Advertisement

Physiology and Biochemistry of the Methane-Producing Archaea

  • Reiner Hedderich
  • William B. Whitman

Abstract

Methanoarchaea are an ancient monophyletic lineage within the Euryarchaeota, thriving by chemolithotrophic energy metabolism. The chapter discusses three major problems: (i) distinguishing taxa on the basis of their similar phenotype; (ii) the extreme genetic diversity of methanogens and, consequently, the high variability of their metabolism; and (iii) based upon analysis of environmental DNA, the notion that the cultured methanogens represent a very sparse sampling of the likely diversity in nature. Hence, knowledge of the species richness and metabolic diversity of this group is necessarily incomplete. The following will focus on the large differences in cellular structure, metabolic pathways, and regulation. Methanoarchaea derive their metabolic energy from the conversion of a restricted number of substrates to methane. Most methanoarchaea can reduce CO2 to CH4. The major electron donors for this reduction are H2 and formate. In addition, some methanoarchaea can use alcohols like 2-propanol, 2-butanol, cyclopentanol, and ethanol as electron donors. The second type of substrate for methanogenesis includes C-1 compounds containing a methyl group carbon bonded to O, N, or S. Compounds of this type include methanol, monomethylamine, dimethylamine, trimethylamine, tetramethylammonium, dimethylsulfide, and methane thiol. The third type of substrate is acetate. In this reaction, the methyl (C-2) carbon of acetate is reduced to methane using electrons obtained from the oxidation of the carboxyl (C-1) carbon of acetate. This reaction is called the 'aceticlastic reaction' because it results in the splitting of acetate into methane and CO2. Key reactions of the different methanogenic pathways including, electron chains and structures, as well as genomic information and methanogenic coenzymes and enzymes in nonmethanogenic Archaea and Bacteria are described.

Keywords

Hydrogenotrophic Methanogen Anaerobic Methane Oxidation Methanosarcina Barkeri Methanogenic Pathway Heterodisulfide Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbanat DR, Ferry JG (1991) Resolution of component proteins in an enzyme complex from Methanosarcina thermophila catalyzing the synthesis or cleavage of acetyl-CoA. Proc Natl Acad Sci USA 88:3272–3276PubMedCrossRefGoogle Scholar
  2. Abken HJ, Tietze M, Brodersen J, Bäumer S, Beifuss U, Deppenmeier U (1998) Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1. J Bacteriol 180:2027–2032PubMedGoogle Scholar
  3. Afting C, Hochheimer A, Thauer RK (1998) Function of H2-forming methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum in coenzyme F420 reduction with H2. Arch Microbiol 169:206–210PubMedCrossRefGoogle Scholar
  4. Afting C, Kremmer E, Brucker C, Hochheimer A, Thauer RK (2000) Regulation of the synthesis of H2-forming methylenetetrahydromethanopterin dehydrogenase (Hmd) and of HmdII and HmdIII in Methanothermobacter marburgensis. Arch Microbiol 174:225–232PubMedCrossRefGoogle Scholar
  5. Allen JR, Clark DD, Krum JG, Ensign SA (1999) A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation. Proc Natl Acad Sci USA 96:8432–8437PubMedCrossRefGoogle Scholar
  6. Banerjee RV, Johnston NL, Sobeski JK, Datta P, Matthews RG (1989) Cloning and sequence analysis of the Escherichia coli metH gene encoding cobalamin-dependent methionine synthase and isolation of a tryptic fragment containing the cobalamin-binding domain. J Biol Chem 264:13888–13895PubMedGoogle Scholar
  7. Baughn AD, Malamy MH (2004) The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 427:441–444PubMedCrossRefGoogle Scholar
  8. Bäumer S, Ide T, Jacobi C, Johann A, Gottschalk G, Deppenmeier U (2000) The F420H2 dehydrogenase from Methanosarcina mazei is a redox-driven proton pump closely related to NADH dehydrogenases. J Biol Chem 275:17968–17973PubMedCrossRefGoogle Scholar
  9. Bonacker LG, Baudner S, Thauer RK (1992) Differential expression of the two methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum as determined immunochemically via isoenzyme-specific antisera. Eur J Biochem 206:87–92PubMedCrossRefGoogle Scholar
  10. Bonacker LG, Baudner S, Mörschel E, Böcher R, Thauer RK (1993) Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. Eur J Biochem 217:587–595PubMedCrossRefGoogle Scholar
  11. Boone DR (2001) Class I: Methanobacteria. In: Boone DR, Castenholtz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, p 213CrossRefGoogle Scholar
  12. Boone DR, Whitman WB, Rouvière P (1993) Diversity and taxonomy of methanogens. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 35–80CrossRefGoogle Scholar
  13. Brüggemann H, Falinski F, Deppenmeier U (2000) Structure of the F420H2:quinone oxidoreductase of Archaeoglobus fulgidus identification and overproduction of the F420H2-oxidizing subunit. Eur J Biochem 267:5810–5814PubMedCrossRefGoogle Scholar
  14. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb J-F, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NSM, Weidman JF, Fuhrmann JL, Nguyen D, Utterback TR, Kelley JM, Peterson JD, Sadow PW, Hanna MC, Cotton MD, Roberts KM, Hurst MA, Kaine BP, Borodovsky M, Klenk H-P, Fraser CM, Smith HO, Woese CR, Venter JC (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073PubMedCrossRefGoogle Scholar
  15. Buurman G, Shima S, Thauer RK (2000) The metal-free hydrogenase from methanogenic archaea: evidence for a bound cofactor. FEBS Lett 485:200–204PubMedCrossRefGoogle Scholar
  16. Chistoserdova L, Vorholt JA, Thauer RK, Lidstrom ME (1998) C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea. Science 281:99–102PubMedCrossRefGoogle Scholar
  17. Choi KP, Bair TB, Bae YM, Daniels L (2001) Use of transposon Tn5367 mutagenesis and a nitroimidazopyran-based selection system to demonstrate a requirement for fbiA and fbiB in coenzyme F420 biosynthesis by Mycobacterium bovis BCG. J Bacteriol 183:7058–7066PubMedCrossRefGoogle Scholar
  18. Cohen-Kupiec R, Blank C, Leigh JA (1997) Transcriptional regulation in archaea: in vivo demonstration of a repressor binding site in a methanogen. Proc Natl Acad Sci USA 94:1316–1320PubMedCrossRefGoogle Scholar
  19. Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640PubMedGoogle Scholar
  20. Dai YR, Reed DW, Millstein JH, Hartzell PL, Grahame DA, DeMoll E (1998) Acetyl-CoA decarbonylase/synthase complex from Archaeoglobus fulgidus. Arch Microbiol 169:525–529PubMedCrossRefGoogle Scholar
  21. Darnault C, Volbeda A, Kim EJ, Legrand P, Vernede X, Lindahl PA, Fontecilla-Camps JC (2003) Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase. Nat Struct Biol 10:271–279PubMedCrossRefGoogle Scholar
  22. Deppenmeier U (1995) Different structure and expression of the operons encoding the membrane-bound hydrogenases from Methanosarcina mazei Gö1. Arch Microbiol 164:370–376PubMedCrossRefGoogle Scholar
  23. Deppenmeier U (2002) The unique biochemistry of methanogenesis. Progr Nucl Acid Res Mol Biol 71:223–283CrossRefGoogle Scholar
  24. Deppenmeier U (2004) The membrane-bound electron transport system of Methanosarcina species. J Bioenerg Biomembr 36:55–64PubMedCrossRefGoogle Scholar
  25. Deppenmeier U, Blaut M, Lentes S, Herzberg C, Gottschalk G (1995) Analysis of the vhoGAC and vhtGAC operons from Methanosarcina mazei strain Gö1, both encoding a membrane-bound hydrogenase and a cytochrome b. Eur J Biochem 227:261–269PubMedCrossRefGoogle Scholar
  26. Deppenmeier U, Müller V, Gottschalk G (1996) Pathways of energy conservation in methanogenic archaea. Arch Microbiol 165:149–163CrossRefGoogle Scholar
  27. Deppenmeier U, Lienard T, Gottschalk G (1999) Novel reactions involved in energy conservation by methanogenic archaea. FEBS Lett 457:291–297PubMedCrossRefGoogle Scholar
  28. Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R, Henne A, Wiezer A, Bäumer S, Jacobi C, Brüggemann H, Lienard T, Christmann A, Bömeke M, Steckel S, Bhattacharyya A, Lykidis A, Overbeek R, Klenk H-P, Gunsalus RP, Fritz H-J, Gottschalk G (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and Archaea. J Mol Microbiol Biotechnol 4:453–461PubMedGoogle Scholar
  29. Dighe AS, Jangid K, González JM, Pidiyar VJ, Patole MS, Ranade DR, Shouche YS (2004) Comparison of 16S rRNA gene sequences of genus Methanobrevibacter. BMC Microbiol 4(20)Google Scholar
  30. DiMarco AA, Bobik TA, Wolfe RS (1990) Unusual coenzymes of methanogenesis. Annu Rev Biochem 59:355–394PubMedCrossRefGoogle Scholar
  31. Dobbek H, Svetlitchnyi V, Gremer L, Huber R, Meyer O (2001) Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science 293:1281–1285PubMedCrossRefGoogle Scholar
  32. Drennan CL, Heo J, Sintchak MD, Schreiter E, Ludden PW (2001) Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase. Proc Natl Acad Sci USA 98:11973–11978PubMedCrossRefGoogle Scholar
  33. Duin EC, Bauer C, Jaun B, Hedderich R (2003) Coenzyme M binds to a [4Fe-4S] cluster in the active site of heterodisulfide reductase as deduced from EPR studies with the [33S]coenzyme M-treated enzyme. FEBS Lett 538:81–84PubMedCrossRefGoogle Scholar
  34. Ensign SA, Allen JR (2003) Aliphatic epoxide carboxylation. Annu Rev Biochem 72:55–76PubMedCrossRefGoogle Scholar
  35. Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK (1997) Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 278:1457–1462PubMedCrossRefGoogle Scholar
  36. Ferguson DJ Jr, Gorlatova N, Grahame DA, Krzycki JA (2000) Reconstitution of dimethylamine:coenzyme M methyl transfer with a discrete corrinoid protein and two methyltransferases purified from Methanosarcina barkeri. J Biol Chem 275:29053–29060PubMedCrossRefGoogle Scholar
  37. Ferry JG (1997) Enzymology of the fermentation of acetate to methane by Methanosarcina thermophila. Biofactors 6:25–35PubMedCrossRefGoogle Scholar
  38. Ferry JG (1999) Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol Rev 23:13–38PubMedCrossRefGoogle Scholar
  39. Forrest WW, Walker DJ (1971) The generation and utilization of energy during growth. Adv Microbiol Physiol 5:213–274CrossRefGoogle Scholar
  40. Franzmann PD, Springer N, Ludwig W, Conway de Macario E, Rohde M (1992) A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15:573–581CrossRefGoogle Scholar
  41. Franzmann PD, Liu Y, Balkwill DL, Aldrich HC, Conway de Macario E, Boone DR (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antartica. Int J Syst Bacteriol 47:1068–1072PubMedCrossRefGoogle Scholar
  42. Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, DeArellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrell A, Ye W, Zimmer A, Barber RD, Cann I, Graham DE, Grahame DA, Guss AM, Hedderich R, Ingram-Smith C, Kuettner HC, Krzycki JA, Leigh JA, Li W, Liu J, Mukhopadhyay B, Reeve JN, Smith K, Springer TA, Umayam LA, White O, White RH, Conway de Macario E, Ferry JG, Jarrell KF, Jing H, Macario AJ, Paulsen I, Pritchett M, Sowers KR, Swanson RV, Zinder SH, Lander E, Metcalf WW, Birren B (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542PubMedCrossRefGoogle Scholar
  43. Gärtner P, Ecker A, Fischer R, Linder D, Fuchs G, Thauer RK (1993) Purification and properties of N5-methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanobacterium thermoautotrophicum. Eur J Biochem 213:537–545PubMedCrossRefGoogle Scholar
  44. Gencic S, Grahame DA (2003) Nickel in subunit beta of the acetyl-CoA decarbonylase/synthase multienzyme complex in methanogens. Catalytic properties and evidence for a binuclear Ni-Ni site. J Biol Chem 278:6101–6110PubMedCrossRefGoogle Scholar
  45. Goenrich M, Mahlert F, Duin EC, Bauer C, Jaun B, Thauer RK (2004) Probing the reactivity of Ni in the active site of methyl-coenzyme M reductase with substrate analogues. J Biol Inorg Chem 9:691–705PubMedCrossRefGoogle Scholar
  46. Gorris LG, van der Drift C (1994) Cofactor contents of methanogenic bacteria reviewed. Biofactors 4:139–145PubMedGoogle Scholar
  47. Gorris LG, Voet AC, van der Drift C (1991) Structural characteristics of methanogenic cofactors in the non-methanogenic archaebacterium Archaeoglobus fulgidus. Biofactors 3:29–35PubMedGoogle Scholar
  48. Gottschalk G, Thauer RK (2001) The Na+-translocating methyltransferase complex from methanogenic archaea. Biochim Biophys Acta 1505:28–36PubMedCrossRefGoogle Scholar
  49. Grahame DA, DeMoll E (1996) Partial reactions catalyzed by protein components of the acetyl-CoA decarbonylase synthase enzyme complex from Methanosarcina barkeri. J Biol Chem 271:8352–8358PubMedCrossRefGoogle Scholar
  50. Hagemeier CH, Shima S, Thauer RK, Bourenkov G, Bartunik HD, Ermler U (2003) Coenzyme F420-dependent methylenetetrahydromethanopterin dehydrogenase (Mtd) from Methanopyrus kandleri: a methanogenic enzyme with an unusual quaternary structure. J Mol Biol 332:1047–1057PubMedCrossRefGoogle Scholar
  51. Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl Environ Microbiol 69:5483–5491PubMedCrossRefGoogle Scholar
  52. Hao B, Gong W, Ferguson TK, James CM, Krzycki JA, Chan MK (2002) A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 296:1462–1466PubMedCrossRefGoogle Scholar
  53. Harms U, Thauer RK (1997) Identification of the active site histidine in the corrinoid protein MtrA of the energy-conserving methyltransferase complex from Methanobacterium thermoautotrophicum. Eur J Biochem 250:783–788PubMedCrossRefGoogle Scholar
  54. Hedderich R (2004) Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I. J Bioenerg Biomembr 36:65–75PubMedCrossRefGoogle Scholar
  55. Hedderich R, Klimmek O, Kröger A, Dirmeier R, Keller M, Stetter KO (1998) Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev 22:353–381CrossRefGoogle Scholar
  56. Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, Conway de Macario E, Dodsworth JA, Gillett W, Graham DE, Hackett M, Haydock AK, Kang A, Land ML, Levy R, Lie TJ, Major TA, Moore BC, Porat I, Palmeiri A, Rouse G, Saenphimmachak C, Söll D, van Dien S, Wang T, Whitman WB, Xia Q, Zhang Y, Larimer FW, Olson MV, Leigh JA (2004) Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 186:6956–6969PubMedCrossRefGoogle Scholar
  57. Hippler B, Thauer RK (1999) The energy conserving methyltetrahydromethanopterin:coenzyme M methyltransferase complex from methanogenic archaea: function of the subunit MtrH. FEBS Lett 449:165–168PubMedCrossRefGoogle Scholar
  58. Hochheimer A, Linder D, Thauer RK, Hedderich R (1996) The molybdenum formylmethanofuran dehydrogenase operon and the tungsten formylmethanofuran dehydrogenase operon from Methanobacterium thermoautotrophicum: structures and transcriptional regulation. Eur J Biochem 242:156–162PubMedCrossRefGoogle Scholar
  59. Hochheimer A, Hedderich R, Thauer RK (1999) The DNA binding protein Tfx from Methanobacterium thermoautotrophicum: structure, DNA binding properties and transcriptional regulation. Mol Microbiol 31:641–650PubMedCrossRefGoogle Scholar
  60. Ide T, Bäumer S, Deppenmeier U (1999) Energy conservation by the H2:heterodisulfide oxidoreductase from Methanosarcina mazei Gö1: identification of two proton-translocating segments. J Bacteriol 181:4076–4080PubMedGoogle Scholar
  61. Ingraham JL, Maaløe O, Neidhardt FC (1983) Growth of the bacterial cell. Sineaur, Sunderland, pp 87–173Google Scholar
  62. Jablonski PE, DiMarco AA, Bobik TA, Cabell MC, Ferry JG (1990) Protein content and enzyme activities in methanol-and acetate-grown Methanosarcina thermophila. J Bacteriol 172:1271–1275PubMedGoogle Scholar
  63. James CM, Ferguson TK, Leykam JF, Krzycki JA (2001) The amber codon in the gene encoding the monomethylamine methyltransferase isolated from Methanosarcina barkeri is translated as a sense codon. J Biol Chem 276:34252–34258PubMedCrossRefGoogle Scholar
  64. Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261CrossRefGoogle Scholar
  65. Kaesler B, Schönheit P (1989) The sodium cycle in methanogenesis. CO2 reduction to the formaldehyde level in methanogenic bacteria is driven by a primary electrochemical potential of Na+ generated by formaldehyde reduction to CH4. Eur J Biochem 186:309–316PubMedCrossRefGoogle Scholar
  66. Känkel A, Vorholt JA, Thauer RK, Hedderich R (1998) An Escherichia coli hydrogenase-3-type hydrogenase in methanogenic archaea. Eur J Biochem 252:467–476CrossRefGoogle Scholar
  67. Kessler PS, Daniel C, Leigh JA (2001) Ammonia switch-off of nitrogen fixation in the methanogenic archaeon Methanococcus maripaludis: mechanistic features and requirement for the novel GlnB homologues, NifI1 and NifI2. J Bacteriol 183:882–889PubMedCrossRefGoogle Scholar
  68. Keswani J, Whitman WB (2001) Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int J Syst Evol Microbiol 51:667–678PubMedGoogle Scholar
  69. Kiener A, Konig H, Winter J, Leisinger T (1987) Purification and use of Methanobacterium wolfei pseudomurein endopeptidase for lysis of Methanobacterium thermoautotrophicum. J Bacteriol 169:1010–1016PubMedGoogle Scholar
  70. Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B, Peterson S, Reich CI, McNeil LK, Badger JH, Glodek A, Zhou L, Overbeek R, Gocayne JD, Weidmann JF, McDonald L, Utterback T, Cotton MD, Spriggs T, Atriach P, Kaine BP, Sykes SM, Sadow PW, D’Andrea KP, Bowman C, Fujii C, Garland SA, Mason TM, Olsen GJ, Fraser CM, Smith HO, Woese CR, Venter JC (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370PubMedCrossRefGoogle Scholar
  71. Kräger M, Meyerdierks A, Glockner FO, Amann R, Widdel F, Kube M, Reinhardt R, Kahnt J, Böcher R, Thauer RK, Shima S (2003) A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426:878–881CrossRefGoogle Scholar
  72. Kräutler B (1998) B12-coenzymes: the central theme. In: Kräutler B, Arigoni D, Golding B (eds) Vitamin B12 and B12-proteins. Wiley, New York, pp 4–43CrossRefGoogle Scholar
  73. Kunow J, Linder D, Stetter KO, Thauer RK (1994) F420H2:quinone oxidoreductase from Archaeoglobus fulgidus. Characterization of a membrane-bound multisubunit complex containing FAD and iron-sulfur clusters. Eur J Biochem 223:503–511PubMedCrossRefGoogle Scholar
  74. Kurr M, Huber R, König H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK, Stetter KO (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110° C. Arch Microbiol 156:239–247CrossRefGoogle Scholar
  75. Lie TJ, Leigh JA (2002) Regulatory response of Methanococcus maripaludis to alanine, an intermediate nitrogen source. J Bacteriol 184:5301–5306PubMedCrossRefGoogle Scholar
  76. Lie TJ, Leigh JA (2003) Novel repressor of nif and glnA expression in the methanogenic archaeon Methanococcus maripaludis. Mol Microbiol 47:235–246PubMedCrossRefGoogle Scholar
  77. Lienard T, Becher B, Marschall M, Bowien S, Gottschalk G (1996) Sodium ion translocation by N5-methyltetrahydromethanopterin: coenzyme M methyltransferase from Methanosarcina mazei Gö1 reconstituted in ether lipid liposomes. Eur J Biochem 239:857–864PubMedCrossRefGoogle Scholar
  78. Lomans BP, Maas R, Luderer R, Op den Camp HJM, Pol A, van der Drift C, Vogels GD (1999) Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl Environ Microbiol 65:3641–3650PubMedGoogle Scholar
  79. Luo HW, Zhang H, Suzuki T, Hattori S, Kamagata Y (2002) Differential expression of methanogenesis genes of Methanothermobacter thermoautotrophicus (formerly Methanobacterium thermoautotrophicum) in pure culture and in cocultures with fatty acid-oxidizing syntrophs. Appl Environ Microbiol 68:1173–1179PubMedCrossRefGoogle Scholar
  80. Lyon EJ, Shima S, Boecher R, Thauer RK, Grevels FW, Bill E, Roseboom W, Albracht SP (2004a) Carbon monoxide as an intrinsic ligand to iron in the active site of the iron-sulfur-cluster-free hydrogenase H2-forming methylenetetrahydromethanopterin dehydrogenase as revealed by infrared spectroscopy. J Am Chem Soc 126:14239–14248PubMedCrossRefGoogle Scholar
  81. Lyon EJ, Shima S, Buurman G, Chowdhuri S, Batschauer A, Steinbach K, Thauer RK (2004b) UV-A/blue-light inactivation of the “metal-free” hydrogenase (Hmd) from methanogenic archaea. Eur J Biochem 271:195–204PubMedCrossRefGoogle Scholar
  82. Madadi-Kahkesh S, Duin EC, Heim S, Albracht SPJ, Johnson MK, Hedderich R (2001) A paramagnetic species with unique EPR characteristics in the active site of heterodisulfide reductase from methanogenic archaea. Eur J Biochem 268:2566–2577PubMedCrossRefGoogle Scholar
  83. Maden BE (2000) Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. Biochem J 350(Pt 3):609–629PubMedCrossRefGoogle Scholar
  84. Mander GJ, Duin EC, Linder D, Stetter KO, Hedderich R (2002) Purification and characterization of a membrane-bound enzyme complex from the sulfate-reducing archaeon Archaeoglobus fulgidus related to heterodisulfide reductase from methanogenic archaea. Eur J Biochem 269:1895–1904PubMedCrossRefGoogle Scholar
  85. Meuer J, Bartoschek S, Koch J, Künkel A, Hedderich R (1999) Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri. Eur J Biochem 265:325–335PubMedCrossRefGoogle Scholar
  86. Meuer J, Kuettner HC, Zhang JK, Hedderich R, Metcalf WW (2002) Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc Natl Acad Sci USA 99:5632–5637PubMedCrossRefGoogle Scholar
  87. Miller TL (1991) Biogenic sources of methane. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases. American Society for Microbiology, Washington, DC, pp 175–187Google Scholar
  88. Miller TL (2001) Genus II: Methanobrevibacter. In: Boone DR, Castenholtz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 218–226Google Scholar
  89. Miller TL, Lin C (2002) Description of Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov. Int J Syst Evol Microbiol 52:819–922PubMedCrossRefGoogle Scholar
  90. Miller TL, Wolin MJ (1982) Enumeration of Methanobrevibacter smithii in human feces. Arch Microbiol 131:14–18PubMedCrossRefGoogle Scholar
  91. Möller V (2004) An exceptional variability in the motor of archael A1A0 ATPases: from multimeric to monomeric rotors comprising 6–13 ion binding sites. J Bioenerg Biomembr 36:115–125CrossRefGoogle Scholar
  92. Möller-Zinkhan D, Börner G, Thauer RK (1989) Function of methanofuran, tetrahydromethanopterin, and coenzyme F420 in Archaeoglobus fulgidus. Arch Microbiol 152:362–368CrossRefGoogle Scholar
  93. Monson RK, Holland EA (2001) Biospheric trace gas fluxes and their control over tropospheric chemistry. Annu Rev Ecol Syst 32:547–576CrossRefGoogle Scholar
  94. Morgan RM, Pihl TD, Nolling J, Reeve JN (1997) Hydrogen regulation of growth, growth yields, and methane gene transcription in Methanobacterium thermoautotrophicum &Δ H. J Bacteriol 179:889–898PubMedGoogle Scholar
  95. Mukhopadhyay B, Purwantini E, Daniels L (1993) Effect of methanogenic substrates on coenzyme F420-dependent N5, N10-methylene-H4MPT dehydrogenase, N5, N10-methenyl-H4MPT cyclohydrolase and F420-reducing hydrogenase activities in Methanosarcina barkeri. Arch Microbiol 159:141–146CrossRefGoogle Scholar
  96. Mukhopadhyay B, Johnson EF, Wolfe RS (2000) A novel pH2 control on the expression of flagella in the hyperthermophilic strictly hydrogenotrophic methanarchaeaon Methanococcus jannaschii. Proc Natl Acad Sci USA 97:11522–11527PubMedCrossRefGoogle Scholar
  97. Müller S, Klein A (2001) Coordinate positive regulation of genes encoding [NiFe] hydrogenases in Methanococcus voltae. Mol Genet Genomics 265:1069–1075PubMedCrossRefGoogle Scholar
  98. Noll I, Müller S, Klein A (1999) Transcriptional regulation of genes encoding the selenium-free [NiFe]-hydrogenases in the archaeon Methanococcus voltae involves positive and negative control elements. Genetics 152:1335–1341PubMedGoogle Scholar
  99. Pennings JL, Keltjens JT, Vogels GD (1998) Isolation and characterization of Methanobacterium thermoautotrophicum DeltaH mutants unable to grow under hydrogen-deprived conditions. J Bacteriol 180:2676–2681PubMedGoogle Scholar
  100. Reeburgh WS, Whalen SC, Alperin MJ (1993) The role of methylotrophy in the global methane budget. In: Murrell JC, Kelly DP (eds) Microbial growth on C1 compounds. Intercept, Andover, pp 1–14Google Scholar
  101. Reeburögh WS (2003) Global methane biogeochemistry. In: Keeling RF (ed) Treatise on geochemistry, volume 4: the atmosphere. Elsevier/Pergamon, Oxford, pp 65–89Google Scholar
  102. Sauer K, Thauer RK (1997) Methanol:coenzyme M methyltransferase from Methanosarcina barkeri: zinc dependence and thermodynamics of the methanol:cob(I)alamin methyltransferase reaction. Eur J Biochem 249:280–285PubMedCrossRefGoogle Scholar
  103. Saunders NFW, Thomas T, Curmi PMG, Mattick JS, Kuczek E, Slade R, Davis J, Franzmann PD, Boone D, Rusterholtz K, Feldman R, Gates C, Bench S, Sowers K, Kadner K, Aerts A, Dehal P, Detter C, Glavina T, Lucas S, Richardson P, Larimer F, Hauser L, Land M, Cavicchioli R (2003) Mechanisms of thermal adaptation revealed from the genomes of the antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res 13:1580–1588PubMedCrossRefGoogle Scholar
  104. Schauer NL, Ferry JG (1980) Metabolism of formate in Methanobacterium formicicum. J Bacteriol 142:800–807PubMedGoogle Scholar
  105. Schill N, van Gulik WM, Voisard D, von Stockar U (1996) Continuous cultures limited by a gaseous substrate: development of a simple, unstructured mathematical model and experimental verification with Methanobacterium thermoautotrophicum. Biotechnol Bioeng 51:645–658PubMedCrossRefGoogle Scholar
  106. Schlesinger WH (1991) Biogeochemistry: an analysis of global change, 2nd edn. Academic, New YorkGoogle Scholar
  107. Seedorf H, Dreisbach A, Hedderich R, Shima S, Thauer RK (2004) F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification. Arch Microbiol 182:126–137PubMedCrossRefGoogle Scholar
  108. Seravalli J, Xiao Y, Gu W, Cramer SP, Antholine WE, Krymov V, Gerfen GJ, Ragsdale SW (2004) Evidence that NiNi acetyl-CoA synthase is active and that the CuNi enzyme is not. Biochemistry 43:3944–3955PubMedCrossRefGoogle Scholar
  109. Setzke E, Hedderich R, Heiden S, Thauer RK (1994) H2: heterodisulfide oxidoreductase complex from Methanobacterium thermoautotrophicum: composition and properties. Eur J Biochem 220:139–148PubMedCrossRefGoogle Scholar
  110. Shima S, Warkentin E, Thauer RK, Ermler U (2002) Structure and function of enzymes involved in the methanogenic pathway utilizing carbon dioxide and molecular hydrogen. J Biosci Bioeng 93:519–530PubMedGoogle Scholar
  111. Shima S, Lyon EJ, Sordel-Klippert M, Kauß M, Kahnt J, Thauer RK, Steinbach K, Xie X, Verdier L, Griesinger C (2004) The cofactor of the iron-sulfur cluster free hydrogenase Hmd: structure of the light-inactivation product. Angew Chem Int Ed Engl 43:2547–2551PubMedCrossRefGoogle Scholar
  112. Singh-Wissmann K, Ferry JG (1995) Transcriptional regulation of the phosphotransacetylase-encoding and acetate kinase-encoding genes (pta and ack) from Methanosarcina thermophila. J Bacteriol 177:1699–1702PubMedGoogle Scholar
  113. Slesarev AI, Mezhevaya KV, Makarova KS, Polushin NN, Shcherbinina OV, Shakhova VV, Belova GI, Aravind L, Natale DA, Rogozin IB, Tatusov RL, Wolf YI, Stetter KO, Malykh AG, Koonin EV, Kozyavkin SA (2002) The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proc Natl Acad Sci USA 99:4644–4649PubMedCrossRefGoogle Scholar
  114. Smith DR, Douchette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T, Bashirzadeh R, Blakely D, Cook R, Gilbert K, Harrison D, Hoang L, Keagle P, Lumm W, Pothier B, Qiu D, Spadafora R, Vicaire R, Wang Y, Wierzbowski J, Gibson R, Jiwani N, Caruso A, Bush D, Safer H, Patwell D, Prabhakar S, McDougall S, Shimer G, Goyal A, Pietrokovski S, Church GM, Daniels CJ, Mao J-I, Rice P, Nölling J, Reeve JN (1997) Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol 179:7135–7155PubMedGoogle Scholar
  115. Sorgenfrei O, Müller S, Pfeiffer M, Sniezko I, Klein A (1997) The [NiFe] hydrogenases of Methanococcus voltae: genes, enzymes and regulation. Arch Microbiol 167:189–195PubMedCrossRefGoogle Scholar
  116. Sowers KR, Thai TT, Gunsalus RP (1993) Transcriptional regulation of the carbon monoxide dehydrogenase gene (cdhA) in Methanosarcina thermophila. J Biol Chem 268:23172–23178PubMedGoogle Scholar
  117. Sprenger WW, van Belzen MC, Rosenberg J, Hackstein JHP, Keltjens JT (2000) Methanomicrococcus blatticola gen. nov., sp. nov., a methanol-and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int J Syst Evol Microbiol 50:1989–1999PubMedCrossRefGoogle Scholar
  118. Srinivasan G, James CM, Krzycki JA (2002) Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science 296:1459–1462PubMedCrossRefGoogle Scholar
  119. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  120. Stettler R, Thurner C, Stax D, Meile L, Leisinger T (1995) Evidence for a defective prophage on the chromosome of Methanobacterium wolfei. FEMS Microbiol Lett 132:85–89PubMedCrossRefGoogle Scholar
  121. Stojanowic A, Hedderich R (2004) CO2 reduction to the level of formylmethanofuran in Methanosarcina barkeri is non-energy driven when CO is the electron donor. FEMS Microbiol Lett 235:163–167PubMedCrossRefGoogle Scholar
  122. Stojanowic A, Mander GJ, Duin EC, Hedderich R (2003) Physiological role of the F420-non-reducing hydrogenase (Mvh) from Methanothermobacter marburgensis. Arch Microbiol 180:194–203PubMedCrossRefGoogle Scholar
  123. Sun J, Klein A (2004) A lysR-type regulator is involved in the negative regulation of genes encoding selenium-free hydrogenases in the archaeon Methanococcus voltae. Mol Microbiol 52:563–571PubMedCrossRefGoogle Scholar
  124. Svetlitchnyi V, Dobbek H, Meyer-Klaucke W, Meins T, Thiele B, Romer P, Huber R, Meyer O (2004) A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans. Proc Natl Acad Sci USA 101:446–451PubMedCrossRefGoogle Scholar
  125. Tallant TC, Paul L, Krzycki JA (2001) The MtsA subunit of the methylthiol:coenzyme M methyltransferase of Methanosarcina barkeri catalyses both half-reactions of corrinoid-dependent dimethylsulfide: coenzyme M methyl transfer. J Biol Chem 276:4485–4493PubMedCrossRefGoogle Scholar
  126. Tersteegen A, Hedderich R (1999) Methanobacterium thermoautotrophicum encodes two multi-subunit membrane-bound [NiFe] hydrogenases: transcription of the operons and sequence analysis of the deduced proteins. Eur J Biochem 264:930–943PubMedCrossRefGoogle Scholar
  127. Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406PubMedCrossRefGoogle Scholar
  128. Thauer RK, Sauer K (1999) The role of corrinoids in methanogenesis. In: Banerjee R (ed) Chemistry and biochemistry of B12. Wiley, New York, pp 655–679Google Scholar
  129. Thauer RK, Klein AR, Hartmann GC (1996) Reactions with molecular hydrogen in microorganisms: evidence for a purely organic hydrogenation catalyst. Chem Rev 96:3031–3042PubMedCrossRefGoogle Scholar
  130. Tsao J-H, Kaneshiro SM, Yu S-S, Clark DS (1994) Continuous culture of Methanococcus jannaschii, an extremely thermophilic methanogen. Biotechnol Bioeng 43:258–261PubMedCrossRefGoogle Scholar
  131. Tyler SC (1991) The global methane budget. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases. American Society for Microbiology, Washington, DC, pp 7–38Google Scholar
  132. Valentine DL, Reeburgh WS (2000) New perspectives on anaerobic methane oxidation. Environ Microbiol 2:477–484PubMedCrossRefGoogle Scholar
  133. Vermeij P, Detmers FJ, Broers FJ, Keltjens JT, van der Drift C (1994) Purification and characterization of coenzyme F390 synthetase from Methanobacterium thermoautotrophicum (strain delta H). Eur J Biochem 226:185–191PubMedCrossRefGoogle Scholar
  134. Vermeij P, Vinke E, Keltjens JT, van der Drift C (1995) Purification and properties of coenzyme F390 hydrolase from Methanobacterium thermoautotrophicum (strain Marburg). Eur J Biochem 234:592–597PubMedCrossRefGoogle Scholar
  135. Vermeij P, Pennings JL, Maassen SM, Keltjens JT, Vogels GD (1997) Cellular levels of Factor 390 and methanogenic enzymes during growth of Methanobacterium thermoautotrophicum DeltaH. J Bacteriol 179:6640–6648PubMedGoogle Scholar
  136. Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501PubMedGoogle Scholar
  137. Vogels GD, Keltjens JT, van der Drift C (1988) Biochemistry of methane production. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 707–770Google Scholar
  138. Vorholt JA, Thauer RK (2002) Molybdenum and tungsten enzymes in C1 metabolism. Met Ions Biol Syst 39:571–619PubMedGoogle Scholar
  139. Vorholt JA, Vaupel M, Thauer RK (1997) A selenium-dependent and selenium-independent formylmethanofuran dehydrogenase and their transcriptional regulation in the hyperthermophilic Methanopyrus kandleri. Mol Microbiol 23:1033–1042PubMedCrossRefGoogle Scholar
  140. Warkentin E, Mamat B, Sordel-Klippert M, Wicke M, Thauer RK, Iwata M, Iwata S, Ermler U, Shima S (2001) Structures of F420H2:NADP+ oxidoreductase with and without its substrates bound. EMBO J 20:6561–6569PubMedCrossRefGoogle Scholar
  141. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  142. Weiss DS, Gartner P, Thauer RK (1994) The energetics and sodium-ion dependence of N5-methyltetrahydromethanopterin:coenzyme M methyltransferase studied with cob(I)alamin as methyl acceptor and methylcob(III)alamin as methyl donor. Eur J Biochem 226:799–809PubMedCrossRefGoogle Scholar
  143. Whitman WB, Boone DR, Koga Y, Keswani J (2001) Taxonomy of methanogenic archaea. In: Boone DR, Castenholtz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 211–213Google Scholar
  144. Widdel F, Wolfe R (1989) Expression of secondary alcohol dehydrogenases in methanogenic bacteria and purification of the F420-specific enzyme from Methanogenium thermophilum strain TCI. Arch Microbiol 152:322–328CrossRefGoogle Scholar
  145. Wolfe RS (1991) My kind of biology. Annu Rev Biochem 45:1–35Google Scholar
  146. Wood GE, Haydock AK, Leigh JA (2003) Function and regulation of the formate dehydrogenase genes of the methanogenic archaeon Methanococcus maripaludis. J Bacteriol 185:2548–2554PubMedCrossRefGoogle Scholar
  147. Wright A-DG, Williams AJ, Winder B, Christophersen CT, Rodgers SL, Smith KD (2004) Molecular diversity of rumen methanogens from sheep in western Australia. Appl Environ Microbiol 70:1263–1270PubMedCrossRefGoogle Scholar
  148. Zhilina TN, Zavarzin GA (1987) Methanohalobium evestigatus, gen. nov. sp. nov., the extremely halophilic methanogenic archaebacterium. Dokl Akad Nauk SSSR 293:464–468Google Scholar
  149. Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 128–206CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Reiner Hedderich
    • 1
  • William B. Whitman
    • 2
  1. 1.Max Planck Institute für TerrestricheMikrobiologieGermany
  2. 2.Department of MicrobiologyUniversity of GeorgiaAthensUSA

Personalised recommendations