2010b) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci USA 107:3076–3080PubMedCrossRefGoogle Scholar
  199. Miller RM, Garbus J, Hornick RB (1972) Lack of enhanced oxygen consumption by polymorphonuclear leukocytes on phagocytosis of virulent Salmonella typhi. Science 175:1010–1011PubMedCrossRefGoogle Scholar
  200. Miller RM, Garbus J, Schwartz AR, DuPont HL, Levine MM, Clyde DF, Hornick RB (1976) A modified leukocyte nitroblue tetrazolium test in acute bacterial infection. Am J Clin Pathol 66:905–910PubMedGoogle Scholar
  201. Mills DM, Bajaj V, Lee CA (1995) A 40 kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K-12 chromosome. Mol Microbiol 15:749–759PubMedCrossRefGoogle Scholar
  202. Morison AE (1913) Typhoid cholecystitis. Br Med J 2:1578–1579PubMedCrossRefGoogle Scholar
  203. Mukawi TJ (1978) Histopathological study of typhoid perforation of the small intestines. Southeast Asian J Trop Med Public Health 9:252–255PubMedGoogle Scholar
  204. Muller L (1923) Un nouveau milieu d'enrichissement pour la recherche du Bacille Typhique at Paratyphique. Comptes Rendus des Seances de la Societe de Biologie et de ses Filiales 89:434–437Google Scholar
  205. Müller M (1912) Der Nachweis von Fleischvergiftungsbakterien in Fleisch und Organen von Schlachttieren auf Grund Systematischer Untersuchungen über den Verlauf und den Mechanismus der Infektion des Tierkörpers mit Bakterien der Enteritidis- und Paratyphusgruppe, sowie des Typhus. Zbl Bakt Hyg I Abt Orig 62:335–373Google Scholar
  206. Murphy TF, Gorbach SL (1982) Salmonella colitis. N Y State J Med 82:1236–1238PubMedGoogle Scholar
  207. Nair S, Alokam S, Kothapalli S, Porwollik S, Proctor E, Choy C, McClelland M, Liu SL, Sanderson KE (2004) Salmonella enterica serovar Typhi strains from which SPI7, a 134-kilobase island with genes for Vi exopolysaccharide and other functions, has been deleted. J Bacteriol 186:3214–3223PubMedCrossRefGoogle Scholar
  208. Nasrallah SM, Nassar VH (1978) Enteric fever: a clinicopathologic study of 104 cases. Am J Gastroenterol 69:63–69PubMedGoogle Scholar
  209. Nelson K, Selander RK (1992) Evolutionary genetics of the proline permease gene (putP) and the control region of the proline utilization operon in populations of Salmonella and Escherichia coli. J Bacteriol 174:6886–6895PubMedGoogle Scholar
  210. Nelson K, Whittam TS, Selander RK (1991) Nucleotide polymorphism and evolution in the glyceraldehyde-3-phosphate dehydrogenase gene (gapA) in natural populations of Salmonella and Escherichia coli. Proc Natl Acad Sci USA 88:6667–6671PubMedCrossRefGoogle Scholar
  211. Nix RN, Altschuler SE, Henson PM, Detweiler CS (2007) Hemophagocytic macrophages harbor Salmonella enterica during persistent infection. PLoS Pathog 3:e193PubMedCrossRefGoogle Scholar
  212. Noriega LM, Van der Auwera P, Daneau D, Meunier F, Aoun M (1994) Salmonella infections in a cancer center. Support Care Cancer 2:116–122PubMedCrossRefGoogle Scholar
  213. O'Brien AD (1982) Innate resistance of mice to Salmonella typhi infection. Infect Immun 38:948–952PubMedGoogle Scholar
  214. Ochiai RL, Wang X, von Seidlein L, Yang J, Bhutta ZA, Bhattacharya SK, Agtini M, Deen JL, Wain J, Kim DR, Ali M, Acosta CJ, Jodar L, Clemens JD (2005) Salmonella paratyphi A rates, Asia. Emerg Infect Dis 11:1764–1766PubMedCrossRefGoogle Scholar
  215. Ochman H, Groisman EA (1996) Distribution of pathogenicity islands in Salmonella spp. Infect Immun 64:5410–5412PubMedGoogle Scholar
  216. Ochman H, Soncini FC, Solomon F, Groisman EA (1996) Identification of a pathogenicity island for Salmonella survival in host cells. Proc Natl Acad Sci USA 93:7800–7804PubMedCrossRefGoogle Scholar
  217. Ochman H, Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86PubMedCrossRefGoogle Scholar
  218. Octavia S, Lan R (2007) Single-nucleotide-polymorphism typing and genetic relationships of Salmonella enterica serovar Typhi isolates. J Clin Microbiol 45:3795–3801PubMedCrossRefGoogle Scholar
  219. Octavia S, Lan R (2009) Multiple-locus variable-number tandem-repeat analysis of Salmonella enterica serovar Typhi. J Clin Microbiol 47:2369–2376PubMedCrossRefGoogle Scholar
  220. Oldach DW, Richard RE, Borza EN, Benitez RM (1998) A mysterious death. N Engl J Med 338:1764–1769PubMedCrossRefGoogle Scholar
  221. Olsen SJ, Bleasdale SC, Magnano AR, Landrigan C, Holland BH, Tauxe RV, Mintz ED, Luby S (2003) Outbreaks of typhoid fever in the United States, 1960-99. Epidemiol Infect 130:13–21PubMedCrossRefGoogle Scholar
  222. Ørskov J, Moltke O (1929) Studien über den Infektionsmechanismus bei verschiedenen Paratyphus-Infektionen in weißen Mäusen. Zeitschrift für Immunitätsforschung 59:357–405Google Scholar
  223. Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, Churcher C, Mungall KL, Bentley SD, Holden MT, Sebaihia M, Baker S, Basham D, Brooks K, Chillingworth T, Connerton P, Cronin A, Davis P, Davies RM, Dowd L, White N, Farrar J, Feltwell T, Hamlin N, Haque A, Hien TT, Holroyd S, Jagels K, Krogh A, Larsen TS, Leather S, Moule S, O'Gaora P, Parry C, Quail M, Rutherford K, Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413:848–852PubMedCrossRefGoogle Scholar
  224. Parry CM (2004) The treatment of multidrug-resistant and nalidixic acid-resistant typhoid fever in Viet Nam. Trans R Soc Trop Med Hyg 98:413–422PubMedCrossRefGoogle Scholar
  225. Parry CM, Threlfall EJ (2008) Antimicrobial resistance in typhoidal and nontyphoidal salmonellae. Curr Opin Infect Dis 21:531–538PubMedCrossRefGoogle Scholar
  226. Pepper OHP (1920) Endothelial leukocytes in the urine suggesting typhoid fever. Am J Med Sci 160:336–340CrossRefGoogle Scholar
  227. Petty NK, Bulgin R, Crepin VF, Cerdeno-Tarraga AM, Schroeder GN, Quail MA, Lennard N, Corton C, Barron A, Clark L, Toribio AL, Parkhill J, Dougan G, Frankel G, Thomson NR (2010) The Citrobacter rodentium genome sequence reveals convergent evolution with human pathogenic Escherichia coli. J Bacteriol 192:525–538PubMedCrossRefGoogle Scholar
  228. Pfeiffer R, Kolle W (1896) Experimentele Untersuchungen zur Frage der Schutzimpfungen des Menschen gegen den Typhus abdominalis. Dtsch Med Wochenschr 22:735–737CrossRefGoogle Scholar
  229. Pickard D, Thomson NR, Baker S, Wain J, Pardo M, Goulding D, Hamlin N, Choudhary J, Threfall J, Dougan G (2008) Molecular characterization of the Salmonella enterica serovar Typhi Vi-typing bacteriophage E1. J Bacteriol 190:2580–2587PubMedCrossRefGoogle Scholar
  230. Ponfick E (1872) Über die sympathischen Erkrankungen des Knochenmarks bei inneren Krankheiten. Virchow’s Archiv f path Anat 56:534–556CrossRefGoogle Scholar
  231. Porster J (1906) Bakteriologischer Befund bei der Autopsie enes Typhusbazillenträgers. Munch Med Wochenschr 50:2434Google Scholar
  232. Powell CJ Jr, DeSett CR, Lowenthal JP, Berman S (1980) The effect of adding iron to mucin on the enhancement of virulence for mice of Salmonella typhi strain TY 2. J Biol Stand 8:79–85PubMedCrossRefGoogle Scholar
  233. Putnam P (1927) The trend of typhoid fever mortality in the United States. Am J Hyg 7:762–781Google Scholar
  234. Rabsch W, Tschape H, Baumler AJ (2001) Non-typhoidal salmonellosis: emerging problems. Microbes Infect 3:237–247PubMedCrossRefGoogle Scholar
  235. Raffatellu M, Chessa D, Wilson RP, Dusold R, Rubino S, Baumler AJ (2005a) The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll-like receptor-dependent interleukin-8 expression in the intestinal mucosa. Infect Immun 73:3367–3374PubMedCrossRefGoogle Scholar
  236. Raffatellu M, Chessa D, Wilson RP, Tukel C, Akcelik M, Baumler AJ (2006) Capsule-mediated immune evasion: a new hypothesis explaining aspects of typhoid fever pathogenesis. Infect Immun 74:19–27PubMedCrossRefGoogle Scholar
  237. Raffatellu M, George MD, Akiyama Y, Hornsby MJ, Nuccio SP, Paixao TA, Butler BP, Chu H, Santos RL, Berger T, Mak TW, Tsolis RM, Bevins CL, Solnick JV, Dandekar S, Baumler AJ (2009) Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5:476–486PubMedCrossRefGoogle Scholar
  238. Raffatellu M, Santos RL, Chessa D, Wilson RP, Winter SE, Rossetti CA, Lawhon SD, Chu H, Lau T, Bevins CL, Adams LG, Baumler AJ (2007) The capsule encoding the viaB locus reduces interleukin-17 expression and mucosal innate responses in the bovine intestinal mucosa during infection with Salmonella enterica serotype Typhi. Infect Immun 75:4342–4350PubMedCrossRefGoogle Scholar
  239. Raffatellu M, Wilson RP, Chessa D, Andrews-Polymenis H, Tran QT, Lawhon S, Khare S, Adams LG, Bäumler AJ (2005b) SipA, SopA, SopB, SopD and SopE2 contribute to Salmonella enterica serotype Typhimurium invasion of epithelial cells. Infect Immun 73:146–154PubMedCrossRefGoogle Scholar
  240. Rebollo JE, Francois V, Louarn JM (1988) Detection and possible role of two large nondivisible zones on the Escherichia coli chromosome. Proc Natl Acad Sci USA 85:9391–9395PubMedCrossRefGoogle Scholar
  241. Reddy EA, Shaw AV, Crump JA (2010) Community-acquired bloodstream infections in Africa: a systematic review and meta-analysis. Lancet Infect Dis 10:417–432PubMedCrossRefGoogle Scholar
  242. Reeves MW, Evins GM, Heiba AA, Plikaytis BD, Farmer JJ III (1989) Clonal nature of Salmonella typhi and its genetic realtedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. J Clin Microbiol 27:313–320PubMedGoogle Scholar
  243. Richardson MW (1903) Upon the presence of the typhoid bacillus in the urine and sputum. Boston Med Surg J 148:152–153CrossRefGoogle Scholar
  244. Riedemann NC, Guo RF, Ward PA (2003) A key role of C5a/C5aR activation for the development of sepsis. J Leukoc Biol 74:966–970PubMedCrossRefGoogle Scholar
  245. Riley M, Anilionis A (1978) Evolution of the bacterial genome. Annu Rev Microbiol 32:519–560PubMedCrossRefGoogle Scholar
  246. Robbins JD, Robbins JB (1984) Reexamination of the protective role of the capsular polysaccharide (Vi antigen) of Salmonella typhi. J Infect Dis 150:436–449PubMedCrossRefGoogle Scholar
  247. Rocha EP (2004) Order and disorder in bacterial genomes. Curr Opin Microbiol 7:519–527PubMedCrossRefGoogle Scholar
  248. Roof DM, Roth JR (1988) Ethanolamine utilization in Salmonella typhimurium. J Bacteriol 170:3855–3863PubMedGoogle Scholar
  249. Rosove L, Chudnoff JS, Bower AG (1950) Chloramphenicol in the treatment of typhoid fever. Calif Med 72:425–430PubMedGoogle Scholar
  250. Roumagnac P, Weill FX, Dolecek C, Baker S, Brisse S, Chinh NT, Le TA, Acosta CJ, Farrar J, Dougan G, Achtman M (2006) Evolutionary history of Salmonella typhi. Science 314:1301–1304PubMedCrossRefGoogle Scholar
  251. Russell FF (1911) The isolation of typhoid bacilli from urine and feces with the description of a new double sugar tube medium. J Med Res 25:217–229PubMedGoogle Scholar
  252. Saballs P, Aregall S, Pallares E, Tremoleda J, Gimeno JL, Drobnic L (1993) Salmonella typhimurium as the causal agent of pulmonary cavitations. Enferm Infecc Microbiol Clin 11:93–96PubMedGoogle Scholar
  253. Sahu A, Kozel TR, Pangburn MK (1994) Specificity of the thioester-containing reactive site of human C3 and its significance to complement activation. Biochem J 302(Pt 2):429–436PubMedGoogle Scholar
  254. Salmon DE, Smith T (1885) Report on swine plague. United States Department of Agriculture, Washington, DC, pp 184–246Google Scholar
  255. Salmonella-Subcommittee (1934) The genus Salmonella lignieres, 1900. J Hyg 34:333–350CrossRefGoogle Scholar
  256. Santos RL, Raffatellu M, Bevins CL, Adams LG, Tukel C, Tsolis RM, Baumler AJ (2009) Life in the inflamed intestine, Salmonella style. Trends Microbiol 17:498–506PubMedCrossRefGoogle Scholar
  257. Santos RL, Zhang S, Tsolis RM, Kingsley RA, Adams LG, Bäumler AJ (2001) Animal models of Salmonella infections: enteritis vs typhoid fever. Mircrobes Infect 3:1335–1344CrossRefGoogle Scholar
  258. Sauvages de la Croix FB (1763) Nosologia methodican sistens morborum classes, genera, et species, juxta sydenhami mentem et botanicorum ordinem. de Tournes, AmsterdamGoogle Scholar
  259. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States–major pathogens. Emerg Infect Dis 17:7–15PubMedGoogle Scholar
  260. Schmitt CK, Ikeda JS, Darnell SC, Watson PR, Bispham J, Wallis TS, Weinstein DL, Metcalf ES, O'Brien AD (2001) Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella enterica serovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness, and calf enterocolitis. Infect Immun 69:5619–5625PubMedCrossRefGoogle Scholar
  261. Secmeer G, Kanra G, Cemeroglu AP, Ozen H, Ceyhan M, Ecevit Z (1995) Salmonella typhi infections. A 10-year retrospective study. Turk J Pediatr 37:339–341PubMedGoogle Scholar
  262. Sekirov I, Gill N, Jogova M, Tam N, Robertson M, de Llanos R, Li Y, Finlay BB (2010) Salmonella SPI-1-mediated neutrophil recruitment during enteric colitis is associated with reduction and alteration in intestinal microbiota. Gut Microbes 1:30–41PubMedCrossRefGoogle Scholar
  263. Selander RK, Beltran P, Smith NH, Helmuth R, Rubin FA, Kopecko DJ, Ferris K, Tall BD, Cravioto A, Musser JM (1990) Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers. Infect Immun 58:2262–2275PubMedGoogle Scholar
  264. Senftner HF, Coughlin FE (1933) Typhoid carriers in New York state, with special reference to gall bladder operations. Am J Hyg 17:711–723Google Scholar
  265. Serefhanoglu K, Kaya E, Sevinc A, Aydogdu I, Kuku I, Ersoy Y (2003) Isolated thrombocytopenia: the presenting finding of typhoid fever. Clin Lab Haematol 25:63–65PubMedCrossRefGoogle Scholar
  266. Sharma A, Qadri A (2004) Vi polysaccharide of Salmonella typhi targets the prohibitin family of molecules in intestinal epithelial cells and suppresses early inflammatory responses. Proc Natl Acad Sci USA 101:17492–17497PubMedCrossRefGoogle Scholar
  267. Shin BM, Paik IK, Cho HI (1994) Bone marrow pathology of culture proven typhoid fever. J Korean Med Sci 9:57–63PubMedGoogle Scholar
  268. Silva-Herzog E, Detweiler CS (2010) Salmonella enterica replication in hemophagocytic macrophages requires two type three secretion systems. Infect Immun 78:3369–3377PubMedCrossRefGoogle Scholar
  269. Silverman M, Simon M (1980) Phase variation: genetic analysis of switching mutants. Cell 19:845–854PubMedCrossRefGoogle Scholar
  270. Simanjuntak CH, Paleologo FP, Punjabi NH, Darmowigoto R, Soeprawoto, Totosudirjo H, Haryanto P, Suprijanto E, Witham ND, Hoffman SL (1991) Oral immunisation against typhoid fever in Indonesia with Ty21a vaccine. Lancet 338:1055–1059PubMedCrossRefGoogle Scholar
  271. Smith NH, Beltran P, Selander RK (1990) Recombination of Salmonella phase 1 flagellin genes generates new serovars. J Bacteriol 172:2209–2216PubMedGoogle Scholar
  272. Snyder MJ, Gonzalez O, Palomino C, Music SI, Hornick RB, Perroni J, Woodward WE, Gonzalez C, DuPont HL, Woodward TE (1976) Comparative efficacy of chloramphenicol, ampicillin, and co-trimoxazole in the treatment of typhoid fever. Lancet 2:1155–1157PubMedCrossRefGoogle Scholar
  273. Soe GB, Overturf GD (1987) Treatment of typhoid fever and other systemic salmonelloses with cefotaxime, ceftriaxone, cefoperazone, and other newer cephalosporins. Rev Infect Dis 9:719–736PubMedCrossRefGoogle Scholar
  274. Song J, Willinger T, Rongvaux A, Eynon EE, Stevens S, Manz MG, Flavell RA, Galan JE (2010) A mouse model for the human pathogen Salmonella typhi. Cell Host Microbe 8:369–376PubMedCrossRefGoogle Scholar
  275. Soper GA (1907) The work of a chronic typhoid germ distributor. J Am Med Assoc 48:2019–2022CrossRefGoogle Scholar
  276. Sprinz H, Gangarosa EJ, Williams M, Hornick RB, Woodward TE (1966) Histopathology of the upper small intestines in typhoid fever. Biopsy study of experimental disease in man. Am J Dig Dis 11:615–624PubMedCrossRefGoogle Scholar
  277. Stecher B, Barthel M, Schlumberger MC, Haberli L, Rabsch W, Kremer M, Hardt WD (2008) Motility allows S. Typhimurium to benefit from the mucosal defence. Cell Microbiol 10:1166–1180PubMedCrossRefGoogle Scholar
  278. Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, Kremer M, Chaffron S, Macpherson AJ, Buer J, Parkhill J, Dougan G, von Mering C, Hardt WD (2007) Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol 5:2177–2189PubMedCrossRefGoogle Scholar
  279. Stocker BA (1949) Measurements of rate of mutation of flagellar antigenic phase in Salmonella typhi-murium. J Hyg (Lond) 47:398–413CrossRefGoogle Scholar
  280. Stone WS (1912) The medical of chronic typhoid infection (typhoid bacillus carriers). Am J Med Sci 143:544–557CrossRefGoogle Scholar
  281. Szu SC, Taylor DN, Trofa AC, Clements JD, Shiloach J, Sadoff JC, Bryla DA, Robbins JB (1994) Laboratory and preliminary clinical characterization of Vi capsular polysaccharide-protein conjugate vaccines. Infect Immun 62:4440–4444PubMedGoogle Scholar
  282. Tacket CO, Hone DM, Curtiss R 3rd, Kelly SM, Losonsky G, Guers L, Harris AM, Edelman R, Levine MM (1992a) Comparison of the safety and immunogenicity of delta aroC delta aroD and delta cya delta crp Salmonella typhi strains in adult volunteers. Infect Immun 60:536–541PubMedGoogle Scholar
  283. Tacket CO, Hone DM, Losonsky GA, Guers L, Edelman R, Levine MM (1992b) Clinical acceptability and immunogenicity of CVD 908 Salmonella typhi vaccine strain. Vaccine 10:443–446PubMedCrossRefGoogle Scholar
  284. Tacket CO, Sztein MB, Losonsky GA, Wasserman SS, Nataro JP, Edelman R, Pickard D, Dougan G, Chatfield SN, Levine MM (1997) Safety of live oral Salmonella typhi vaccine strains with deletions in htrA and aroC aroD and immune response in humans. Infect Immun 65:452–456PubMedGoogle Scholar
  285. Tacket CO, Sztein MB, Wasserman SS, Losonsky G, Kotloff KL, Wyant TL, Nataro JP, Edelman R, Perry J, Bedford P, Brown D, Chatfield S, Dougan G, Levine MM (2000) Phase 2 clinical trial of attenuated Salmonella enterica serovar typhi oral live vector vaccine CVD 908-htrA in U.S. volunteers. Infect Immun 68:1196–1201PubMedCrossRefGoogle Scholar
  286. Tewari A, Buhles WC Jr, Starnes HF Jr (1990) Preliminary report: effects of interleukin-1 on platelet counts. Lancet 336:712–714PubMedCrossRefGoogle Scholar
  287. Thiem VD, Lin FY, do Canh G, Son NH, Anh DD, Mao ND, Chu C, Hunt SW, Robbins JB, Schneerson R, Szu SC (2011) The Vi conjugate typhoid vaccine is safe, elicits protective levels of IgG anti-Vi, and is compatible with routine infant vaccines. Clin Vaccine Immunol 18:730–735PubMedCrossRefGoogle Scholar
  288. Thiennimitr P, Winter SE, Winter MG, Xavier MN, Tolstikov V, Huseby DL, Sterzenbach T, Tsolis RM, Roth JR, Bäumler AJ (2011) Intestinal inflammation allows Salmonella to utilize ethanolamine to compete with the microbiota. Proc Natl Acad Sci USA 108:17480–17485PubMedCrossRefGoogle Scholar
  289. Thomson NR, Clayton DJ, Windhorst D, Vernikos G, Davidson S, Churcher C, Quail MA, Stevens M, Jones MA, Watson M, Barron A, Layton A, Pickard D, Kingsley RA, Bignell A, Clark L, Harris B, Ormond D, Abdellah Z, Brooks K, Cherevach I, Chillingworth T, Woodward J, Norberczak H, Lord A, Arrowsmith C, Jagels K, Moule S, Mungall K, Sanders M, Whitehead S, Chabalgoity JA, Maskell D, Humphrey T, Roberts M, Barrow PA, Dougan G, Parkhill J (2008) Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res 18:1624–1637PubMedCrossRefGoogle Scholar
  290. Tindall BJ, Grimont PA, Garrity GM, Euzeby JP (2005) Nomenclature and taxonomy of the genus Salmonella. Int J Syst Evol Microbiol 55:521–524PubMedCrossRefGoogle Scholar
  291. Tonney FO, Caldwell FC, Griffin PJ (1916) The examination of the urine and the feces of suspect typhoid-carriers with a report on elaterin catharsis. J Infect Dis 18:239–246CrossRefGoogle Scholar
  292. Townsend SM, Kramer NE, Edwards R, Baker S, Hamlin N, Simmonds M, Stevens K, Maloy S, Parkhill J, Dougan G, Bäumler AJ (2001) Salmonella enterica serotype Typhi possesses a unique repertoire of fimbrial gene sequences. Infect Immun 69:2894–2901PubMedCrossRefGoogle Scholar
  293. Tran QT, Gomez G, Khare S, Lawhon SD, Raffatellu M, Baumler AJ, Ajithdoss D, Dhavala S, Adams LG (2010) The Salmonella enterica serotype Typhi Vi capsular antigen is expressed after the bacterium enters the ileal mucosa. Infect Immun 78:527–535PubMedCrossRefGoogle Scholar
  294. Tsolis RM, Adams LG, Ficht TA, Baumler AJ (1999a) Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves. Infect Immun 67:4879–4885PubMedGoogle Scholar
  295. Tsolis RM, Kingsley RA, Townsend SM, Ficht TA, Adams LG, Baumler AJ (1999b) Of mice, calves, and men. Comparison of the mouse typhoid model with other Salmonella infections. Adv Exp Med Biol 473:261–274PubMedCrossRefGoogle Scholar
  296. Tsolis RM, Townsend SM, Miao EA, Miller SI, Ficht TA, Adams LG, Baumler AJ (1999c) Identification of a putative Salmonella enterica serotype typhimurium host range factor with homology to IpaH and YopM by signature-tagged mutagenesis. Infect Immun 67:6385–6393PubMedGoogle Scholar
  297. Tsolis RM, Xavier MN, Santos RL, Baumler AJ (2011) How to become a top model: impact of animal experimentation on human Salmonella disease research. Infect Immun 79:1806–1814PubMedCrossRefGoogle Scholar
  298. Tsolis RM, Young GM, Solnick JV, Baumler AJ (2008) From bench to bedside: stealth of enteroinvasive pathogens. Nat Rev Microbiol 6:883–892PubMedCrossRefGoogle Scholar
  299. Tukel C, Nishimori JH, Wilson RP, Winter MG, Keestra AM, van Putten JP, Baumler AJ (2010) Toll-like receptors 1 and 2 cooperatively mediate immune responses to curli, a common amyloid from enterobacterial biofilms. Cell Microbiol 12:1495–1505PubMedCrossRefGoogle Scholar
  300. Tukel C, Raffatellu M, Humphries AD, Wilson RP, Andrews-Polymenis HL, Gull T, Figueiredo JF, Wong MH, Michelsen KS, Akcelik M, Adams LG, Baumler AJ (2005) CsgA is a pathogen-associated molecular pattern of Salmonella enterica serotype Typhimurium that is recognized by Toll-like receptor 2. Mol Microbiol 58:289–304PubMedCrossRefGoogle Scholar
  301. Tukel C, Wilson RP, Nishimori JH, Pezeshki M, Chromy BA, Baumler AJ (2009) Responses to amyloids of microbial and host origin are mediated through Toll-like receptor 2. Cell Host Microbe 6(1):45–53PubMedCrossRefGoogle Scholar
  302. Tumbarello M, Tacconelli E, Caponera S, Cauda R, Ortona L (1995) The impact of bacteraemia on HIV infection. Nine years experience in a large Italian university hospital. J Infect 31:123–131PubMedCrossRefGoogle Scholar
  303. Uba AF, Chirdan LB, Ituen AM, Mohammed AM (2007) Typhoid intestinal perforation in children: a continuing scourge in a developing country. Pediatr Surg Int 23:33–39PubMedCrossRefGoogle Scholar
  304. Uchiya K, Barbieri MA, Funato K, Shah AH, Stahl PD, Groisman EA (1999) A Salmonella virulence protein that inhibits cellular trafficking. EMBO J 18:3924–3933PubMedCrossRefGoogle Scholar
  305. Uwaydah M, Shammaa M (1964) The treatment of typhoid fever with ampicillin. Lancet 1:1242–1243PubMedCrossRefGoogle Scholar
  306. Vazquez-Torres A, Vallance BA, Bergman MA, Finlay BB, Cookson BT, Jones-Carson J, Fang FC (2004) Toll-like receptor 4 dependence of innate and adaptive immunity to Salmonella: importance of the Kupffer cell network. J Immunol 172:6202–6208PubMedGoogle Scholar
  307. Vazquez-Torres A, Xu Y, Jones-Carson J, Holden DW, Lucia SM, Dinauer MC, Mastroeni P, Fang FC (2000) Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287:1655–1658PubMedCrossRefGoogle Scholar
  308. Virlogeux I, Waxin H, Ecobichon C, Lee JO, Popoff MY (1996) Characterization of the rcsA and rcsB genes from Salmonella typhi: rcsB through tviA is involved in regulation of Vi antigen synthesis. J Bacteriol 178:1691–1698PubMedGoogle Scholar
  309. Virlogeux I, Waxin H, Ecobichon C, Popoff MY (1995) Role of the viaB locus in synthesis, transport and expression of Salmonella typhi Vi antigen. Microbiology 141(Pt 12):3039–3047PubMedCrossRefGoogle Scholar
  310. Wahdan MH, Serie C, Cerisier Y, Sallam S, Germanier R (1982) A controlled field trial of live Salmonella typhi strain Ty 21a oral vaccine against typhoid: three-year results. J Infect Dis 145:292–295PubMedCrossRefGoogle Scholar
  311. Wain J, Hoa NT, Chinh NT, Vinh H, Everett MJ, Diep TS, Day NP, Solomon T, White NJ, Piddock LJ, Parry CM (1997) Quinolone-resistant Salmonella typhi in Viet Nam: molecular basis of resistance and clinical response to treatment. Clin Infect Dis 25:1404–1410PubMedCrossRefGoogle Scholar
  312. Wang F, Gu XJ, Zhang MF, Tai TY (1989) Treatment of typhoid fever with ofloxacin. J Antimicrob Chemother 23:785–788PubMedCrossRefGoogle Scholar
  313. Weber JT, Levine WC, Hopkins DP, Tauxe RV (1994) Cholera in the United States, 1965-1991. Risks at home and abroad. Arch Intern Med 154:551–556PubMedCrossRefGoogle Scholar
  314. Weening EH, Barker JD, Laarakker MC, Humphries AD, Tsolis RM, Baumler AJ (2005) The Salmonella enterica serotype Typhimurium lpf, bcf, stb, stc, std, and sth fimbrial operons are required for intestinal persistence in mice. Infect Immun 73:3358–3366PubMedCrossRefGoogle Scholar
  315. Welton JC, Marr JS, Friedman SM (1979) Association between hepatobiliary cancer and typhoid carrier state. Lancet 1:791–794PubMedCrossRefGoogle Scholar
  316. Widal F (1896) Serodiagnostic de la fievre typhoide. Bulletin et Memoires de la Societe de Medicine des Hotitaux de Paris 13:561–566Google Scholar
  317. Willis T (1682) Opera omnia. De Febribus, AmstelaedamiGoogle Scholar
  318. Wilson RP, Raffatellu M, Chessa D, Winter SE, Tukel C, Baumler AJ (2008) The Vi-capsule prevents toll-like receptor 4 recognition of Salmonella. Cell Microbiol 10:876–890PubMedCrossRefGoogle Scholar
  319. Wilson RP, Winter SE, Spees AM, Winter MG, Nishimori JH, Sanchez JF, Nuccio SP, Crawford RW, Tukel C, Baumler AJ (2011) The Vi capsular polysaccharide prevents complement receptor 3-mediated clearance of Salmonella enterica serotype Typhi. Infect Immun 79:830–837PubMedCrossRefGoogle Scholar
  320. Wilson WJ, Blair EM (1927) Use of a glucose bismuth sulphite iron medium for the isolation of B. typhosus and B. proteus. J Hyg (Lond) 26:374–391CrossRefGoogle Scholar
  321. Wilson WJ, Blair EM (1931) Further experience of the bismuth sulphite media in the isolation of Bacillus typhosus and B. paratyphosus B from faeces, sewage and water. J Hyg (Lond) 31:138–161CrossRefGoogle Scholar
  322. Winter SE, Keestra AM, Tsolis RM, Bäumler AJ (2010a) The blessings and curses of intestinal inflammation. Cell Host Microbe 8:36–43PubMedCrossRefGoogle Scholar
  323. Winter SE, Thiennimitr P, Nuccio SP, Haneda T, Winter MG, Wilson RP, Russell JM, Henry T, Tran QT, Lawhon SD, Gomez G, Bevins CL, Russmann H, Monack DM, Adams LG, Baumler AJ (2009a) Contribution of flagellin pattern recognition to intestinal inflammation during Salmonella enterica serotype typhimurium infection. Infect Immun 77:1904–1916PubMedCrossRefGoogle Scholar
  324. Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, Russell JM, Bevins CL, Adams LG, Tsolis RM, Roth JR, Baumler AJ (2010b) Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467:426–429PubMedCrossRefGoogle Scholar
  325. Winter SE, Winter MG, Godinez I, Yang H-J, Russmann H, Andrews-Polymenis HL, Bäumler AJ (2010c) A rapid change in virulence gene expression during the transition from the intestinal lumen into tissue promotes systemic dissemination of Salmonella. PLoS Pathog 6(8):e1001060PubMedCrossRefGoogle Scholar
  326. Winter SE, Winter MG, Thiennimitr P, Gerriets VA, Nuccio SP, Russmann H, Baumler AJ (2009b) The TviA auxiliary protein renders the Salmonella enterica serotype Typhi RcsB regulon responsive to changes in osmolarity. Mol Microbiol 74:175–193PubMedCrossRefGoogle Scholar
  327. Wong KH, Feeley JC, Northrup RS, Forlines ME (1974) Vi antigen from Salmonella typhosa and immunity against typhoid fever. I. Isolation and immunologic properties in animals. Infect Immun 9:348–353PubMedGoogle Scholar
  328. Woodward TE, Smadel JE et al (1948) Preliminary report on the beneficial effect of chloromycetin in the treatment of typhoid fever. Ann Intern Med 29:131–134PubMedGoogle Scholar
  329. Woodward TE, Smadel JE, Ley HL Jr (1950) Chloramphenicol and other antibiotics in the treatment of typhoid fever and typhoid carriers. J Clin Invest 29:87–99PubMedCrossRefGoogle Scholar
  330. Wright AE (1896) On the association of serous haemorrhages with conditions of defective blood-coagulability. Lancet 2:807–809CrossRefGoogle Scholar
  331. Yamamoto S, Kutsukake K (2006) FljA-mediated posttranscriptional control of phase 1 flagellin expression in flagellar phase variation of Salmonella enterica serovar Typhimurium. J Bacteriol 188:958–967PubMedCrossRefGoogle Scholar
  332. Yap YF, Puthucheary SD (1998) Typhoid fever in children–a retrospective study of 54 cases from Malaysia. Singapore Med J 39:260–262PubMedGoogle Scholar
  333. Zhang S, Santos RL, Tsolis RM, Stender S, Hardt W-D, Bäumler AJ, Adams LG (2002) SipA, SopA, SopB, SopD and SopE2 act in concert to induce diarrhea in calves infected with Salmonella enterica serotype Typhimurium. Infect Immun 70:3843–3855PubMedCrossRefGoogle Scholar
  334. Zhou D, Mooseker MS, Galan JE (1999) Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science 283:2092–2095PubMedCrossRefGoogle Scholar
  335. Zinder ND (1958) Lysogenization and superinfection immunity in Salmonella. Virology 5:291–326PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Medical Microbiology and Immunology, School of MedicineUniversity of California at DavisDavisUSA

Personalised recommendations