Skip to main content

Colorless Sulfur Bacteria

  • Reference work entry

Abstract

Since its recognition in the late nineteenth century, the ability to gain metabolically useful energy from the oxidation of reduced sulfur compounds by bacteria has been regarded as of such significance that it has been used as a primary characteristic in taxonomy. Essentially, any Gram-negative rod that could grow with a reduced sulfur compound as its primary energy source was automatically called “Thiobacillus.” Similar bacteria with a spiral shape became “Thiomicrospira,” and so on. As research progressed over the years, this approach has become steadily less satisfactory, and the development of genetic methods for identification has finally confirmed that the ability to metabolize reduced sulfur compounds is of no more taxonomic significance than the utilization of any other specialized substrate.

This chapter describes the scientific stages taken to reach this point, reviews the reorganization that has been necessary among the colorless sulfur bacteria, and considers the fact that while the metabolic trait is of less taxonomic significance than previously believed, this grouping is important ecologically and should be retained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agate AD, Vishniac WV (1973) Characterization of thiobacillus species by gas-liquid chromatography of cellular fatty acids. Arch Microbiol 89:257–267

    CAS  Google Scholar 

  • Alain K, Querellou J (2009) Cultivating the uncultured: limits, advances and future challenges. Extremophiles 13:583–594

    Article  PubMed  Google Scholar 

  • Amann R, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6:339–348

    Article  PubMed  CAS  Google Scholar 

  • Aminuddin N, Nicholas DJD (1973) Sulphide oxidation linked to the reduction of nitrate and nitrite in Thiobacillus denitrificans. Biochim Biophys Acta 325:81–93

    Article  PubMed  CAS  Google Scholar 

  • Andreae MC, Barnard WR (1984) The marine chemistry of dimethylsulfide. Marine Chem 14:267–279

    Article  CAS  Google Scholar 

  • Arkestein GJMW (1980) Contribution of microorganisms to the oxidation of pyrite. PhD Thesis, Agricultural University of Wageningen, The Netherlands

    Google Scholar 

  • Bak F, Pfennig N (1987) Chemolithotrophic growth of Desulfovibrio sulfodismutans sp.nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147:184–189

    Article  CAS  Google Scholar 

  • Banciu HL, Sorokin DY, Tourova TP, Galinski EA, Muntyan MS, Kuenen JG, Muyzer G (2008) Influence of salts and pH on growth and activity of a novel facultatively alkaliphilic, extremely salt-tolerant, obligately chemolithoautotrophic sulfur-oxidizing Gammaproteobacterium Thioalkalibacter halophilus gen. nov., sp. nov. from South-Western Siberian soda lakes. Extremophiles 12:391–404

    Article  PubMed  CAS  Google Scholar 

  • Beijerinck MW (1904) Phenomenes de reduction produits par les microbes. Archives Neerlandaises Sciences Exactes et Naturelles (Sect. 2) 9:131–157

    Google Scholar 

  • Beller HR, Letain TE, Chakicherla A, Kane SR, Legler TC, Coleman MA (2006) Whole-genome transcriptional analysis of chemolithoautotrophic thiosulfate oxidation by Thiobacillus denitrificans under aerobic versus denitrifying conditions. J Bacteriol 188:7005–7015

    Article  PubMed  CAS  Google Scholar 

  • Beudeker RF, Cannon GC, Kuenen JG, Shively JM (1980) Relations between d-ribulose-1, 5-bisphosphate carboxylase, carboxysomes, and CO2- fixing capacity in the obligate chemolithotroph Thiobacillus neapolitanus grown under different limitations in the chemostat. Arch Microbiol 124:185–189

    Article  CAS  Google Scholar 

  • Beudeker RF, de Boer W, Kuenen JG (1981) Heterolactic fermentation of intracellular polyglucose by the obligate chemolithotroph Thiobacillus neapolitanus under anaerobic conditions. FEMS Microbiol Lett 12:337–342

    Article  CAS  Google Scholar 

  • Boden RD, Cleveland PN, Green Y, Katayama Y, Uchino J, Murrell C, Kelly DP (2011) Phylogenetic assessment of culture collection strains of Thiobacillus thioparus, and definitive 16S rRNA gene sequences for T. thioparus, T. denitrificans, and Halothiobacillus neapolitanus. Arch Microbiol. doi:10.1007/s00203-011-0747-0

    Google Scholar 

  • Bonnet-Smits EM, Robertson LA, van Dijken JP, Senior E, Kuenen JG (1988) Carbon dioxide fixation as the initial step in the metabolism of acetone by Thiosphaera pantotropha. J Gen Microbiol 134:2281–2289

    CAS  Google Scholar 

  • Bos P, Kuenen JG (1983) Microbiology of sulphur oxidizing bacteria. Microbial Corrosion. The Metals Society, London, pp 18–27

    Google Scholar 

  • Bos P, Kuenen JG (1990) Microbial treatment of coal. In: Ehrlich H, Brierley C (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 344–377

    Google Scholar 

  • Bos P, Huber TF, Luyben KCAM, Kuenen JG (1988) Feasibility of a Dutch process for microbial desulphurization of coal. Resour Conserv Recycl 1:279–291

    Article  CAS  Google Scholar 

  • Brannan DK, Caldwell DE (1980) Thermothrix thiopara: growth and metabolism of a newly isolated thermophile capable of oxidizing sulfur and sulfur compounds. Appl Environ Microbiol 40:211–216

    PubMed  CAS  Google Scholar 

  • Brierley CL (1982) Microbiological mining. Sci Am 247:42–51

    Article  Google Scholar 

  • Brierley JA, Lockwood SL (1977) The occurrence of thermophilic iron-oxidizing bacteria in a copper leaching system. FEMS Microbiol Lett 2:163–165

    Article  CAS  Google Scholar 

  • Brock TD, Gustafson J (1976) Ferric iron reduction by sulfur and iron oxidizing bacteria. Appl Environ Microbiol 32:567–571

    PubMed  CAS  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68

    Article  PubMed  CAS  Google Scholar 

  • Buisman CJN (1989) Biotechnological sulphide removal with oxygen. PhD Thesis, Agricultural University of Wageningen, The Netherlands

    Google Scholar 

  • Caldwell DE, Caldwell SJ, Laycock PJ (1976) Thermothrix thiopara gen. et sp. nov. A facultatively anaerobic facultative chemolithotroph living at neutral pH and high temperature. Can J Microbiol 22:1509–1517

    Article  PubMed  CAS  Google Scholar 

  • Caldwell DE, Brannan DK, Kieft TL (1983) Thermothrix thiopara: selection and adaption of a filamentous sulfur-oxidizing bacterium colonizing hot spring tufa at pH 7.0 and 74 C., vol 35. Environmental Geochemistry Ecological Bulletin, Stockholm, pp 129–134

    Google Scholar 

  • Cavanaugh CM (1983a) Chemoautotrophic bacteria in marine invertebrates from sulfide-rich habitats: a new symbiosis. In: Schenk HEA, Schwemmler W (eds) Endocytobiology. Walter de Gruyter, Berlin/New York, pp 699–708

    Google Scholar 

  • Cavanaugh CM (1983b) Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature 302:58–61

    Article  CAS  Google Scholar 

  • Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila. Science 213:340–342

    Article  PubMed  CAS  Google Scholar 

  • Chun J, Lee J-H, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon 2007: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  PubMed  CAS  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–145

    Article  PubMed  CAS  Google Scholar 

  • Corliss JB, Dymond J, Gordon LI, Edmond JM, van Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, van Andel TH (1979) Submarine thermal springs on the Galapagos Rift. Science 203:1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Dando PR, Southward AJ (1986) Chemoautotrophy in bivalve molluscs of the genus Thyasira. J Marine Biol Assoc 66:915–929

    Article  CAS  Google Scholar 

  • Dattagupta S, Schaperdoth I, Montanari A, Mariani S, Kita N, Valley JW, Macalday JL (2009) A novel symbiosis between chemoautotrophic bacteria and a freshwater cave amphipod. The ISME J 3:935–943

    Article  CAS  Google Scholar 

  • de Beer D, Sauter E, Niemann H, Kaul N, Foucher J-P, Witte U, Schlüter M, Boetius A (2006) In situ fluxes and zonation of microbial activity in surface sediments of the Håkon Mosby mud volcano. Limnol Oceanogr 51:1315–1331

    Article  Google Scholar 

  • de Bruyn JC, Boogerd FC, Bos P, Kuenen JG (1990) Floating filter, a novel method for the isolation and enumeration of acidophilic, thermophilic and other fastidious organisms. Appl Environ Microbiol 56:2891–2894

    PubMed  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  PubMed  CAS  Google Scholar 

  • Dubinina GA, Grabovich MY (1984) Isolation, cultivation and characterization of Macromonas bipunctata. Mikrobiologiya 53:748–755

    Google Scholar 

  • Dubinina GA, Grabovich MY, Churikova VV, Lysenko AM, Chernych NA (1993) Reevaluation of the taxonomic status of the colorless sulphur spirilla belonging to the genus Thiospira and description of new species Aquaspirillum bipunctata comb. nov. Microbiology 62:1101–1112

    Google Scholar 

  • Ehrlich H, Brierley C (eds) (1990) Microbial metal recovery. McGraw Hill, New York

    Google Scholar 

  • Felbeck H (1981) Chemoautotrophic potentials of the hydrothermal vent tube worm, Riftia pachyptila (Ventimentifera). Science 213:336–338

    Article  PubMed  CAS  Google Scholar 

  • Felbeck H, Childress JJ, Somero GN (1981) Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature 293:291–293

    Article  CAS  Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer, Sunderland

    Google Scholar 

  • Friedrich CG, Mitrenga G (1981) Oxidation of thiosulphate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiol Lett 10:209–212

    Article  CAS  Google Scholar 

  • Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, van der Peer Y, VanDamme P, Thompson FL, Swings J (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739

    Article  PubMed  CAS  Google Scholar 

  • Glaubitz S, Lueders T, Abraham W-R, Jost G, Jürgens K, Labrenz M (2009) 13C-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilon proteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea. Environ Microbiol 11:326–337

    Article  PubMed  CAS  Google Scholar 

  • Golovacheva RS, Val’ekho-Roman KM, Troitskii AV (1995) Sulfurococcus mirabilis gen. nov., sp. nov., a new thermophilic archaebacterium with the ability to oxidize sulfur. Mikrobiologiya 56:100–107

    Google Scholar 

  • Gommers PJF (1988) Microbiological oxidation of sulfide and acetate in a denitrifying uidized bed reactor. PhD Thesis, Delft University of Technology, Holland

    Google Scholar 

  • Gommers PJF, Kuenen JG (1988) Thiobacillus strain Q, a chemolithoheterotrophic sulphur bacterium. Arch Microbiol 150:117–125

    Article  CAS  Google Scholar 

  • Gommers PJF, Bijleveld W, Kuenen JG (1988a) Simultaneous sulfide and acetate oxidation in a denitrifying fluidized bed reactor. I. Start up and reactor performance. Water Res 22:1075–1083

    Article  CAS  Google Scholar 

  • Gommers PJF, Bijleveld W, Zuiderwijk FJM, Kuenen JG (1988b) Simultaneous sulfide and acetate oxidation in a denitrifying fluidized bed reactor: measurements of activities and conversions. Water Res 22:1085–1092

    Article  CAS  Google Scholar 

  • Gottschal GC, Kuenen JG (1980) Selective enrichment of facultatively chemolithotrophic Thiobacilli and related organisms in continuous culture. FEMS Microbiol Lett 7:241–247

    Article  CAS  Google Scholar 

  • Gottschal JC, Thingstad TF (1982) Mathematical description of competition between two and three bacterial species under dual substrate limitation in the chemostat. Biotechnol Bioeng 24:1403–1418

    Article  PubMed  CAS  Google Scholar 

  • Gottschal JC, de Vries S, Kuenen JG (1979) Competition between the facultatively chemolithotrophic Thiobacillus A2, an obligately chemolithotrophic Thiobacillus and a heterotrophic spirillum for inorganic and organic substrates. Arch Microbiol 121:241–249

    Article  CAS  Google Scholar 

  • Gottschal GC, Nanninga HJ, Kuenen JG (1981) Growth of Thiobacillus A2 under alternating growth conditions in the chemostat. J Gen Microbiol 126:85–96

    CAS  Google Scholar 

  • Goubem M, Andriamihaja M, Nübel T, Blachier F, Bouillaud F (2007) Sulfide, the first inorganic substrate for human cells. FASEB J 21:1699–1706

    Article  CAS  Google Scholar 

  • Grote J, Labrenz M, Pfeiffer B, Jost G, Jürgens K (2007) Quantitative distributions of Epsilonproteobacteria and a Sulfurimonas subgroup in pelagic redoxclines of the central Baltic Sea. Appl Environ Microbiol 73:7155–7161

    Article  PubMed  CAS  Google Scholar 

  • Grote J, Jost G, Labrenz M, Herndl GJ, Jürgens K (2008) Epsilonproteobacteria represent the major portion of chemoautotrophic bacteria in sulfidic waters of pelagic redoxclines of the Baltic and Black Seas. Appl Environ Microbiol 74:7546–7551

    Article  PubMed  CAS  Google Scholar 

  • Harrison AP (1984) The acidophilic Thiobacilli and other acidophilic bacteria that share their habitat. Annu Rev Microbiol 38:265–292

    Article  PubMed  CAS  Google Scholar 

  • Harrison AP (1989) The genus Acidiphilium. In: Staley J (ed) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 1863–1868

    Google Scholar 

  • Hazeu W, Bijleveld W, Grotenhuis JTC, Kakes E, Kuenen JG (1986) Kinetics and energetics of reduced sulfur oxidation by chemostat cultures of Thiobacillus ferrooxidans. Antonie Van Leeuwenhoek 52:507–518

    Article  PubMed  CAS  Google Scholar 

  • Hazeu W, Batenburg-van der Vegte WH, Bos P, van der Pas RK, Kuenen JG (1988) The production and utilization of intermediary elemental sulfur during the oxidation of reduced sulfur compounds by Thiobacillus ferrooxidans. Arch Microbiol 150:574–579

    Article  CAS  Google Scholar 

  • Hinck S, Neu TR, Lavik G, Mussmann D, de Beer D, Jonkers HM (2007) Physiological adaptation of a nitrate-storing Beggiatoa sp. to diel cycling in a phototrophic hypersaline mat. Appl Environ Microbiol 73:7013–7022

    Article  PubMed  CAS  Google Scholar 

  • Hinze G (1913) Beitrage zur Kenntnis der farblosen Schwefelbakterien. Berichte der Deutschen Botanischen Gesellschaft 31:189–202

    Google Scholar 

  • Hirayama H, Takai K, Inagaki F, Nealson KH, Horikoshi K (2005) Thiobacter subterraneus gen. nov., sp. nov., an obligately chemolithoautotrophic, thermophilic, sulfur-oxidizing bacterium from a subsurface hot aquifer. Int J Syst Evol Microbiol 55:467–472

    Article  PubMed  CAS  Google Scholar 

  • Høgslund S, Revsbech NP, Kuenen JG, Jørgensen BB, Gallardo VA, van de Vossenberg J, Nielsen JL, Holmkvist L, Arning ET, Nielsen LP (2009) Physiology and behaviour of marine Thioploca. ISME J 3:647–657

    Article  PubMed  Google Scholar 

  • Hubert CRJ, Oldenburg TBP, Fustic M, Gray ND, Larter SR, Penn K, Rowan AK, Seshadri R, Perry A, Swainsbury R, Boordouw G, Voordouw JK, Head IM (2011) Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil. Environ Microbiol. Published online.8 AUG 2011 doi: 10.1111/j.1462-2920.2011.02521.x

    Google Scholar 

  • Hutchinson M, Johnstone KI, White D (1969) Taxonomy of the genus Thiobacillus: the outcome of numerical taxonomy applied to the group as a whole. J Gen Microbiol 57:397–410

    Article  PubMed  CAS  Google Scholar 

  • Inagaki F, Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003) Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing eproteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. International Journal of Systemic and Evolutionary Microbiology 53:1801–1805

    Article  CAS  Google Scholar 

  • Inagaki F, Takai K, Nealson KH, Horikoshi K (2004) Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the e-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 54:1477–1482

    Article  PubMed  CAS  Google Scholar 

  • Ishaque M, Aleem MIH (1973) Intermediates of denitrification in the chemo-autotroph Thiobacillus denitrificans. Arch Microbiol 94:269–282

    CAS  Google Scholar 

  • Ito T, Sugita K, Yumoto I, Nodasaka Y, Okabe YS (2005) Thiovirga sulfuroxydans gen nov sp. nov. a chemolithotrophic sulfur-oxidizing bacterium isolated from a microaerobic waste-water biofilm. Int J Syst Evol Microbiol 55:1059–1064

    Article  PubMed  CAS  Google Scholar 

  • Jannasch HW (1985) The chemosynthetic support of life and the microbial diversity at deep sea hydrothermal vents. Proc Roy Soc Lond B225:277–297

    Article  Google Scholar 

  • Jannasch HW (1988) Chemosynthetically sustained ecosystems in the deep sea. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech, Madison, pp 45–65

    Google Scholar 

  • Jannasch HW, Wirsen CO, Nelson DC, Robertson LA (1985) Thiomicrospira crunogena sp. nov., a colorless sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. Int J Syst Bacteriol 35:422–424

    Article  CAS  Google Scholar 

  • Janssen AJH, Lens PNL, Stams AJM, Plugge CM, Sorokin DY, Muyzer G, Dijkman H, van Zessen E, Luimes P, Buisman CJN (2009) Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification. Sci Total Environ 407:1333–1343

    Article  PubMed  CAS  Google Scholar 

  • Jensen J, Revsbech NP (1989) Photosynthesis and respiration of a diatom biofilm cultures in a new gradient growth chamber. FEMS Microbiol Ecol 62:29–38

    Article  CAS  Google Scholar 

  • Johnson DB, Joulian C, d’Hugues P, Hallberg KB (2008) Sulfobacillus benefaciens sp. nov., an acidophilic facultative anaerobic Firmicute isolated from mineral bioleaching operations. Extremophiles 12:789–798

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen BB (1982) Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. Philoso Trans Roy Soc Lond Ser B 298:543–561

    Article  Google Scholar 

  • Jørgensen BB (1988) Biogeochemistry of chemoautotrophic bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech, Madison, pp 117–146

    Google Scholar 

  • Jørgensen BB (2010) Big sulfur bacteria. ISME J 4:1083–1084

    Article  PubMed  Google Scholar 

  • Jørgensen BB, Caldwell DC (2004) Sulfide oxidation in marine sediments: geochemistry meets microbiology. Geological Society of America Special papers, vol 379, pp 63–81

    Google Scholar 

  • Jørgensen BB, Des Marais DJ (1986) Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. FEMS Microbiol Ecol 38:79–186

    Article  Google Scholar 

  • Jørgensen BB, Kuenen JG, Cohen Y (1979) Microbial transformations of sulfur compounds in a stratified lake (Solar Lake, Sinai). Limnol Oceanogr 24:799–822

    Article  Google Scholar 

  • Kamp A, Stief P, Schulz-Vogt HN (2006) Anaerobic sulfide oxidation with nitrate by a freshwater Beggiatoa enrichment culture. Appl Environ Microbiol 72:4755–4760

    Article  PubMed  CAS  Google Scholar 

  • Kämpher P, Glaeser SP (2012) Prokaryotic taxonomy in the sequencing era and the role of MLSA in classification. Microbiology (Australia) 14:291–317

    Google Scholar 

  • Kanagawa T, Kelly DP (1986) Breakdown of dimethyl sulphide by mixed cultures and by Thiobacillus thioparus. FEMS Microbiol Lett 34:13–19

    CAS  Google Scholar 

  • Kanagawa T, Mikami E (1989) Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m. Appl Environ Microbiol 55:555–558

    PubMed  CAS  Google Scholar 

  • Katayama-Fujimura Y, Tsuzaki N, Kuraishi H (1982) Ubiquinone, fatty acid and DNA base composition determination as a guide to the taxonomy of the genus Thiobacillus. J Gen Microbiol 128:1599–1611

    CAS  Google Scholar 

  • Katayama-Fujimura Y, Kawashima I, Tsuzaki N, Kuraishi H (1984) Physiological characteristics of the facultatively chemolithotrophic Thiobacillus species Thiobacillus delicatus nom. rev., emend., Thiobacillus perometabolis and Thiobacillus intermedius. Int J Syst Bacteriol 34:139–144

    Article  CAS  Google Scholar 

  • Kelly DP (1988a) Oxidation of sulphur compounds. Society for General Microbiology Symposium, vol 42, pp 65–98

    Google Scholar 

  • Kelly DP (1988b) Physiology and biochemistry of unicellular sulfur bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech, Madison, pp 193–218

    Google Scholar 

  • Kelly DP, Harrison AP (1989) The genus Thiobacillus. In: Staley J (ed) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 1842–1858

    Google Scholar 

  • Kelly DP, Kuenen JG (1984) Ecology of the colourless sulphur bacteria. In: Codd GA (ed) Aspects of microbial metabolism and ecology. Academic, London, pp 211–240

    Google Scholar 

  • Kelly DP, Tuovinen OH (1972) Recommendation that the names Ferrobacillus ferrooxidans Leathen and Braley and Ferrobacillus sulfooxidans Kinsel be recognised as synonyms of Thiobacillus ferrooxidans Temple and Colmer. Int J Syst Bacteriol 22:170–172

    Article  Google Scholar 

  • Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Bacteriol 50:511–516

    Google Scholar 

  • Kelly DP, Wood AP, Stackebrandt E (2005) Thiobacillus. In: Brenner DJ, Krieg NR, Staley J (eds) Bergey’s manual of systematic bacteriology, vol 2. Springer, New York, pp 764–770

    Chapter  Google Scholar 

  • Kimura M (1980) A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kluyver AJ, van Niel CB (1936) Prospects for a natural system of classification of bacteria. Zentralblad Bakteriol Abt II 94:369–402

    Google Scholar 

  • Kock D, Schippers A (2008) Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage. Appl Environ Microbiol 74:5211–5219

    Article  PubMed  CAS  Google Scholar 

  • Kodama T, Watanabe K (2004) Sulfuricurvum kujiense gen. nov. sp. nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from an underground crude-oil storage cavity. Int J Syst Evol Microbiol 54:2297–2300

    Article  PubMed  CAS  Google Scholar 

  • Kojima H, Fukui M (2010) Sulfuricella denitrificans gen. nov. sp., nov., a sulfur-oxidizing autotroph isolated from a freshwater lake. Int J Syst Evol Microbiol 60:2862–2866

    Article  PubMed  CAS  Google Scholar 

  • Kojima H, Fukui M (2011) Sulfuritalea hydrogenivorans gen. nov., sp. nov., a facultative autotroph isolated from a freshwater lake. Int J Syst Evol Microbiol 61:1651–1656

    Article  PubMed  CAS  Google Scholar 

  • König H, Stetter KO (1989) Archaebacteria. In: Staley J (ed) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 2171–2173

    Google Scholar 

  • Kovaleva OL, Tourova TP, Muyzer G, Kolganova TV, Sorokin DY (2011) Diversity of RuBisCO and ATP citrate lyase genes in soda lake sediments. FEMS Microbiol Ecol 75:37–47

    Article  PubMed  CAS  Google Scholar 

  • Kuenen JG (1975) Colorless sulfur bacteria and the sulfur cycle. Plant Soil 43:49–76

    Article  CAS  Google Scholar 

  • Kuenen JG (1989) The colorless sulfur bacteria. In: Staley J (ed) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 1834–1837

    Google Scholar 

  • Kuenen JG, Beudeker RF (1982) Microbiology of thiobacilli and other sulphur-oxidizing autotrophs, mixotrophs and heterotrophs. Philos Trans Roy Soc Lond Ser B 298:473–497

    Article  CAS  Google Scholar 

  • Kuenen JG, Bos P (1988) Habitats and ecological niches of chemolitho(auto)trophic bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech, Madison, pp 53–80

    Google Scholar 

  • Kuenen JG, Robertson LA (1989a) The genus Thiomicrospira. In: Staley J (ed) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 1858–1861

    Google Scholar 

  • Kuenen JG, Robertson LA (1989b) The genus Thiosphaera. In: Staley J (ed) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 1861–1862

    Google Scholar 

  • Kuenen JG, Veldkamp H (1972) Thiomicrospira pelophila, gen. nov., sp. nov., a new obligately chemolithotrophic colourless sulfur bacterium. Antonie van Leeuwenhoek J Microbiol Serol 38:241–256

    Article  CAS  Google Scholar 

  • Kuenen JG, Veldkamp H (1973) Effects of organic compounds on growth of chemostat cultures of Thiomicrospira pelophila, Thiobacillus thioparus and Thiobacillus neapolitanus. Arch Microbiol 94:173–190

    CAS  Google Scholar 

  • Kuenen JG, Boonstra J, Schroder HGJ, Veldkamp H (1977) Competition for inorganic substrates among chemoorganotrophic and chemolithotrophic bacteria. Microb Ecol 3:119–130

    Article  CAS  Google Scholar 

  • Kuenen JG, Robertson LA, van Gemerden H (1985) Microbial interactions among aerobic and anaerobic sulphur oxidizing bacteria. Adv Microb Ecol 8:1–59

    Article  CAS  Google Scholar 

  • Kurosawa N, Itoh YH, Iwai T, Sugai A, Uda I, Kimura N, Horiuchi T, Itoh T (1998) Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales. Int J Syst Evol Microbiol 48:451–456

    Google Scholar 

  • Kutzing FT (1833) Beitrag zur Kenntnis über die Entstehung und Metamorphose der niedern vegetabilischen Organismen, nebst einer systematischen Zusammenstellung der hierher gehörigen niedern Algenformen. Linnaea 8:335–387

    Google Scholar 

  • Lane DJ, Stahl DA, Olsen GJ, Heller DJ, Pace NR (1985) Phylogenetic analysis of the genera Thiobacillus and Thiomicrospira by 5S rRNA sequences. J Bacteriol 163:75–81

    PubMed  CAS  Google Scholar 

  • Lane DJ, Harrison AP, Stahl D, Pace B, Giovannoni SJ, Olsen GJ, Pace NR (1992) Evolutionary relationships among sulfur and iron oxidizing eubacteria. J Bacteriol 174:269–278

    PubMed  CAS  Google Scholar 

  • Lanzén A, Jørgensen SL, Bengtsson MM, Jonassen I, Øvreas L, Urich T (2011) Exploring the composition and diversity of microbial communities at the Jan Mayen hydrothermal vent field using RNA and DNA. FEMS Microbiol Ecol 77:577–589

    Article  PubMed  CAS  Google Scholar 

  • Larkin JM, Strohl WR (1983) Beggiatoa, Thiothrix, and Thioploca. Annu Rev Microbiol 37:341–367

    Article  PubMed  CAS  Google Scholar 

  • Lauterborn R (1907) Eine neue Gattung der Schwefelbakterien Thioploca schmidlei nov. gen. nov. spec.. Berichte der Deutschen Botanischen Gesellschaft 25:238–242

    Google Scholar 

  • Le Roux NW, Wakerly DS, Hunt SD (1977) Thermophilic thiobacillus-type bacteria from Icelandic thermal areas. J Gen Microbiol 100:197–201

    Article  Google Scholar 

  • Liu C-Q, Plumb J, Hendry P (2006) Rapid specific detection and quantification of Bacteria and Archaea involved in mineral sulphide bioleaching using real time PCR. Wiley Interscience, New York

    Google Scholar 

  • Liu Y-G, Zhou M, Zeng G-M, Wang X, Li X, Fan T, Xu W-H (2008) Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: effects of substrate concentration. Bioresour Technol 99:4124–4129

    Article  PubMed  CAS  Google Scholar 

  • Lloyd KG, Albert DB, Biddle JF, Chanton JP, Pizarro O, Teske A (2010) Spatial structure and activity of sedimentary microbial communities underlying a Beggiatoa spp. Mat in a Gulf of Mexico hydrocarbon seep. PLoS One 5(1):e8738

    Article  PubMed  CAS  Google Scholar 

  • Ludwich W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssman R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Research 32:1363–1371

    Google Scholar 

  • Lundgren DG, Andersen KJ, Penson CC, Mahony RP (1964) Culture structure and physiology of the chemoautotroph Ferrobacillus ferrooxidans. J Gen Microbiol 105:215–218

    Google Scholar 

  • Maestre JP, Rovira R, Alvarez-Hornos FJ, Fortuny M, Lafuente J, Gamisans X, Gabriel D (2010) Bacterial community analysis of a gas-phase biotrickling filter for biogas mimics desulfurization through the rRNA approach. Chemosphere 80:872–880

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Garcia M, Swan BK, Poulton NJ, Lluesma Gomez M, Masland D, Sieracki ME, Stephanauskas R (2012) High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. ISME J 6:113–123

    Article  PubMed  CAS  Google Scholar 

  • Mason J, Kelly DP (1988) Thiosulfate oxidation by obligately heterotrophic bacteria. Microb Ecol 15:123–134

    Article  CAS  Google Scholar 

  • Matin A (1978) Organic nutrition of chemolithotrophic bacteria. Annu Rev Microbiol 32:433–469

    Article  PubMed  CAS  Google Scholar 

  • Meyer B, Kuever J (2007a) Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5’-phosphosulfate reductase-encoding genes (aprBA) among sulphur-oxidizing prokaryotes. Microbiology 153:3478–3498

    Article  PubMed  CAS  Google Scholar 

  • Meyer B, Kuever J (2007b) Molecular analysis of the diversity of sulphate reducing and sulphur-oxidizing prokaryotes in the environment, using aprA as a functional marker gene. Appl Environ Microbiol 73:7664–7679

    Article  PubMed  CAS  Google Scholar 

  • Meyer B, Imhoff JF, Kuever J (2007) Molecular analysis of the distribution and phylogeny of the soxB gene among sulphur-oxidizing bacteria – evolution of the Sox sulphur oxidation enzyme system. Environ Microbiol 9:2957–2977

    Article  PubMed  CAS  Google Scholar 

  • Migula W (1894) Ueber ein neues system der bakterien. Arbeiten aus dem Bakteriologischen Institut der Technischen Hochschule zu Karlsruhe 1:235–238

    Google Scholar 

  • Mori K, Suziki K (2008) Thiofaba tepidiphila gen. nov., sp. nov., a novel obligately chemolithoautotrophic, sulfur-oxidizing bacterium of the Gammaproteobacteria isolated from a hot spring. Int J Syst Evol Microbiol 58:1885–1891

    Article  PubMed  CAS  Google Scholar 

  • Mosser JL, Mosser AG, Brock TD (1973) Bacterial origin of sulfuric acid in geothermal habitats. Science 179:1323–1324

    Article  PubMed  CAS  Google Scholar 

  • Mussmann M, Hu FZ, Richter M et al (2007) Insights into the genome of large sulfur bacteria revealed by analysis of single filaments. PLoS Biol 5:1923–1937

    Article  CAS  Google Scholar 

  • Muyzer G, de Bruyn AC, Schmedding DJM, Bos P, Westbroek P, Kuenen JG (1987) A combined immuno-fluorescence-DNA-fluorescence staining technique for enumeration of Thiobacillus ferrooxidans in a population of acidophilic bacteria. Appl Environ Microbiol 53:660–664

    PubMed  CAS  Google Scholar 

  • Nelson DC (1988) Physiology and biochemistry of lamentous sulfur bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech, Madison, pp 221–238

    Google Scholar 

  • Nelson DC, Castenholz RW (1981) Use of reduced sulfur compounds by Beggiatoa sp. J Bacteriol 147:140–154

    PubMed  CAS  Google Scholar 

  • Nelson DC, Jannasch HW (1983) Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136:262–269

    Article  CAS  Google Scholar 

  • Nelson DC, Wirsen CO, Jannasch HW (1989) Thermophilic Bacillus sp. that shows the denitrification phenotype of Pseudomonas aeruginosa. Appl Environ Microbiol 55:1023–1025

    Google Scholar 

  • Neufeld JD, Wagner M, Murrell JC (2007) Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J 1:103–110

    Article  PubMed  CAS  Google Scholar 

  • Nielsen PH, Aquino de Muro M, Nielsen JL (2000) Studies on the in situ physiology of Thiothrix spp. present in activated sludge. Environ Microbiol 2:389–398

    Article  PubMed  CAS  Google Scholar 

  • Nielsen JL, Christensen D, Kloppenborg M, Nielsen PH (2003) Quantification of cell-specific substrate uptake by probe-defined bacteria under in situ conditions by microautoradiography and fluorescence in situ hybridization. Environ Microbiol 5:202–211

    Article  PubMed  CAS  Google Scholar 

  • Okabe S, Odagiri M, Ito T, Satoh H (2007) Succession of sulphur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl Environ Microbiol 73:971–980

    Article  PubMed  CAS  Google Scholar 

  • Pagani I, Liolios K, Jansson J, Chen I-MA, Smirnova T, Nosrat B, Markowith VM, Kyrpides NC (2012) The genome online database (GOLD) v. 4: status of genomic and metagenomic projects and their associated metadata. Nucl Acids Res 40:D571–D579

    Article  PubMed  CAS  Google Scholar 

  • Pathak A, Dastidar MG, Sreekrishnan TR (2009) Bioleaching of heavy metals from sewage sludge: a review. J Environ Manage 90:2343–2353

    Article  PubMed  CAS  Google Scholar 

  • Preisler A, de Beer D, Lichtenschlag A, Lavik G, Boetius A, Jørgensen BB (2007) Biological and chemical oxidation in a Beggiatoa inhabited marine sediment. ISME J 1:341–353

    PubMed  CAS  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  PubMed  CAS  Google Scholar 

  • Reigstad LJ, Jorgensen SL, Lauritzen S-E, Schleper C, Urich T (2011) Sulfur-oxidizing chemolithotrophic Proteobacteria dominate the microbiota in high arctic thermal springs on Svalbard. Astrobiology 11:665–678

    Article  PubMed  CAS  Google Scholar 

  • Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ (2009) Biogeography of the Sulfolobus islandicus pan-genome. Proc Nat Acad Sci USA 106:8605–8610

    Article  PubMed  CAS  Google Scholar 

  • Revsbech NP, Jørgensen BB (1986) Microelectrodes: their use in microbial ecology. Adv Microb Ecol 9:293–352

    Google Scholar 

  • Revsbech NP, Ward DM (1984) Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat. Appl Environ Microbiol 48:270–275

    PubMed  CAS  Google Scholar 

  • Revsbech NP, Madsen B, Jørgensen BB (1986) Oxygen production and consumption in sediments determined at high spatial resolution by computer simulation of oxygen microelectrode data. 1986. Limnol Oceanogr 31:293–304

    Article  CAS  Google Scholar 

  • Robertson LA, Kuenen JG (1983a) Anaerobic and aerobic denitrification by sulphide oxidizing bacteria from waste water. In: van den Brink WJ (ed) Anaerobic waste water treatment. TNO Corporate Communication Department, The Hague, pp 3–12

    Google Scholar 

  • Robertson LA, Kuenen JG (1983b) Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium. J Gen Microbiol 129:2847–2855

    CAS  Google Scholar 

  • Robertson LA, Cornelisse R, Zeng R, Kuenen JG (1989) The effect of thiosulphate and other inhibitors of autotrophic nitrification on heterotrophic nitrifiers. Antonie Van Leeuwenhoek 56:301–309

    Article  PubMed  CAS  Google Scholar 

  • Ruby EG, Jannasch HW (1982) Physiological characteristics of Thiomicrospira sp. L-12 isolated from deep sea hydrothermal vents. J Bacteriol 149:161–165

    PubMed  CAS  Google Scholar 

  • Ruby EG, Wirsen CO, Jannasch HW (1981) Chemolithotrophic sulfur-oxidizing bacteria from the Galapagos Rift hydrothermal vents. Appl Environ Microbiol 42:317–324

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1988) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Salman V, Amann R, Girnth A-C, Polerecky L, Bailey JV, Høslund S, Jessen G, Pantoja S, Schulz-Vogt HN (2011) A single-cell sequencing approach to the classification of large vacuolated sulphur bacteria. Syst Appl Microbiol 34:243–259

    Article  PubMed  CAS  Google Scholar 

  • Schlegel HG (1981) Allgemeine mikrobiologie. Thieme Verlag, Stuttgart

    Google Scholar 

  • Schmidt TM, Arieli B, Cohen Y, Padan E, Strohl WR (1987) Sulfur metabolism in Beggiatoa alba. J Bacteriol 169:5466–5472

    PubMed  CAS  Google Scholar 

  • Schulz HN, Brinkhoff T, Ferdelman TG, Marine MH, Teske A, Jørgensen BB (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495

    Article  PubMed  CAS  Google Scholar 

  • Searcy DG (2006) Rapid hydrogen sulfide consumption by Tetrahymena pyriformis and its implications for the origin of mitochondria. Eur J Protistol 42:221–231

    Article  PubMed  Google Scholar 

  • Segerer A, Stetter KO (1989) The genus Acidianus. In: Staley J (ed) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 2251–2253

    Google Scholar 

  • Seidel H, Wennrich R, Hoffmann P, Loser C (2006) Effect of different types of elemental sulfur on bioleaching of heavy metals from contaminated sediments. Chemosphere 62:1444–1453

    Article  PubMed  CAS  Google Scholar 

  • Shafia F, Wilkinson RF (1969) Growth of Ferrobacillus ferrooxidans on organic matter. J Bacteriol 97:251–260

    Google Scholar 

  • Siggins A, Gunnigle E, Abram F (2012) Exploring mixed microbial community functioning: recent advances in metaproteomics. FEMS Microbiol Ecol. doi:10.1111/j.1574-6941.2011.01284.x

    Google Scholar 

  • Smith DW, Finazzo SF (1981) Salinity requirements of a marine Thiobacillus intermedius. Arch Microbiol 129:199–203

    Article  CAS  Google Scholar 

  • Smith AL, Kelly DP (1979) Competition in the chemostat between an obligately and a facultatively chemolithotrophic Thiobacillus. J Gen Microbiol 115:377–384

    Article  Google Scholar 

  • Smith NA, Kelly DP (1988a) Isolation and physiological characterization of autotrophic sulphur bacteria oxidizing dimethyl disulphide as sole source of energy. J Gen Microbiol 134:1407–1417

    CAS  Google Scholar 

  • Smith NA, Kelly DP (1988b) Mechanism of oxidation of dimethyl disulphide by Thiobacillus thioparus strain E6. J Gen Microbiol 134:3031–3039

    CAS  Google Scholar 

  • Smith NA, Kelly DP (1988c) Oxidation of carbon disulphide as the sole source of energy for the autotrophic growth of Thiobacillus thioparus strain TK-m. J Gen Microbiol 134:3041–3048

    CAS  Google Scholar 

  • Smith CR, Kukert H, Wheatcroft RA, Jumars PA, Deming JW (1989) Vent fauna on whale remains. Nature 341:27–28

    Article  Google Scholar 

  • Sorokin YI (1970) Interrelations between sulphur and carbon turnover in meromictic lakes. Arch Hydrobiol 66:391–446

    Google Scholar 

  • Sorokin YI (1972) The bacterial population and the process of hydrogen sulphide oxidation in the Black Sea. Journal du Conseil International pour l'Éxploration de la Mer 34:432–455

    Google Scholar 

  • Sorokin D-YU (1992) Catenococcus thiocyclus gen. nov., sp. nov. - a new facultatively anaerobic bacterium from a near-shore sulphidic hydrothermal area. J Gen Microbiol 138:2287–2292

    Article  Google Scholar 

  • Sorokin DY, Robertson LA, Kuenen JG (1996) Sulfur-cycling in Catenococcus thiocyclus. FEMS Microbiol Ecol 19:117–126

    Article  CAS  Google Scholar 

  • Sorokin DY, Lysenko AM, Mityushina LL, Tourova TP, Jones BE, Rainey FA, Robertson LA, Kuenen JG (2001) Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov. and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 51:565–580

    PubMed  CAS  Google Scholar 

  • Sorokin DY, Tourova TP, Kolganova TV, Sjollema KA, Kuenen JG (2002) Thioalkalispira microaerophila gen. nov., sp. nov., a novel lithoautotrophic, sulfur-oxidizing bacterium from a soda lake. Int J Syst Evol Microbiol 52:2175–2182

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Tourova TP, Spiridonova EM, Rainney FA, Muyzer G (2005) Thioclava pacifica gen. nov., sp. nov., a novel facultatively autotrophic, marine, sulphur-oxidizing bacterium from a near-shore sulfidic hydrothermal area. Int J Syst Evol Microbiol 55:1069–1075

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Tourova TP, Braker G, Muyzer G (2007) Thiohalomonas denitrificans gen. nov., sp. nov. and Thiohalomonas nitratireducens sp. nov., novel obligately chemolithoautotrophic, moderately halophilic, thiodenitrifying Gammaproteobacteria from hypersaline habitats. Int J Syst Evol Microbiol 57:1582–1589

    Article  PubMed  Google Scholar 

  • Sorokin DY, Tourova TP, Galinski EA, Muyzer G, Kuenen JG (2008) Thiohalorhabdus denitrificans gen. nov., sp. nov., an extremely halophilic, sulfur-oxidizing, deep-lineage gammaproteobacterium from hypersaline habitats. Int J Syst Evol Microbiol 58:2890–2897

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Kovaleva OL, Tourova TP, Muyzer G (2010) Thiohalobacter thiocyanaticus gen. nov., sp. nov., a moderately halophilic, sulfur-oxidizing gammaproteobacterium from hypersaline lakes, that utilizes thiocyanate. Int J Syst Evol Microbiol 60:444–450

    Article  PubMed  CAS  Google Scholar 

  • Southward EC (1986) Gill symbionts in thyasirids and other bivalve molluscs. J Marine Biol Assoc 66:899–914

    Google Scholar 

  • Stackebrande E, Murray RGE, Truper HG (1988) Proteobacter classis nov., a name for the phylogenetic taxon that includes the “Purple bacteria and their relatives”. Int J Syst Bact 38:321–325

    Article  Google Scholar 

  • Stahl DA, Lane DL, Olsen GJ, Heller DJ, Schmidt TM, Pace NR (1987) A phylogenetic analysis of certain sulfide oxidizing and related morphologically conspicuous bacteria by 5S ribosomal RNA sequences. Int J Syst Bacteriol 37:116–122

    Article  CAS  Google Scholar 

  • Stefess GC, Kuenen JG (1989) Factors in sequencing elemental sulphur production from sulphide or thiosulphate by autotrophic thiobacilli. Forum Mikrobiologie 12:92

    Google Scholar 

  • Stetter KO (1988) Extremely thermophilic chemolithoautotrophic archaebacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech, Madison, pp 167–176

    Google Scholar 

  • Steward FJ, Ulloa O, DeLong EF (2012) Microbial metatranscriptomics in a permanent marine oxygen minimum zone. Environ Microbiol 14:23–40

    Article  CAS  Google Scholar 

  • Sublette KL, Sylvester ND (1987) Oxidation of hydrogen sulfide by Thiobacillus denitrificans: desulfurization of natural gas. Biotechnol Bioeng 29:249–257

    Article  PubMed  CAS  Google Scholar 

  • Sugio T, Domatsu C, Munaka O, Tano T, Imai K (1985) Role of a ferric iron reducing system in sulfur oxidation of Thiobacillus ferrooxidans. Appl Environ Microbiol 49:1401–1406

    PubMed  CAS  Google Scholar 

  • Suylen GMBH, Kuenen JG (1986) Chemostat enrichment and isolation of Hyphomicrobium EG, a dimethyl sulphide oxidizing methylotroph and reevaluation of Thiobacillus MS1. Antonie Van Leeuwenhoek 52:281–293

    Article  PubMed  CAS  Google Scholar 

  • Suylen GMBH, Stefess GC, Kuenen JG (1986) Chemolithotrophic potential of a Hyphomicrobium species capable of growth on methylated sulphur compounds. Arch Microbiol 146:192–198

    Article  CAS  Google Scholar 

  • Sweerts JPRA, de Beer D, Nielsen LP, Verdouw H, van den Heuvel JC, Cohen Y, Cappenberg TE (1990) Denitrification by sulphur oxidizing Beggiatoa spp. mats on freshwater sediments. Nature 344:762–763

    Article  CAS  Google Scholar 

  • Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003) Sulfurihydrogenibium subterraneum gen. nov., sp. nov., from a subsurface hot aquifer. Int J Syst Evol Microbiol 53:823–827

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Miyazaki M, Nunoura T, Hirayama H, Oida H, Furushima Y, Yamamoto H, Horikoshi K (2006) Sulfurivirga caldicuralii gen. nov. sp. nov. a novel microaerobic, thermophilic, thiosulfate-oxidising chemolithoautotroph, isolated from a shallow marine hydrothermal system occurring n a coral reef, Japan. Int J Syst Evol Microbiol 56:1921–1929

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Miyazaki M, Hirayama H, Nakagawa S, Querellou J, Godfroy A (2009) Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environ Microbiol 11:1983–1997

    Article  PubMed  Google Scholar 

  • Tanji Y, Kanagawa T, Mikami E (1989) Removal of dimethyl sulfide, methyl mercaptan and hydrogen sulphide by immobilized Thiobacillus thioparus TK-m. J Ferment Bioengin 67(280):285

    Google Scholar 

  • Taylor BF, Hoare DS (1969) New facultative Thiobacillus and a reevaluation of the heterotrophic potential of Thiobacillus novellus. J Bacteriol 100:487–497

    PubMed  CAS  Google Scholar 

  • Timmer ten Hoor A (1975) A new type of thiosulphate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. nov. J Sea Res 9:343–351, Netherlands

    Google Scholar 

  • Timmer ten Hoor A (1977) Denitrificerende kleurloze zwavelbacterien. PhD thesis. University of Groningen, Netherlands

    Google Scholar 

  • Tourova TP, Spiridonova EM, Berg IA, Kuznetsov BB, Sorokin DYU (2006) Occurrence, phylogeny and evolution of ribulose-1,5-bisphosphate carboxylase/oxygenase in obligately chemolithoautotrophic sulphur-oxidizing bacteria of the genera Thiomicrospira and Thioalkalimicrobium. Microbiology 152:2159–2169

    Article  PubMed  CAS  Google Scholar 

  • Tourova TP, Kovaleva OL, Sorokin DYU, Muyzer G (2010) Ribulose-1,5-biphorphate carboxylase/oxygenase genes as a functional marker for chemolithoautotrophic halophilic sulphur-oxidizing bacteria in hypersaline habitats. Microbiology 156:2016–2025

    Article  PubMed  CAS  Google Scholar 

  • Trevisan V (1842) Prospetto della ora Euganea. Coi Tipi Del Seminario. Padova 1–68

    Google Scholar 

  • Tringe SG, von Mering C, Kobayashi A, Slamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative genomics of microbial communities. Science 308:554–557

    Article  PubMed  CAS  Google Scholar 

  • Tuovinen OH, Kelly DP (1972) Biology of Thiobacillus ferrooxidans in relation to the microbiological leaching of sulphide ores. Z Allg Mikrobiol 12:311–346

    Article  PubMed  CAS  Google Scholar 

  • Tuttle JH, Jannasch HW (1972) Occurrence and types of Thiobacillus-like bacteria in the sea. Limnol Oceanogr 17:532–543

    Article  CAS  Google Scholar 

  • Tuttle JH, Holmes PE, Jannasch HW (1974) Growth rate stimulation of marine pseudomonads by thiosulfate. Arch Mikrobiol 99:1–14

    CAS  Google Scholar 

  • Tuttle JH, Wirsen CO, Jannasch HW (1983) Microbial activities in the emitted hydrothermal waters of the Galapagos Rift vents. Mar Biol 73:293–299

    Article  Google Scholar 

  • Visloukh SM (1914) Spirillum kolkwitzii nov sp Zhurnal Mikrobiologii 1:42–51

    Google Scholar 

  • Visser JM, Stefess GC, Robertson LA, Kuenen JG (1997) Thiobacillus sp.W5, the dominant autotroph oxidizing sulfide to sulfur in a reactor for aerobic treatment of sulfidic wastes. Antonie Van Leeuwenhoek 72:27–134

    Article  Google Scholar 

  • Wendeberg A, Zielinski FU, Borowski C, Dubilier N (2012) Expression patterns of mRNAs for methanotrophy and thiotrophy in symbionts of the hydrothermal vent mussel Bathymodiolus puteoserpentis. ISME J 6:104–112

    Article  PubMed  CAS  Google Scholar 

  • Winogradsky S (1888) Beitrage zur Morphologie und Physiologie der Bakterien. Heft 1. Zur Morphologie und Physiologie der Schwefelbakterien. Arthur Felix Leipzig 1:120

    Google Scholar 

  • Wirsen CO, Jannasch HW (1978) Physiological and morphological observations on Thiovulum sp. J Bacteriol 136:765–774

    PubMed  CAS  Google Scholar 

  • Wirsen CO, Tuttle JH, Jannasch HW (1986) Activities of sulfur-oxidizing bacteria at the 21 N East Pacific Rise vent site. Mar Biol 92:449–456

    Article  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Wood AP, Kelly DP (1989) Isolation and physiological characterization of Thiobacillus thyasyris sp. nov., a novel marine facultative autotroph and the putative symbiont of Thyasira flexuosa. Arch Microbiol 152:160–166

    Article  CAS  Google Scholar 

  • Yamamoto M, Nakagawa S, Shimamura S, Takai K, Horikoshi K (2010) Molecular characterization of inorganic sulphur-compound metabolism in the deep-sea epsilonproteobacterium Sulfurovum sp. NBC37-1. Environ Microbiol 12:1144–1153

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Lyons S, Aguilar C, Cuhel R, Teske A (2011) Microbial communities and chemosynthesis in Yellowstone Lake sublacustrine hydrothermal vent waters. Frontiers Microbiol 2:130

    Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Oliver Glöckner F, Rosselló-Móra R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz S, Singh AK (2011) Single cell genome sequencing. Curr Opin Biotechnol http://dx.doi.org/10.1016/j.copbio.2011.11.018

  • Zhang CL, Huang Z, Cantu J, Pancost RD, Brigmon RL, Lyons TW, Sassen R (2005) Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrates in the Gulf of Mexico. Appl Environ Microbiol 71:2106–2112

    Article  PubMed  CAS  Google Scholar 

  • Zopfi J, Kjaer T, Nielsen LP, Jørgensen BB (2001) Ecology of Thioploca spp.: nitrate and sulphur storage in relation to chemical microgradients and influence of Thioploca spp. on sedimentary nitrogen cycle. Appl Environ Microbiol 67:5530–5537

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Muyzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Muyzer, G., Kuenen, J.G., Robertson, L.A. (2013). Colorless Sulfur Bacteria. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30141-4_78

Download citation

Publish with us

Policies and ethics