Luminous Bacteria

  • Paul V. DunlapEmail author
  • Henryk Urbanczyk


Luminous bacteria are those bacteria that carry the lux genes, genes that code for proteins involved in light production. Many luminous bacteria emit light at high, easily visible levels in laboratory culture and in nature, and the phenomenon of light emission has generated interest in these bacteria for over 125 years. Luminous bacteria are especially common in ocean environments where they colonize a variety of habitats, but some species are found in brackish, freshwater, and terrestrial environments. This chapter, which begins with an historical perspective, summarizes current understanding of the biochemistry and genetics of bacterial light emission, the taxonomy and phylogenetics of light-emitting bacteria, the evolutionary origins and hypothesized physiological and ecological functions of bacterial luminescence, the distributions and activities of these bacteria in nature, their symbiotic interactions with animals and especially with marine fishes, and the quorum sensing regulatory circuitry controlling light production at the operon level. This chapter concludes with information on the isolation, cultivation, storage, and identification of luminous bacteria.


Quorum Sensing Light Organ Light Production cAMP Receptor Protein Luminous Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adar YY, Ulitzur S (1993) GroESL proteins facilitate binding of externally added inducer by LuxR protein–containing E. coli cells. J Biolumin Chemilumin 8:261–266PubMedCrossRefGoogle Scholar
  2. Adar YY, Simaan M, Ulitzur S (1992) Formation of the LuxR protein in the Vibrio fischeri lux system is controlled by HtpR through the GroESL proteins. J Bacteriol 174:7138–7143PubMedGoogle Scholar
  3. Ahrens G (1965) Untersuchungen am Leuchtorgan von Leiognathus klunzingeri (Steindachner). Z Wiss Zool 173:90–113Google Scholar
  4. Akhurst RJ (1980) Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J Gen Microbiol 121:303–309Google Scholar
  5. Akhurst RJ (1982) Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the family Heterorhabditidae and Steinernematidae. J Gen Microbiol 128:3061–3065PubMedGoogle Scholar
  6. Akhurst RJ, Boemare NE (1986) A non–luminescent strain of Xenorhabdus luminescens. J Gen Microbiol 132:1917–1922Google Scholar
  7. Akhurst RJ, Dunphy G (1993) Tripartite interactions between symbiotically associated entomopathogenic bacteria, nematodes, and their insect hosts. In: Beckage N, Thompson S, Federici B (eds) Parasites and pathogens of insects. Academic, New York, NY, pp 21–23Google Scholar
  8. Antunes LC, Schaefer AL, Ferreira RB, Qin N, Stevens AM, Ruby EG, Greenberg EP (2007) Transcriptome analysis of the Vibrio fischeri LuxR–LuxI regulon. J Bacteriol 189:8387–8391PubMedCrossRefGoogle Scholar
  9. Ast JC, Dunlap PV (2004) Phylogenetic analysis of the lux operon distinguishes two evolutionarily distinct clades of Photobacterium leiognathi. Arch Microbiol 181:352–361PubMedCrossRefGoogle Scholar
  10. Ast JC, Dunlap PV (2005) Phylogenetic resolution and habitat specificity of members of the Photobacterium phosphoreum species group. Environ Microbiol 7:1641–1654PubMedCrossRefGoogle Scholar
  11. Ast JC, Cleenwerck I, Engelbeen K, Urbanczyk H, Thompson FL, De Vos P, Dunlap PV (2007a) Photobacterium kishitanii sp. nov., a luminous marine bacterium symbiotic with deep–sea fish. Int J Syst Evol Microbiol 57:2073–2078PubMedCrossRefGoogle Scholar
  12. Ast JC, Urbanczyk H, Dunlap PV (2007b) Natural merodiploidy of the lux–rib operon of Photobacterium leiognathi from coastal waters of Honshu Japan. J Bacteriol 189:6148–6158PubMedCrossRefGoogle Scholar
  13. Ast JC, Urbanczyk H, Dunlap PV (2009) Multi–gene analysis reveals previously unrecognized phylogenetic diversity in Aliivibrio. Syst Appl Micro 32:379–386CrossRefGoogle Scholar
  14. Austin B, Zhang XH (2006) Vibrio harveyi a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol 43:119–124PubMedCrossRefGoogle Scholar
  15. Baldwin TO, Ziegler MM, Powers DA (1979) Covalent structure of subunits of bacterial luciferase NH2– terminal sequence demonstrates subunit homology. Proc Natl Acad Sci USA 76:4887–4889PubMedCrossRefGoogle Scholar
  16. Bang SS, Baumann P, Baumann L (1978) Phenotypic characterization of Photobacterium logei (sp. nov.), a species related to P. fischeri. Curr Microbiol 1:285–288CrossRefGoogle Scholar
  17. Baross JA, Tester PA, Morita RY (1978) Incidence, microscopy, and etiology of exoskeleton lesions in the tanner crab, Chionoecetes tanneri. J Fish Res Board Can 35:1141–1149CrossRefGoogle Scholar
  18. Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2:582–587PubMedCrossRefGoogle Scholar
  19. Bassler BL, Wright M, Showalter RE, Silverman MR (1993) Intercellular signalling in Vibrio harveyi, sequence and function of genes regulating expression of luminescence. Mol Microbiol 9:773–786PubMedCrossRefGoogle Scholar
  20. Bassler BL, Wright M, Silverman MR (1994a) Sequence and function of LuxO, a negative regulator of luminescence in Vibrio harveyi. Mol Microbiol 12:403–412PubMedCrossRefGoogle Scholar
  21. Bassler BL, Wright M, Silverman MR (1994b) Multiple signalling systems controlling expression of luminescence in Vibrio harveyi, sequence and function of genes encoding a second sensory pathway. Mol Microbiol 13:273–286PubMedCrossRefGoogle Scholar
  22. Bassler BL, Greenberg EP, Stevens AM (1997) Cross–species induction of luminescence in the quorum–sensing bacterium Vibrio harveyi. J Bacteriol 179:4043–4045PubMedGoogle Scholar
  23. Bassot J-M (1966) On the comparative morphology of some luminous organs. In: Johnson FH (ed) Bioluminescence in progress. Princeton University, Princeton, NJ, pp 557–610Google Scholar
  24. Baumann P, Baumann L (1977) Biology of the marine enterobacteria genera Beneckea and Photobacterium. Ann Rev Microbiol 31:39–61CrossRefGoogle Scholar
  25. Baumann P, Baumann L (1981) The marine Gram–negative eubacteria genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 1302–1331Google Scholar
  26. Baumann P, Schubert RHW (1984) Family II. Vibrionaceae Veron 1965. In: Kreig NR, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, MD, pp 516–547Google Scholar
  27. Baumann P, Baumann L, Bang SS, Woolkalis MJ (1980) Reevaluation of the taxonomy of Vibrio, Beneckea, and Photobacterium: abolition of the genus Beneckea. Curr Microbiol 4:127–132CrossRefGoogle Scholar
  28. Baumann P, Furniss AL, Lee JV (1984) Genus Vibrio Pacini 1854. In: Kreig NR, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, MD, pp 518–538Google Scholar
  29. Baylor ER (1949) Growth cycle of luminous bacteria on limited substrate. M.Sc. thesis, Princeton UniversityGoogle Scholar
  30. Beijerinck MW (1889a) Le Photobacterium luminosum, bacterie lumineuse de la mer du nord. Arch Néerl Sci Exactes Natur 23:401–415Google Scholar
  31. Beijerinck MW (1889b) Les bactéries lumineuses dans leurs rapports avec l’oxygène. Archives Néerl Sci Exactes Nat 23:416–427Google Scholar
  32. Beijerinck MW (1891) Sur l’aliment photogène et l’aliment plastique des bactéries lumineuses. Arch Néerl Sci Exactes Nat 24:369–442Google Scholar
  33. Beijerinck MW (1916) Die Leuchtbakterien der Nordsee im August und September. Folia Microbiol 4:15–40Google Scholar
  34. Bintrim SB, Ensign JC (1998) Insertional inactivation of genes encoding the crystalline inclusion proteins of Photorhabdus luminescens results in mutants with pleiotrophic phenotypes. J Bacteriol 180:1261–1269PubMedGoogle Scholar
  35. Boemare NE, Akhurst RJ, Mourant RG (1993) DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of Entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Bacteriol 43:249–255CrossRefGoogle Scholar
  36. Boemare NE, Govaidan A, Brehelin M, Laumond C (1997) Symbiosis and pathogenicity of nematode –bacterium complexes. Symbiosis 22:21–45Google Scholar
  37. Boettcher KJ, Ruby EG (1990) Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes. J Bacteriol 17:3701–3706Google Scholar
  38. Boisvert H, Chatelain R, Bassot JM (1967) Étude d’un Photobacterium isolé de l’organe lumineux des poissons Leiognathidae. Ann Inst Pasteur Paris 112:520–524Google Scholar
  39. Boyle R (1668) Experiments concerning the relation between light and air in shining wood and fish. Phil Trans 2:581–600CrossRefGoogle Scholar
  40. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Wiley, New YorkGoogle Scholar
  41. Budsberg KJ, Wimpee CF, Braddock JF (2003) Isolation and identification of Photobacterium phosphoreum from an unexpected niche migrating salmon. Appl Environ Microbiol 69:6938–6942PubMedCrossRefGoogle Scholar
  42. Callahan SM, Dunlap PV (2000) LuxR– and acylhomoserine– lactone–controlled non–lux genes define a quorum–sensing regulon in Vibrio fischeri. J Bacteriol 182:2811–2822PubMedCrossRefGoogle Scholar
  43. Callahan SM, Cornell NW, Dunlap PV (1995) Purification and properties of periplasmic 3’:5’–cyclic nucleotide phosphodiesterase. A novel zinc–containing enzyme from the marine symbiotic bacterium Vibrio fischeri. J Biol Chem 270:17627–17632PubMedCrossRefGoogle Scholar
  44. Cao JG, Meighen EA (1989) Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. J Biol Chem 264:21670–21676PubMedGoogle Scholar
  45. Cao JG, Meighen EA (1993) Biosynthesis and stereochemistry of the autoinducer controlling luminescence in Vibrio harveyi. J Bacteriol 175:3856–3862PubMedGoogle Scholar
  46. Cao JG, Wei ZY, Meighen EA (1995) The lux autoinducer–receptor interaction in Vibrio harveyi binding parameters and structural requirements for the autoinducer. Biochem J 312:439–444PubMedGoogle Scholar
  47. Castle PHJ, Paxton JR (1984) A new genus and species of luminescent eel (Pisces: Congridae) from the Arafura Sea, Northern Australia. Copeia 1984:72–81CrossRefGoogle Scholar
  48. Charkrabarty P, Davis MP, Smith WL, Berquist R, Gledhill KM, Frank LR, Sparks JS (2011) Evolution of the light organ system in ponyfishes (Teleostei: Leiognathidae). J Morphol 272:704–721CrossRefGoogle Scholar
  49. Chatterjee J, Miyamoto CM, Meighen EA (1996) Autoregulation of luxR the Vibrio harveyi lux–operon activator functions as a repressor. Mol Microbiol 20:415–425PubMedCrossRefGoogle Scholar
  50. Chatterjee J, Miyamoto CM, Zouzoulas A, Lang BF, Skouris N, Meighen EA (2002) MetR and CRP bind to the Vibrio harveyi lux promoters and regulate luminescence. Mol Microbiol 46:101–111PubMedCrossRefGoogle Scholar
  51. Chen PF, Tu SC, Hagag N, Wu FYH, Wu CW (1985) Isolation and characterization of a cyclic AMP receptor protein from luminous Vibrio harveyi cells. Arch Biochem Biophys 241:425–431PubMedCrossRefGoogle Scholar
  52. Chen X, Schauder S, Potier N, Dorsselaer AV, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum–sensing signal containing boron. Nature 415:545–549PubMedCrossRefGoogle Scholar
  53. Claes MF, Dunlap PV (2000) Aposymbiotic culture of the sepiolid squid Euprymna scolopes: role of the symbiotic bacterium Vibrio fischeri in host animal growth, development, and light organ morphogenesis. J Exp Zool 286:280–296PubMedCrossRefGoogle Scholar
  54. Coffey JJ (1967) Inducible synthesis of bacterial luciferase: specificity and kinetics of induction. J Bacteriol 94:1638–1647PubMedGoogle Scholar
  55. Cohen DM, Inada T, Iwamoto T, Scialabba N (1990) FAO species catalogue 10, gadiform fishes of the world. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  56. Czyż A, Plata K, Wegrzyn G (2003) Stimulation of DNA repair as an evolutionary drive for bacterial luminescence. Luminescence 18:140–144PubMedCrossRefGoogle Scholar
  57. Dahlgren U (1915) The production of light by animals. J Franklin Inst 180:513–537CrossRefGoogle Scholar
  58. Desmarchelier PM, Reichelt JL (1981) Phenotypic characterization of clinical and environmental isolates of Vibrio cholerae from Australia. Curr Microbiol 5:123–127CrossRefGoogle Scholar
  59. Devine JH, Countryman C, Baldwin TO (1988) Nucleotide sequence of the luxR and luxI genes and structure of the primary regulatory region of the lux regulon of Vibrio fischeri ATCC 7744. Biochemistry 27:837–842CrossRefGoogle Scholar
  60. Dolan KM, Greenberg EP (1992) Evidence that GroEL, not σ32, is involved in transcription regulation of the Vibrio fischeri luminescence genes in Escherichia coli. J Bacteriol 174:5132–5135PubMedGoogle Scholar
  61. Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, Bocs S, Boursaux–Eude C, Chandler M, Charles JF, Dassa E, Derose R, Derzelle S, Freyssinet G, Gaudriault S, Médigue C, Lanois A, Powell K, Siguier P, Vincent R, Wingate V, Zouine M, Glaser P, Boemare N, Danchin A, Kunst F (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21:1307–1313PubMedCrossRefGoogle Scholar
  62. Dunlap PV (1984) Physiological and morphological state of the symbiotic bacteria from light organs of ponyfish. Biol Bull 167:410–425CrossRefGoogle Scholar
  63. Dunlap PV (1985) Osmotic control of luminescence and growth in Photobacterium leiognathi from ponyfish light organs. Arch Microbiol 141:44–50PubMedCrossRefGoogle Scholar
  64. Dunlap PV (1989) Regulation of luminescence by cyclic AMP in cya–like and crp–like mutants of Vibrio fischeri. J Bacteriol 171:1199–1202PubMedGoogle Scholar
  65. Dunlap PV (1991) Organization and regulation of bacterial luminescence genes. Photochem Photobiol 54:1157–1170CrossRefGoogle Scholar
  66. Dunlap PV (1997) N–Acyl–L–homoserine lactone autoinducers in bacteria unity and diversity. In: Shapiro JA, Dworkin M (eds) Bacteria as multicellular organisms. Oxford University Press, New York, NY, pp 69–106Google Scholar
  67. Dunlap PV (2000) Quorum regulation of luminescence in Vibrio fischeri. In: Bartlett D (ed) Molecular marine microbiology. Horizon Press, Norfolk, UK, pp 3–21Google Scholar
  68. Dunlap PV (2009) Bioluminescence, microbial. In: Schaechter M (ed) Encyclopedia of microbiology, 3rd edn. Elsevier, Oxford, pp 45–61CrossRefGoogle Scholar
  69. Dunlap PV, Ast JC (2005) Genomic and phylogenetic characterization of the luminous bacteria symbiotic with the deep–sea fish Chlorophthalmus albatrossis (Aulopiformes Chlorophthalmidae). Appl Environ Microbiol 71:930–939PubMedCrossRefGoogle Scholar
  70. Dunlap PV, Callahan SM (1993) Characterization of a periplasmic 3':5'–cyclic nucleotide phosphodiesterase gene, cpdP, from the marine symbiotic bacterium Vibrio fischeri. J Bacteriol 175:4615–4624PubMedGoogle Scholar
  71. Dunlap PV, Greenberg EP (1985) Control of Vibrio fischeri luminescence gene expression in Escherichia coli by cyclic AMP and cyclic AMP receptor protein. J Bacteriol 164:45–50PubMedGoogle Scholar
  72. Dunlap PV, Greenberg EP (1988) Control of Vibrio fischeri lux gene transcription by a cyclic AMP receptor protein–LuxR protein regulatory circuit. J Bacteriol 170:4040–4046PubMedGoogle Scholar
  73. Dunlap PV, Greenberg EP (1991) Role of intercellular chemical communication in the Vibrio fischeri –– monocentrid fish symbiosis. In: Dworkin M (ed) Microbial cell–cell interactions. American Society for Microbiology, Washington, DC, pp 219–253Google Scholar
  74. Dunlap PV, Kita–Tuskamoto K (2006) Luminous bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes a handbook on the biology of bacteria, vol 3. Springer, New York, NY, pp 863–892Google Scholar
  75. Dunlap PV, Kuo A (1992) Cell density–dependent modulation of the Vibrio fischeri luminescence system in the absence of autoinducer and LuxR protein. J Bacteriol 174:2440–2448PubMedGoogle Scholar
  76. Dunlap PV, McFall–Ngai MJ (1987) Initiation and control of the bioluminescent symbiosis between Photobacterium leiognathi and leiognathid fish. Ann NY Acad Sci 503:269–283PubMedCrossRefGoogle Scholar
  77. Dunlap PV, Nakamura M (2011) Functional morphology of the luminescence system of Siphamia versicolor (Perciformes: Apogonidae), a bacterially luminous coral reef fish. J Morphol 272:897–909PubMedCrossRefGoogle Scholar
  78. Dunlap PV, Ray JM (1989) Requirement for autoinducer in transcriptional negative autoregulation of the Vibrio fischeri luxR gene in Escherichia coli. J Bacteriol 171:3549–3552PubMedGoogle Scholar
  79. Dunlap PV, Mueller U, Lisa TA, Lundberg KS (1992) Growth of the marine luminous bacterium Vibrio fischeri on 3’ 5’–cyclic AMP correlation with a periplasmic 3’ 5’–cyclic AMP phosphodiesterase. J Gen Microbiol 138:115–123CrossRefGoogle Scholar
  80. Dunlap PV, Kita–Tsukamoto K, Waterbury J, Callahan SM (1995) Isolation and characterization of a visibly luminous variant of Vibrio fischeri strain ES114 from the sepiolid squid Euprymna scolopes. Arch Microbiol 164:194–202CrossRefGoogle Scholar
  81. Dunlap PV, Jiemjit A, Ast JC, Pearce MM, Marques RR, Lavilla–Pitogo CR (2004) Genomic polymorphism in symbiotic populations of Photobacterium leiognathi. Environ Microbiol 6:145–158PubMedCrossRefGoogle Scholar
  82. Dunlap PV, Ast JC, Kimura S, Fukui A, Yoshino T, Endo H (2007) Phylogenetic analysis of host–symbiont specificity and codivergence in bioluminescent symbioses. Cladistics 23:507–523CrossRefGoogle Scholar
  83. Dunlap PV, Davis KM, Tomiyama S, Fujino M, Fukui A (2008) Devlopmental and microbiological analysis of the inception of bioluminescent symbiosis in the marine fish Nuchequula nuchalis (Perciformes Leiognathidae). Appl Environ Microbiol 74:7471–7748PubMedCrossRefGoogle Scholar
  84. Dunlap PV, Kojima Y, Nakamura S, Nakamura M (2009) Inception of formation and early morphogenesis of the bacterial light organ of the sea urchin cardinalfish, Siphamia versicolor (Perciformes Apogonidae). Mar Biol 156:2011–2020CrossRefGoogle Scholar
  85. Dunlap PV, Gould AL, Wittenrich ML, Nakamura M (2012) Symbiosis initiation in the bacterially luminous sea urchin cardinalfish Siphamia versicolor. J Fish Biol 81:1340–1356PubMedCrossRefGoogle Scholar
  86. Eberhard A (1972) Inhibition and activation of bacterial luciferase synthesis. J Bacteriol 109:1101–1105PubMedGoogle Scholar
  87. Eberhard A, Hinton JP, Zuck RM (1979) Luminous bacteria synthesize luciferase anaerobically. Arch Microbiol 121:277–282CrossRefGoogle Scholar
  88. Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449PubMedCrossRefGoogle Scholar
  89. Eberhard A, Widrig CA, McBath P, Schineller JB (1986) Analogs of the autoinducer of bioluminescence in Vibrio fischeri. Arch Microbiol 146:35–40PubMedCrossRefGoogle Scholar
  90. Eberhard A, Longin T, Widrig CA, Stranick SJ (1991) Synthesis of the lux gene autoinducer in Vibrio fischeri is positively autoregulated. Arch Microbiol 155:294–297CrossRefGoogle Scholar
  91. Egan ES, Fogel MA, Waldor MK (2005) Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes. Mol Microbiol 56:1129–1138PubMedCrossRefGoogle Scholar
  92. Engebrecht J, Silverman M (1984) Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci USA 81:4154–4158PubMedCrossRefGoogle Scholar
  93. Engebrecht J, Silverman M (1987) Nucleotide sequence of the regulatory locus controlling expression of bacterial genes for bioluminescence. Nucl Acids Res 15:10455–10467PubMedCrossRefGoogle Scholar
  94. Engebrecht J, Nealson K, Silverman M (1983) Bacterial bioluminescence, isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773–781PubMedCrossRefGoogle Scholar
  95. Farghaly AH (1950) Factors influencing the growth and light production of luminous bacteria. Comp Cell Physiol 36:165–183CrossRefGoogle Scholar
  96. Farmer JJ, Hickman–Brenner FW (1992) The genera Vibrio and Photobacterium. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, Berlin, pp 2952–3011Google Scholar
  97. Farmer JJ, Jorgensen JH, Grimont PAD, Akhurst RJ, Poinar GO, Pierce GV, Smith JA, Carger GP, Wilson K, Hickman–Brenner FW (1989) Xenorhabdus luminescens (DNA hybridization group 5) from human clinical specimens. J Clin Microbiol 27:1594–1600PubMedGoogle Scholar
  98. Feldman KA, Buck JD (1984) Distribution and characterization of luminescent bacteria in a temperate estuary. Estuaries 7:93–97CrossRefGoogle Scholar
  99. Fidopiastis PM, von Boletzky S, Ruby EG (1998) A new niche for Vibrio logei, the predominant light organ symbiont of squids in the genus Sepiola. J Bacteriol 180:59–64PubMedGoogle Scholar
  100. Fidopiastis PM, Sorum H, Ruby EG (1999) Cryptic luminescence in the cold–water fish pathogen Vibrio salmonicida. Arch Microbiol 171:205–209PubMedCrossRefGoogle Scholar
  101. Fidopiastis PM, Miyamoto CM, Jobling MG, Meighen EA, Ruby EG (2002) LitR, a new transcriptional activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization. Mol Microbiol 45:131–143PubMedCrossRefGoogle Scholar
  102. Figge MJ, Robertson LA, Ast JC, Dunlap PV (2011) Historical microbiology: revival and phylogenetic characterization of luminous bacterial cultures of M. W. Beijerinck. FEMS Microbiol Ecol 78:463–472PubMedCrossRefGoogle Scholar
  103. Fischer B (1887) Bacteriologische Untersuchungen auf einer Reise nach West Indien. II. Ubereinen lichtentwickelnden, in Meerswasser gefunden Spaltpilz. Z hyg Infekt 2:54–95Google Scholar
  104. Fischer Le Saux M, Viallard V, Brunel B, Normand P, Boemare EN (1999) Polyphasic classification of the genus Photorhabdus and proposal of new taxa P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov., and P. asymbiotica sp. nov. Int J Syst Bacteriol 49:1645–1656PubMedCrossRefGoogle Scholar
  105. Fitzgerald JM (1977) Classification of luminous bacteria from the light organ of the Australian pinecone fish, Cleidopus gloriamaris. Arch Microbiol 112:153–156CrossRefGoogle Scholar
  106. Flodgaard LR, Dalgaard P, Andersen JB, Nielsen KF, Givskov M, Gram L (2005) Nonbioluminescent strains of Photobacterium phosphoreum produce the cell–to–cell communication signal N–(3–hydroxyoctanoyl) homoserine lactone. Appl Environ Microbiol 71:2113–2120PubMedCrossRefGoogle Scholar
  107. Foran D (1991) Evidence of luminous bacterial symbionts in the light organs of myctophid and stomiiform fishes. J Exp Zool 259:1–8PubMedCrossRefGoogle Scholar
  108. Forst S, Nealson K (1996) Molecular biology of the symbiotic–pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiol Rev 60:21–43PubMedGoogle Scholar
  109. Forst S, Dowds B, Boemare N, Stackebrandt E (1997) Xenorhabdus and Photorhabdus spp. bugs that kill bugs. Ann Rev Microbiol 51:47–72CrossRefGoogle Scholar
  110. Freeman JA, Bassler BL (1999a) A genetic analysis of the function of LuxO, a two–component response regulator involved in quorum sensing in Vibrio harveyi. Mol Microbiol 31:665–677PubMedCrossRefGoogle Scholar
  111. Freeman JA, Bassler BL (1999b) Sequence and function of LuxU: a two–component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. J Bacteriol 191:899–906Google Scholar
  112. Freeman JA, Lilley BN, Bassler BL (2000) A genetic analysis of the functions of LuxN: a two–component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi. Mol Microbiol 35:139–149PubMedCrossRefGoogle Scholar
  113. Friedrich WF, Greenberg EP (1983) Glucose repression of luminescence and luciferase in Vibrio fischeri. Arch Microbiol 134:87–91CrossRefGoogle Scholar
  114. Fukasawa S, Dunlap PV (1986) Identification of luminous bacteria isolated from the light organ of the squid, Doryteuthis kensaki. J Agric Biol Chem 50:1645–1646CrossRefGoogle Scholar
  115. Fukasawa S, Dunlap PV, Baba M, Osumi M (1987) Identification of an agar–digesting, luminous bacterium. Agric Biol Chem 51:265–268CrossRefGoogle Scholar
  116. Fukasawa S, Suda T, Kubota S (1988) Identification of luminous bacteria isolated from the light organ of the fish, Acropoma japonica. Agric Biol Chem 52:285–286CrossRefGoogle Scholar
  117. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria the LuxR–LuxI family of cell density–responsive transcriptional regulators. J Bacteriol 176:269–275PubMedGoogle Scholar
  118. Fuqua WC, Winans SC, Greenberg EP (1996) Census and consensus in bacterial ecosystems: the LuxR–LuxI family of quorum–sensing transcriptional regulators. Ann Rev Microbiol 50:727–751CrossRefGoogle Scholar
  119. Galt CP (1978) Bioluminescence: dual mechanism in a planktonic tunicate produces brilliant surface display. Science 200:70–72PubMedCrossRefGoogle Scholar
  120. Gerrard JG, Joyce SA, Clarke DJ, Ffrench–Constant RH, Nimmo GR, Looke DF, Feil EJ, Pearce L, Waterfield. NR (2006) Nematode symbiont for Photorhabdus asymbiotica. Emerg Infect Dis 12:1562–1564PubMedCrossRefGoogle Scholar
  121. Giard A (1889) On the phosphorescent infection of the Talitri and other crustaceans. Ann Mag Nat Hist 4:476–478CrossRefGoogle Scholar
  122. Giard A, Billet A (1889) Observations sur la maladie phosphorescente des Talitres et autres crustaces. Compt rend Soc Biol 41:593–597Google Scholar
  123. Gilson L, Kuo A, Dunlap PV (1995) AinS and a new family of autoinducer synthesis proteins. J Bacteriol 177:6946–6951PubMedGoogle Scholar
  124. Gogarten JP, Doolitte WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238PubMedCrossRefGoogle Scholar
  125. Gomez–Gil B, Soto–Rodríguez S, García–Gasca A, Roque A, Vazquez–Juarez R, Thompson FL, Swings J (2004) Molecular identification of Vibrio harveyi–related isolates associated with diseased aquatic organisms. Microbiology 150:1769–1777PubMedCrossRefGoogle Scholar
  126. Graf J, Ruby EG (1998) Host–derived amino acids support the proliferation of symbiotic bacteria. Proc Natl Acad Sci USA 95:1818–1822PubMedCrossRefGoogle Scholar
  127. Greenberg EP (1997) Quorum sensing in Gram–negative bacteria. Am Soc Microbiol News 63:371–377Google Scholar
  128. Grim CJ, Taviani E, Alam M, Huq A, Sack RB, Colwell RR (2008) Occurrence and expression of luminescence in Vibrio cholerae. Appl Environ Microbiol 74:708–715PubMedCrossRefGoogle Scholar
  129. Guerrero MA, Makemson JC (1989) The cytochromes of luminous bacteria and their coupling to bioluminescence. Curr Microbiol 18:67–73CrossRefGoogle Scholar
  130. Haldar S, Chatterjee S, Sugimoto N, Das S, Chowdhury N, Hinenoya A, Asakura M, Yamasaki S (2011) Identification of Vibrio campbellii isolated from diseased farm–shrimps from south India and establishment of its pathogenic potential in an Artemia model. Microbiology 157:179–188PubMedCrossRefGoogle Scholar
  131. Haneda Y (1938) Uber den leuchtfisch, Mulucocephalus luevis (Lowe). Jpn J Med 5:355–366Google Scholar
  132. Haneda Y (1950) Luminous organisms of Japan and the Far East. In: Johnson FW (ed) The luminescence of biological systems. American Society for the Advancement of Science, Washington, DC, pp 335–385Google Scholar
  133. Haneda Y (1981) Preservation and utilization of luminous bacteria as a light source. Sci Rep Yokosuka Cy Mus 28:79–83Google Scholar
  134. Hanzelka BL, Parsek MR, Val DV, Dunlap PV, Cronan JE Jr, Greenberg EP (1999) Acylhomoserine lactone synthase activity of the Vibrio fischeri AinS protein. J Bacteriol 181:5766–5770PubMedGoogle Scholar
  135. Harms JW (1928) Bau und entwicklung eines eigenartigen leuchtorgans bei Equula spec. Z Wiss Zool 131:157–179Google Scholar
  136. Harvey EN (1922) The production of light by the fishes photoblepharon and anomalops. Carnegie Institute of Washington, Washington DCGoogle Scholar
  137. Harvey EN (1940) Living light. Princeton University Press, Princeton NJGoogle Scholar
  138. Harvey EN (1952) Bioluminescence. Academic, New York NYGoogle Scholar
  139. Harvey EN (1957) A history of luminescence from the earliest times until 1900. American Philosophical Society, Philadelphia PAGoogle Scholar
  140. Hastings JW (1971) Light to hide by: ventral luminescence to camouflage the silhouette. Science 173:1016–1017PubMedCrossRefGoogle Scholar
  141. Hastings JW (1983) Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems. J Mol Evol 19:309–317PubMedCrossRefGoogle Scholar
  142. Hastings JW (1995) Bioluminescence. In: Sperelakis N (ed) Cell physiology source book. Academic, New York, NY, pp 665–681Google Scholar
  143. Hastings JW, Greenberg EP (1999) Quorum sensing the explanation of a curious phenomenon reveals a common characteristic of bacteria. J Bacteriol 181:2667–2669PubMedGoogle Scholar
  144. Hastings JW, Nealson KH (1977) Bacterial bioluminescence. Ann Rev Microbiol 31:549–595CrossRefGoogle Scholar
  145. Hastings JW, Nealson KH (1981) The symbiotic luminous bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 1332–1345Google Scholar
  146. Hastings JW, Potrikus CJ, Gupta SC, Kurfurst M, Makemson JC (1985) Biochemistry and physiology of bioluminescent bacteria. Adv Microb Physiol 26:235–291PubMedCrossRefGoogle Scholar
  147. Hastings JW, Makemson JC, Dunlap PV (1987) How are growth and luminescence regulated independently in exosymbionts? Symbiosis 4:3–24Google Scholar
  148. Haygood MG (1990) Relationship of the luminous bacterial symbiont of the Caribbean flashlight fish, Kryptophaneron alfredi (family Anomalopidae) to other luminous bacteria based on bacterial luciferase (luxA) genes. Arch Microbiol 154:496–503PubMedCrossRefGoogle Scholar
  149. Haygood MG (1993) Light organ symbioses in fish. Crit Rev Microbiol 19:191–216PubMedCrossRefGoogle Scholar
  150. Haygood MG, Distel DL (1993) Bioluminescent symbionts of flashlight fish and deep–sea anglerfish form unique lineages related to the genus Vibrio. Nature 363:154–156PubMedCrossRefGoogle Scholar
  151. Haygood MG, Nealson KH (1985) Mechanisms of iron regulation of luminescence in Vibrio fischeri. J Bacteriol 162:209–216PubMedGoogle Scholar
  152. Haygood MG, Tebo BM, Nealson KH (1984) Luminous bacteria of a monocentrid fish (Monocentris japonicus) and two anomalopid fish (Photoblepharon palpebratus and Kryptophaneron alfredi) Population sizes and growth within the light organs, and rates of release into the seawater. Marine Biol 78:249–254CrossRefGoogle Scholar
  153. Haygood MG, Distel DL, Herring PJ (1992) Polymerase chain reaction and 16 S rRNA gene sequences from the luminous bacterial symbionts of two deepsea anglerfish. J Marine Biol AssocUK 72:149–159CrossRefGoogle Scholar
  154. Haygood MG, Edwards DB, Mowlds G, Rosenblatt RH (1994) Bioluminescence of myctophid and stomiiform fishes is not due to bacterial luciferase. J Exp Zool 270:225–231CrossRefGoogle Scholar
  155. Hendrie MS, Hodgkiss W, Shewan JM (1970) The identification, taxonomy and classification of luminous bacteria. J Gen Microbiol 64:151–169CrossRefGoogle Scholar
  156. Hendry TA, Dunlap PV (2011) The uncultured luminous symbiont of Anomalops katoptron (Beryciformes Anomalopidae) represents a new bacterial genus. Mol Phylogenet Evol 61:834–843PubMedCrossRefGoogle Scholar
  157. Henke JM, Bassler BL (2004) Three parallel quorum–sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol 186:6902–6904PubMedCrossRefGoogle Scholar
  158. Hense BA, Kuttler C, Muller J, Rothballer M, Harmann A, Kreft JU (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239PubMedCrossRefGoogle Scholar
  159. Herring PJ (1977) Luminescence in cephalopods and fish. Sym Zool Soc Lond 38:127–159Google Scholar
  160. Herring PJ (1978) Bioluminescence of invertebrates other than insects. In: Herring PJ (ed) Bioluminescence in action. Academic, London, pp 190–240Google Scholar
  161. Herring PJ, Morin JG (1978) Bioluminescence in fish. In: Herring PJ (ed) Bioluminescence in action. Academic, London, pp 273–329Google Scholar
  162. Higgins DA, Pmianek ME, Kraml CM, Taylor RK, Semmelhack MF, Bassler BL (2007) The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450:883–886PubMedCrossRefGoogle Scholar
  163. Hill SE (1928) The influence of molds on the growth of luminous bacteria in relation to the hydrogen ion concentration, together with the development of a satisfactory culture method. Biol Bull 55:143–150CrossRefGoogle Scholar
  164. Hjerde E, Lorentzen MS, Holden MT, Seeger K, Paulsen S, Bason N, Churcher C, Harris D, Norbertczak H, Quail MA, Sanders S, Thurston S, Parkhill J, Willassen NP, Thomson NR (2008) The genome sequence of the fish pathogen Aliivibrio salmonicida strain LFI1238 shows extensive evidence of gene decay. BMC Genomics 9:616PubMedCrossRefGoogle Scholar
  165. Humm HJ (1946) Marine agar–digesting bacteria of the South Atlantic coast. Duke Univ Mar Stn Bull 3:45–75Google Scholar
  166. Inman OL (1926) A pathogenic luminous bacterium. Biol Bull 53:197–200CrossRefGoogle Scholar
  167. Jensen MJ, Tebo BM, Baumann P, Mandel M, Nealson KH (1980) Characterization of Alteromonas hanedai (sp. nov.), a nonfermentative luminous species of marine origin. Curr Microbiol 3:311–315CrossRefGoogle Scholar
  168. Jermoljewa S (1926) Vibrio phosphorescens beim klinischen Bilde der Cholera und sein Zusammenhang mit anderen Vibrionen Zent. Bakteriol I Abt Orig 100:170–177Google Scholar
  169. Johnson FH (1951) Luminous bacteria. In: Werkman CH, Wilson PW (eds) Bacterial physiology. Academic, New York NY, pp 576–605Google Scholar
  170. Johnson FH (1988) Luminescence, narcosis, and life in the Deep Sea. Vantage Press, New YorkGoogle Scholar
  171. Johnson FH, Shunk IV (1936) An interesting new species of luminous bacteria. J Bacteriol 31:585–593PubMedGoogle Scholar
  172. Jones BW, Nishiguchi MK (2004) Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar Biol 144:1151–1155CrossRefGoogle Scholar
  173. Kaeding AJ, Ast JC, Pearce MM, Urbanczyk H, Kimura S, Endo H, Nakamura M, Dunlap PV (2007) Phylogenetic diversity and co–symbiosis in the bioluminescent symbioses of Photobacterium mandapamensis. Appl Environ Microbiol 73:3173–3182PubMedCrossRefGoogle Scholar
  174. Kaplan HB, Greenberg EP (1985) Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol 163:1210–1214PubMedGoogle Scholar
  175. Karunasagar I, Pai R, Malathi GR, Karunasagar I (1994) Mass mortality of Penaeus monodon larvae due to antibiotic–resistant Vibrio harveyi infection. Aquaculture 128:203–209CrossRefGoogle Scholar
  176. Kasai S (2006) Freshwater bioluminescence in Vibrio albensis (Vibrio cholerae biovar albensis) NCIMB 41 is caused by a two–nucelotide deletion in luxO. J Biochem 139:471–482PubMedCrossRefGoogle Scholar
  177. Kasai S, Okada K, Hoshino A, Iida T, Honda T (2007) Lateral transfer of the lux gene cluster. J Biochem 141:231–237, TokyoPubMedCrossRefGoogle Scholar
  178. Katznelson R, Ulitzur S (1977) Control of luciferase synthesis in a newly isolated strain of Photobacterium leiognathi. Arch Microbiol 115:347–351PubMedCrossRefGoogle Scholar
  179. Kelly RC, Bolitho ME, Higgins DA, Lu W, Ng WL, Jeffrey PD, Rabinowitz JD, Semmelhack MF, Hughson FM, Bassler BL (2009) The Vibrio cholerae quorum–sensing autoinducer CAI–1: analysis of the biosynthetic enzyme CqsA. Nat Chem Biol 5:891–895PubMedCrossRefGoogle Scholar
  180. Kessel M (1977) The ultrastructure of the relationship between the luminous organ of the teleost fish Photoblepharon palpebratus and its symbiotic bacteria. Cytobiologie 15:145–158Google Scholar
  181. Kishitani T (1930) Studien über die Leuchtsymbiose in Physiculus japonicus Hilgendorf, mit der Beilage der zwei neuen arten der Leuchtbacterien. Sci Rep Res Inst Tohoku Univ 5:801–823Google Scholar
  182. Klappenback JA, Dunbar JM, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66:1328–1333CrossRefGoogle Scholar
  183. Kou YS, Makemson JC (1988) Luciferase–like protein in Vibrio cholerae. In: Abstracts of the annual meeting of the American society for microbiology, Miami Beach, FL. American Society for Microbiology. Washington DC, 37Google Scholar
  184. Kozukue H (1952) Isolation of luminous bacteria from alimentary canal of symbiotic luminous fish. Tokyo Jik Med J 67:18–21Google Scholar
  185. Kühlmorgen–Hille G (1974) Leiognathidae. In: Fischer W, Whitehead PJP (eds) FAO species identification sheets for fishery purposes, Eastern Indian Ocean (Fishing Area 57) and Western Central Pacific (Fishing Area 71), vol 2. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  186. Kuo A, Blough NV, Dunlap PV (1994) Multiple N–acyl–homoserine lactone autoinducers of luminescence in the marine symbiotic bacterium Vibrio fischeri. J Bacteriol 176:7558–7565PubMedGoogle Scholar
  187. Kuo A, Callahan SM, Dunlap PV (1996) Modulation of luminescence operon expression by N–octanoyl–homoserine lactone in ainS mutants of Vibrio fischeri. J Bacteriol 178:971–976PubMedGoogle Scholar
  188. Kuwata R, Yoshiga T, Yoshida M, Kondo E (2008) Mutualistic association of Photorhabdus asymbiotica with Japanese heterorhabditid entomopathogenic nematodes. Microbes Infect 10:734–741PubMedCrossRefGoogle Scholar
  189. Lauro FM, McDougald TT et al (2009) The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci USA 106:15527–15533PubMedCrossRefGoogle Scholar
  190. Lavilla–Pitogo CR, de la Peña LD (1998) Bacterial diseases in shrimp (Penaeus monodon) cultured in the Philippines. Fish Pathol 33:405–411CrossRefGoogle Scholar
  191. Lavilla–Pitogo CR, Baticados MCL, Cruz–Lacierda ER, de la Peña LD (1990) Occurrence of luminous bacterial disease of Penaeus monodon larvae in the Philippines. Aquaculture 91:1–13CrossRefGoogle Scholar
  192. Lavilla–Pitogo CR, Albright LJ, Paner MG, Sunaz NA (1992) Diseases in Asian aquaculture. In: Shariff IM, Subasinghe RP, Arthur JR (eds) Studies on the sources of luminescent Vibrio harveyi in Penaeus monodon hatcheries. Asian Fisheries Society, Manila, pp 157–164Google Scholar
  193. Leano EM, Lavilla–Pitogo CR, Paner MG (1998) Bacterial flora in the hepatopancreas of pond reared Penaeus monodon juveniles with luminous vibriosis. Aquaculture 164:367–374CrossRefGoogle Scholar
  194. Lee J (1993) Lumazine protein and the excitation mechanism in bacterial bioluminescence. Biophys Chem 48:149–158PubMedCrossRefGoogle Scholar
  195. Lee CY, Meighen EA (1992) The lux genes in Photobacterium leiognathi are closely linked with genes corresponding in sequence to riboflavin synthesis genes. Bichem Biophys Res Commun 186:690–697CrossRefGoogle Scholar
  196. Lee KH, Ruby EG (1992) Detection of the light organ symbiont, Vibrio fischeri, in Hawaiian seawater by using lux gene probes. Appl Environ Microbiol 58:942–947PubMedGoogle Scholar
  197. Lee J, Matheson IBC, Muller F, O'Kane D, Veroort J, Visser AJWG (1990) The mechanism of bacterial bioluminescence. In: Muller F (ed) Chemistry and biochemistry of flavoenzyme, vol 2. CRC Press, Boca Raton, FL, pp 109–151Google Scholar
  198. Lee CY, O’Kane DJ, Meighen EA (1994) Riboflavin synthesis genes are linked with the lux operon of Photobacterium phosphoreum. J Bacteriol 176:2100–2104PubMedGoogle Scholar
  199. Leisman G, Cohn DH, Nealson KH (1980) Bacterial origin of luminescence in marine animals. Science 208:1271–1273PubMedCrossRefGoogle Scholar
  200. Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi. Cell 118:69–82PubMedCrossRefGoogle Scholar
  201. Li Z, Szittner R, Meighen EA (1993) Subunit interactions and the role of the luxA polypeptide in controlling thermal stability and catalytic properties in recombinant luciferase hybrids. Biochim Biophys Acta 1158L:137–145CrossRefGoogle Scholar
  202. Lilley BN, Bassler BL (2000) Regulation of quorum sensing in Vibrio harveyi by LuxO and sigma–54. Mol Microbiol 36:940–954PubMedCrossRefGoogle Scholar
  203. Lin JW, Chao YF, Weng SF (1993) The lumazine protein–encoding gene in Photobacterium leiognathi is linked to the lux operon. Gene 126:153–154PubMedCrossRefGoogle Scholar
  204. Lin JW, Yu KY, Chao YF, Weng SF (1995) The lumQ gene is linked to the lumP gene and the lux operon in Photobacterium leiognathi. Biochem Biophys Res Commun 217:684–695PubMedCrossRefGoogle Scholar
  205. Lin JW, Chao YF, Weng SF (1996a) Nucleotide sequence and functional analysis of the luxE gene encoding acyl–protein synthetase of the lux operon from Photobacterium leiognathi. Biochem Biophys Res Commun 228:764–773PubMedCrossRefGoogle Scholar
  206. Lin JW, Yu KY, Chao YF, Weng SF (1996b) Regulatory region with putA gene of proline dehydrogenase that links to the lum and lux operons in Photobacterium leiognathi. Biochem Biophys Res Commun 219:868–875PubMedCrossRefGoogle Scholar
  207. Lin JW, Chao YF, Weng SF (1998) Characteristic analysis of the luxG gene encoding the probable flavin reductase that resides in the lux operon of Photobacterium leiognathi. Biochem Biophys Res Commun 246:446–452PubMedCrossRefGoogle Scholar
  208. Lin YH, Miyamoto C, Meighen EA (2000) Cloning and functional studies of a luxO regulator LuxT from Vibrio harveyi. Biochim Biophys Acta 1494:226–235PubMedCrossRefGoogle Scholar
  209. Lin JW, Chao YF, Weng SF (2001) Riboflavin synthesis genes ribE, ribB, ribH, ribA reside in the lux operon of Photobacterium leiognathi. Biochem Biophys Res Commun 284:587–595PubMedCrossRefGoogle Scholar
  210. Lin B, Wang Z, Malanoski AP, O'Grady EA, Wimpee CF, Vuddhakul V, Alves N Jr, Thompson FL, Gomez–Hil B, Voral GJ (2010) Comparative genomic analyses identify the Vibrio harveyi genome sequenced strains BAA–1116 and HY01 as Vibrio campbellii. Environ Microbiol Rep 2:81–89PubMedCrossRefGoogle Scholar
  211. Long T, Tu KC, Wang Y, Mehta P, Ong NP, Bassler BL, Wingreen NS (2009) Quantifying the integration of quorum–sensing signals with single–cell resolution. PLoS Biol 7:e68PubMedCrossRefGoogle Scholar
  212. Ludwig F (1884) Micrococcus P flugeri, ein neuer photogener Pilz. Hedwigia 23:33–37Google Scholar
  213. Lunder T, Sørum H, Holstad G, Steigerwalt AG, Mowinckel P, Brenner DJ (2000) Phenotypic and genotypic characterization of Vibrio viscosus sp. nov. and Vibrio wodanis sp. nov. isolated from Atlantic salmon (Salmo salar) with 'winter ulcer'. Int J Syst Evol Microbiol 50:427–450PubMedCrossRefGoogle Scholar
  214. Mackie GO, Bone Q (1978) Luminescence and associated effector activity in Pyrosoma (Tunicata: Pyrosomida). Proc R Soc London 202:483–495CrossRefGoogle Scholar
  215. Majima R (1931) Studies on luminous bacteria further studies on pathogenic luminous bacteria, Microspira phosphoreum. Yasaki Sei–i–kai Japan 50:1–23Google Scholar
  216. Makemson JC (1986) Luciferase–dependent oxygen consumption by bioluminescent vibrios. J Bacteriol 165:461–466PubMedGoogle Scholar
  217. Makemson JC, Hastings JW (1982) Iron represses bioluminescence in Vibrio harveyi. Curr Microbiol 7:181–186CrossRefGoogle Scholar
  218. Makemson JC, Hastings JW (1986) Nonluminous vibrios possess proteins that share antigenic determinants with Vibrio harveyi luciferase. In: Abstr. Ann. Meet. Amer. Soc. Microbiol. Washington, DC, I–46Google Scholar
  219. Makemson JC, Hermosa GV Jr (1999) Luminous bacteria cultured from fish guts in the Gulf of Oman. Luminescence 14:161–168PubMedCrossRefGoogle Scholar
  220. Makemson JC, Fulayfil N, Basson P (1992) Association of luminous bacteria with artificial and natural surfaces in Arabian Gulf seawater. Appl Environ Microbiol 58:2341–2343PubMedGoogle Scholar
  221. Makemson JC, Fulayfil NR, Landry W, Van Ert LM, Wimpee CF, Widder EA, Case JF (1997) Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol 47:1034–1039PubMedCrossRefGoogle Scholar
  222. Mandel MJ, Wollenberg MS, Stabb EV, Visick KL, Ruby EG (2009) A single regulatory gene is sufficient to alter bacterial host range. Nature 458:215–218PubMedCrossRefGoogle Scholar
  223. Manukhov IV, Khrul'nova SA, Baranova A, Zavilgelsky GB (2011) Comparative analysis of the lux operons in Aliivibrio logei KCh1 (a Kamchatka Isolate) and Aliivibrio salmonicida. J Bacteriol 193:3998–4001PubMedCrossRefGoogle Scholar
  224. Martín Cuadrado AB, López García P, Alba JC, Moreira D, Monticelli L, Strittmatter A, Gottschalk G, Rodríguez Valera F (2007) Metagenomics of the deep Mediterranean, a warm bathypelagic habitat. PLoS One 2:e914PubMedCrossRefGoogle Scholar
  225. Martin M, Showalter R, Silverman M (1989) Identification of a locus controlling expression of the luminescence genes in Vibrio harveyi. J Bacteriol 171:2406–2414PubMedGoogle Scholar
  226. McElroy WD, Seliger HH (1962) Origin and evolution of bioluminescence. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic, New York, NY, pp 91–101Google Scholar
  227. McFall Ngai M, Morin JG (1991) Camouflage by disruptive illumination in leiognathids, a family of shallow–water, bioluminescent fishes. J Exp Biol 156:119–137Google Scholar
  228. McFall Ngai MJ, Ruby EG (1991) Symbiont recognition and subsequent morphogenesis as early events in animal–bacterial mutualism. Science 254:1491–1494PubMedCrossRefGoogle Scholar
  229. McFall–Ngai MJ (1983) Adaptations for reflection of bioluminescent light in the gas bladder of Leiognathus equulus (Perciformes: Leiognathidae). J Exp Zool 227:23–33PubMedCrossRefGoogle Scholar
  230. McFall–Ngai MJ, Dunlap PV (1983) Three new modes of luminescence in the leiognathid fish Gazza minuta: discrete projected luminescence, ventral body flash, and buccal luminescence. Mar Biol 73:227–237CrossRefGoogle Scholar
  231. Meighen EA (1988) Enzymes and genes from the lux operons of bioluminescent bacteria. Ann Rev Microbiol 42:151–176CrossRefGoogle Scholar
  232. Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 55:123–142PubMedGoogle Scholar
  233. Meighen EA (1999) Autoinduction of light emission in different species of bioluminescent bacteria. Luminescence 14:3–9PubMedCrossRefGoogle Scholar
  234. Meighen EA, Dunlap PV (1993) Physiological, biochemical and genetic control of bacterial bioluminescence. Adv Microb Physiol 34:1–67PubMedCrossRefGoogle Scholar
  235. Meighen EA, Szittner RB (1992) Multiple repetitive elements and organization of the lux operons of luminescent terrestrial bacteria. J Bacteriol 174:5371–5381PubMedGoogle Scholar
  236. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199PubMedCrossRefGoogle Scholar
  237. Miyamoto CM, Meighen EA (2006) Involvement of LuxR, a quorum sensing regulator in Vibrio harveyi, in the promotion of metabolic genes argA, purM, lysE and rluA. Biochim Biophys Acta 1759:296–307PubMedCrossRefGoogle Scholar
  238. Miyamoto CM, Graham AF, Meighen EA (1988) Nucleotide sequence of the luxC gene and the upstream DNA from the bioluminescent system of Vibrio harveyi. Nucl Acids Res 16:1551–1562PubMedCrossRefGoogle Scholar
  239. Miyamoto CM, Chatterjee J, Swartzman E, Szittner R, Meighen EA (1996) The role of lux autoinducer in regulating luminescence in Vibrio harveyi control of luxR expression. Mol Microbiol 19:767–775PubMedCrossRefGoogle Scholar
  240. Miyamoto CM, Sun W, Meighen EA (1998) The LuxR regulator protein controls synthesis of polyhydroxybutyrate in Vibrio harveyi. Biochim Biophys Acta 1384:356–364PubMedCrossRefGoogle Scholar
  241. Miyamoto CM, Lin YH, Meighen EA (2000) Control of bioluminescence in Vibrio fischeri by the LuxO signal response regulator. Mol Microbiol 36:594–607PubMedCrossRefGoogle Scholar
  242. Miyamoto CM, Dunlap PV, Ruby EG, Meighen EA (2003) LuxO controls luxR expression in Vibrio harveyi evidence for a common regulatory mechanism in Vibrio. Mol Microbiol 48:537–548PubMedCrossRefGoogle Scholar
  243. Miyashiro T, Wollenberg MS, Cao X, Oehlert D, Ruby EG (2010) A single qrr gene is necessary and sufficient for LuxO–mediated regulation in Vibrio fischeri. Mol Microbiol 77:1556–1567PubMedCrossRefGoogle Scholar
  244. Molisch H (1912) Leuchtende Pflanzen. Eine Physiologische Studie. Gustav Fischer, JenaGoogle Scholar
  245. Molisch H (1925) Botanische Beobachtungen in Japan. III Über das Leuchten des Schlacht–viehfleisches in Sendai. Japan Sci Rep Tohoku Imp Univ Biol 197–103Google Scholar
  246. Moore SA, James MN (1995) Structural refinement of the non–fluorescent flavoprotein from Photobacterium leiognathi at 160 A resolution. J Mol Biol 249:195–214PubMedCrossRefGoogle Scholar
  247. Morin JG, Harrington A, Nealson K, Krieger N, Baldwin TO, Hastings JW (1975) Light for all reasons: versatility in the behavioral repertoire of the flashlight fish. Science 190:74–76Google Scholar
  248. Müller Breitkreutz K, Winkler UK (1993) Anaerobic expression of the Vibrio fischeri lux regulon in E coli is Fnr–dependent. J Biolumin Chemilumin 8:108Google Scholar
  249. Munk O, Hansen K, Herring PJ (1998) On the development and structure of the escal light organ of some melanocetid deep sea anglerfishes (Pisces Ceratioidei). J Mar Biol Assoc UK 78:1321–1335CrossRefGoogle Scholar
  250. Nealson KH (1977) Autoinduction of bacterial luciferase. Occurrence, mechanism and significance. Arch Microbiol 112:73–79PubMedCrossRefGoogle Scholar
  251. Nealson KH (1978) Isolation, identification and manipulation of luminous bacteria. In: DeLuca MA (ed) Methods in enzymology, vol 57. Academic, New York, NY, pp 153–166Google Scholar
  252. Nealson KH (1979) Alternative strategies of symbiosis of marine luminous fishes harboring light–emitting bacteria. Trends Biochem Sci 4:105–110CrossRefGoogle Scholar
  253. Nealson, K. H., and D. S. Walton. 1978 Luciferase in non–luminous species of Beneckea. In: Abstracts of the Annual Meeting of the American Society for Microbiology, Washington, DC American Society for Microbiology. Washington DC, 1 1–131Google Scholar
  254. Nealson KH, Hastings JW (1977) Low oxygen is optimal for luciferase synthesis in some bacteria. Ecological implications. Arch Microbiol 112:9–16PubMedCrossRefGoogle Scholar
  255. Nealson KH, Hastings JW (1979) Bacterial bioluminescence its control and ecological significance. Microbiol Rev 43:496–518PubMedGoogle Scholar
  256. Nealson KH, Hastings JW (1992) The luminous bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, Berlin, pp 625–639Google Scholar
  257. Nealson KH, Venter JC (2007) Metagenomics and the global ocean survey what's in it for us, and why should we care? ISME J 1:185–187PubMedCrossRefGoogle Scholar
  258. Nealson KH, Platt T, Hastings JW (1970) Cellular control of synthesis and activity of the bacterial luminescence system. J Bacteriol 104:313–322PubMedGoogle Scholar
  259. Nealson KH, Eberhard A, Hastings JW (1972) Catabolite repression of bacterial bioluminescence, functional implications. Proc Natl Acad Sci USA 69:1073–1076PubMedCrossRefGoogle Scholar
  260. Nealson KH, Haygood MG, Tebo BM, Roman M, Miller E, McCosker JE (1984) Contribution of symbiotically luminous fish to the occurrence and bioluminescence of luminous bacteria in seawater. Microb Ecol 10:69–77CrossRefGoogle Scholar
  261. Nealson KH, Wimpee B, Wimpee C (1993) Identification of Vibrio splendidus as a member of the planktonic luminous bacteria from the Persian Gulf and Kuwait region with luxA probes. Appl Environ Microbiol 59:2684–2689PubMedGoogle Scholar
  262. Nelson JS (2006) Fishes of the World, 4th edn. Wiley, Hoboken, NJGoogle Scholar
  263. Nelson EJ, Tunsjø HS, Fidopiastis PM, Sørum H, Ruby EG (2007) A novel lux operon in the cryptically bioluminescent fish pathogen Vibrio salmonicida is associated with virulence. Appl Environ Microbiol 73:1825–1833PubMedCrossRefGoogle Scholar
  264. Neush J (1879) Bactéries lumineuses sur la viande fraîsche. J Pharm Chim Paris 29:20–22Google Scholar
  265. Ng WL, Bassler BL (2009) Bacterial quorum–sensing network architectures. Annu Rev Genet 43:197–222PubMedCrossRefGoogle Scholar
  266. Nijvipakul S, Wongratana J, Suadee C, Entsch B, Ballou DP, Chaiyen P (2008) LuxG is a functioning flavin reductase for bacterial luminescence. J Bacteriol 190:1531–1538PubMedCrossRefGoogle Scholar
  267. Nishiguchi MK (2000) Temperature affects species distribution in symbiotic populations of Vibrio spp. Appl Environ Microbiol 66:3550–3555PubMedCrossRefGoogle Scholar
  268. Nishiguchi MK, Ruby EG, McFall–Ngai MJ (1998) Competitive dominance among strains of luminous bacteria provides an unusual form of evidence for parallel evolution in Sepiolid squid–Vibrio symbioses. Appl Environ Microbiol 64:3209–3213PubMedGoogle Scholar
  269. O’Brien CH, Sizemore RK (1979) Distribution of the luminous bacterium Beneckea harveyi in a semitropical estuarine environment. Appl Environ Microbiol 38:933–938Google Scholar
  270. O’Grady EA, Wimpee CF (2008) Mutations in the lux operon of natural dark mutants in the genus Vibrio. Appl Environ Microbiol 74:61–66PubMedCrossRefGoogle Scholar
  271. O’Kane DJ, Prasher DC (1992) Evolutionary origins of bacterial bioluminescence. Mol Microbiol 6:443–449PubMedCrossRefGoogle Scholar
  272. O’Kane DJ, Karle VA, Lee J (1985) Purification of lumazine proteins from Photobacterium leiognathi and Photobacterium phosphoreum: bioluminescent properties. Biochemistry 24:1461–1467PubMedCrossRefGoogle Scholar
  273. O’Kane DJ, Woodward B, Lee J, Prasher DC (1991) Borrowed proteins in bacterial bioluminescence. Proc Natl Acad Sci 88:1100–1104PubMedCrossRefGoogle Scholar
  274. Ochman H, Lawrence JG, Groisman E (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304PubMedCrossRefGoogle Scholar
  275. Okada YK (1926) On the photogenic organ of the knight–fish Monocentris japonicus (Houttuyn). Biol Bull 50:365–373CrossRefGoogle Scholar
  276. Okada K, Iida T, Kita–Tsukamoto K, Honda T (2005) Vibrios commonly possess two chromosomes. J Bacteriol 187:752–757PubMedCrossRefGoogle Scholar
  277. Oliver JD, Roberts DM, White VK, Dry MA, Simpson LM (1986) Bioluminescence in a strain of the human pathogenic bacterium Vibrio vulnificus. Appl Environ Microbiol 52:1209–1211PubMedGoogle Scholar
  278. Onarheim AM, Wiik R, Burghardt J, Stackebrandt E (1994) Characterization & identification of two Vibrio species indigenous to the intestine of fish in cold sea water; description of Vibrio iliopiscarious sp. nov. Syst Appl Microbiol 17:370–379CrossRefGoogle Scholar
  279. Orlov AM, Iwamoto T (2006) Grenadiers of the World Oceans: biology, stock assessment, and fisheries. American Fisheries Society, Bethesda, MDGoogle Scholar
  280. Ortiz Conde BA, Muir DG, Pillidge CJ, Gobius KS, Anikis MS, Powell DM, Hori H, Colwell RR (1989) Nucleotide sequences of 5 S ribosomal RNAs from three marine eubacteria Shewanella hanedai, Alteromonas colwelliana and Vibrio mediterranei. Nucl Acids Res 17:4881PubMedCrossRefGoogle Scholar
  281. Owens L, Busico–Salcedo N (2006) Vibrio harveyi: pretty problems in paradise. In: Thompson FL, Austin B, Swings J (eds) The biology of Vibrios. American Society for Microbiology Press, Washington, DC, pp 266–280Google Scholar
  282. Palmer LM, Colwell RR (1991) Detection of luciferase gene sequence in nonluminescent Vibrio cholerae by colony hybridization and polymerase chain reaction. Appl Environ Microbiol 57:1286–1293PubMedGoogle Scholar
  283. Peat SM, Ffrench–Constant RH, Waterfield NR, Marokházi J, Fodor A, Adams BJ (2010) A robust phylogenetic framework for the bacterial genus Photorhabdus and its use in studying the evolution and maintenance of bioluminescence a case for 16 S, gyrB, and glnA. Mol Phylogenet Evol 57:728–740PubMedCrossRefGoogle Scholar
  284. Peel MM, Alfredson DA, Gerrard JG, Davis JM, Robson JM, McDougall RJ, Scullie BL, Akhurst RJ (1999) Isolation, identification, and molecular characterization of strains of Photorhabdus luminescens from infected humans in Australia. J Clin Microbiol 37:3647–3653PubMedGoogle Scholar
  285. Petushkov VN, Ketelaars M, Gibson BG, Lee J (1996) Interaction of Photobacterium leiognathi and Vibrio fischeri Y1 luciferases with fluorescent (antenna) proteins bioluminescence effects of the aliphatic additive. Biochemistry 35:12086–12093PubMedCrossRefGoogle Scholar
  286. Pflüger E (1875) Ueber die Phosphorescenz verwesender Organismen. Arch ges Physiol Men Tiere 11:222–263CrossRefGoogle Scholar
  287. Platt TG, Fuqua C (2010) What's in a name? The semantics of quorum sensing. Trends Microbiol 18:383–387PubMedCrossRefGoogle Scholar
  288. Pompeani AJ, Irgon JJ, Berger MF, Bulyk ML, Wingreen NS, Bassler BL (2008) The Vibrio harveyi master quorum–sensing regulator, LuxR, a TetR–type protein is both an activator and a repressor: DNA recognition and binding specificity at target promoters. Mol Microbiol 70:76–88PubMedCrossRefGoogle Scholar
  289. Potrikus CJ, Greenberg EP, Hamlett NV, Gupta S, Hastings JW (1984) Hybridization of Vibrio harveyi luciferase genes to non–luminous marine bacteria. In: Abstracts of the Annual Meeting of the American Society for Microbiology, St. Louis, MO American Society for Microbiology. Washington DC, 1–42Google Scholar
  290. Preheim SP, Boucher Y, Wildschutte H, David LA, Veneziano D, Alm EJ, Polz MF (2011) Metapopulation structure of Vibrionaceae among coastal marine invertebrates. Environ Microbiol 13:265–275PubMedCrossRefGoogle Scholar
  291. Pujalte MJ, Garay E (1986) Proposal of Vibrio mediterranei sp. nov. A new marine member of the Genus Vibrio. Int J Syst Bacteriol 36:278–281CrossRefGoogle Scholar
  292. Qin N, Callahan SM, Dunlap PV, Stevens AM (2007) Analysis of LuxR regulon gene expression during quorum sensing in Vibrio fischeri. J Bacteriol 189:4127–4134PubMedCrossRefGoogle Scholar
  293. Ramaiah N, Chun J, Ravel J, Straube WL, Hill RT, Colwell RR (2000) Detection of luciferase gene sequences in non–luminescent bacteria from the Chesapeake Bay. FEMS Microbiol Ecol 33:27–34PubMedGoogle Scholar
  294. Ramesh A, Venugopalan VK (1989) Role of luminous bacteria in chitin degradation in the intestine of fish. MIRCEN J 5:55–59CrossRefGoogle Scholar
  295. Ramesh A, Balakrish Nair G, Abraham M, Natarajan R, Venugopalan VK (1987) Seasonal distribution of luminous bacteria in the tropical Vellar estuary. Microbios 52:151–159Google Scholar
  296. Ramaiah N, Chandramohan D (1987) Distribution and species composition of planktonic luminous bacteria in the Arabian Sea. Indian J Mar Sci 16:139–142Google Scholar
  297. Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10:365–370PubMedCrossRefGoogle Scholar
  298. Reen FJ, Almagro Moreno S, Ussery D, Boyd EF (2006) The genomic code: inferring Vibrionaceae niche specialization. Nat Rev Microbiol 4:697–704PubMedCrossRefGoogle Scholar
  299. Rees JF, de Wergifosse B, Noiset O, Dubuisson M, Janssens B, Thompson EM (1998) The origins of marine bioluminescence turning oxygen defense mechanisms into deep–sea communication tools. J Exp Biol 201:1211–1221PubMedGoogle Scholar
  300. Reichelt JL, Baumman P (1973) Taxonomy of the marine, luminous bacteria. Arch Mikrobiol 94:283–330CrossRefGoogle Scholar
  301. Reichelt JL, Baumann P, Baumann L (1976) Study of genetic relationships among marine species of the genera Beneckea and Photobacterium by means of in vitro DNA/DNA hybridization. Arch Microbiol 110:101–120PubMedCrossRefGoogle Scholar
  302. Reichelt JL, Nealson K, Hastings JW (1977) The specificity of symbiosis pony fish and luminescent bacteria. Arch Microbiol 112:157–161CrossRefGoogle Scholar
  303. Robertson LA (2003) The Delft School of microbiology, from the nineteenth to the twenty–first century. Adv Appl Microbiol 52:357–388PubMedCrossRefGoogle Scholar
  304. Robertson LA, Figge MJ, Dunlap PV (2011) Beijerinck and the bioluminescent bacteria – microbiological experiments in the late 19th and early 20th centuries. FEMS Microbiol Ecol 75:185–194PubMedCrossRefGoogle Scholar
  305. Rosson RA, Nealson KH (1981) Autoinduction of bacterial bioluminescence in a carbon–limited chemostat. Arch Microbiol 129:299–304CrossRefGoogle Scholar
  306. Ruby EG (1996) Lessons from a cooperative bacterial–animal association The Vibrio fischeri–Euprymna scolopes light organ symbiosis. Annu Rev Microbiol 50:591–624PubMedCrossRefGoogle Scholar
  307. Ruby EG, Asato LM (1993) Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch Microbiol 159:160–167PubMedCrossRefGoogle Scholar
  308. Ruby EG, Lee KH (1998) The Vibrio fischeriEuprymna scolopes light organ association current ecological paradigms. Appl Environ Microbiol 64:805–812PubMedGoogle Scholar
  309. Ruby EG, Morin JG (1978) Specificity of symbiosis between deep–sea fish and psychrotrophic luminous bacteria. Deep–Sea Res 25:161–171CrossRefGoogle Scholar
  310. Ruby EG, Morin JG (1979) Luminous enteric bacteria of marine fish. A study of their distribution, densities, and dispersion. Appl Environ Microbiol 38:406–411PubMedGoogle Scholar
  311. Ruby EG, Nealson KH (1976) Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica, a model of symbiosis based on bacterial studies. Biol Bull 141:574–5867CrossRefGoogle Scholar
  312. Ruby EG, Nealson KH (1978) Seasonal changes in the species composition of luminous bacteria in nearshore seawater. Limnol Oceanogr 23:530–533CrossRefGoogle Scholar
  313. Ruby EG, Greenberg EP, Hastings JW (1980) Planktonic marine luminous bacteria species distribution in the water column. Appl Environ Microbiol 39:302–306PubMedGoogle Scholar
  314. Ruby EG, Urbanowski M, Campbell J, Dunn A, Faini M, Gunsalus R, Lostroh P, Lupp C, McCann J, Millikan D, Schaefer A, Stabb E, Stevens A, Visick K, Whistler C, Greenberg EP (2005) Complete genome sequence of Vibrio fischeri a symbiotic bacterium with pathogenic congeners. Proc Natl Acad Sci USA 102:3004–3009PubMedCrossRefGoogle Scholar
  315. Sasaki A, Ikejima K, Aoki S, Azuma N, Kashimura N, Wada M (2003) Field evidence for bioluminescent signaling in the pony fish, Leiognathus elongatus. Environ Biol Fish 66:307–311CrossRefGoogle Scholar
  316. Sato Y, Shimizu S, Ohtaki A, Noguchi K, Miyatake H, Dohmae N, Sasaki S, Odaka M, Yohda M (2010) Crystal structures of the Lumazine protein from Photobacterium kishitanii in complexes with the authentic chromophore, 6,7–dimethyl–8–(1_–D–ribityl) lumazine, and its analogues, riboflavin and flavin mononucleotide, at high resolution. J Bacteriol 192:127–133PubMedCrossRefGoogle Scholar
  317. Schaefer AL, Val DL, Hanzelka BL, Cronan JE Jr, Greenberg EP (1996) Generation of cell–to–cell signals in quorum sensing:acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc Natl Acad Sci USA 93:9505–9509PubMedCrossRefGoogle Scholar
  318. Schauder S, Shokat K, Surette MG, Bassler BL (2001) The LuxS family of bacterial autoinducers biosynthesis of a novel quorum–sensing signal molecule. Mol Microbiol 41:463–476PubMedCrossRefGoogle Scholar
  319. Schmidt TM, Kopecky K, Nealson KH (1989) Bioluminescence of the insect pathogen Xenorhabdus luminescens. Appl Environ Microbiol 55:2607–2612PubMedGoogle Scholar
  320. Seliger HH (1987) The evolution of bioluminescence in bacteria. Photochem Photobiol 45:291–297CrossRefGoogle Scholar
  321. Shadel GS, Baldwin TO (1991) The Vibrio fischeri LuxR protein is capable of bidirectional stimulation of transcription and both positive and negative regulation of the luxR gene. J Bacteriol 173:568–574PubMedGoogle Scholar
  322. Shadel GS, Baldwin TO (1992a) Identification of a distantly located regulatory element in the luxD gene required for negative autoregulation of the Vibrio fischeri luxR gene. J Biol Chem 267:7690–7695PubMedGoogle Scholar
  323. Shadel GS, Baldwin TO (1992b) Positive autoregulation of the Vibrio fischeri luxR gene. J Biol Chem 267:7696–7702PubMedGoogle Scholar
  324. Shadel GS, Devine JH, Baldwin TO (1990) Control of the lux regulon of Vibrio fischeri. J Biolumin Chemilumin 5:99–106PubMedCrossRefGoogle Scholar
  325. Shilo M, Yetinson T (1980) Physiological characteristics underlying the distribution patterns of luminous bacteria in the Mediterranean Sea and the Gulf of Elat. Appl Environ Microbiol 38:577–584Google Scholar
  326. Shimada T, Arakawa E, Itoh K, Kosako Y, Okitsu T, Yamai S, Nishino M, Nakajima T (1995) Causative agent of the so–called “light disease of shrimps” is luminescent Vibrio cholerae non–O1. Nippon Saik Z 50:863–870CrossRefGoogle Scholar
  327. Showalter RE, Martin MO, Silverman MR (1990) Cloning and nucleotide sequence of luxR, a regulatory gene controlling bioluminescence in Vibrio harveyi. J Bacteriol 172:2946–2954PubMedGoogle Scholar
  328. Sicard M, Hering S, Schulte R, Gaudriault S, Schulenburg H (2007) The effect of Photorhabdus luminescens (Enterobacteriaceae) on the survival, development, reproduction and behaviour of Caenorhabditis elegans (Nematoda Rhabditidae). Environ Microbiol 9:12–25PubMedCrossRefGoogle Scholar
  329. Silverman M, Martin M, Engebrecht J (1989) Regulation of luminescence in marine bacteria. In: Hopwood DA, Chater KF (eds) Genetics of bacterial diversity. Academic, London, pp 71–86CrossRefGoogle Scholar
  330. Singleton RJ, Skerman TM (1973) A taxonomic study by computer analysis of marine bacteria from New Zealand waters. J R Soc New Zealand 3:129–140CrossRefGoogle Scholar
  331. Small ED, Koka P, Lee J (1980) Lumazine protein from the bioluminescent bacterium Photobacterium phosphoreum. Purification and characterization. J Biol Chem 255:8804–8810PubMedGoogle Scholar
  332. Smith SK, Sutton DC, Fuerst JA, Reichelt JL (1991) Evaluation of the genus Listonella and reassignment of Listonella damsela (Love et al.) MacDonell and Colwell to the genus Photobacterium as Photobacterium damsela comb. nov. with an emended description. Int J Syst Bacteriol 41:529–534PubMedCrossRefGoogle Scholar
  333. Sparks JS, Smith WL, Dunlap PV (2005) Evolution and diversification of a sexually dimorphic luminescent system in ponyfishes (Teleostei: Leiognathidae), including diagnoses for two new genera. Cladistics 21:305–327CrossRefGoogle Scholar
  334. Spencer R (1961) Chitinoclastic activity of the luminous bacteria. Nature 190:938CrossRefGoogle Scholar
  335. Stacy AR, Diggle SP, Whiteley M (2012) Rules of engagement defining bacterial communication. Curr Opin Microbiol 15(2):155–162PubMedCrossRefGoogle Scholar
  336. Stevens AM, Greenberg EP (1997) Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes. J Bacteriol 179:557–562PubMedGoogle Scholar
  337. Sun W, Cao JG, Teng K, Meighen EA (1994) Biosynthesis of poly–3–hydroxybutyrate in the luminescent bacterium, Vibrio harveyi, and regulation by the lux autoinducer, N–(3–hydroxybutanoyl) homoserine lactone. J Biol Chem 269:20785–20790PubMedGoogle Scholar
  338. Sung ND, Lee CY (2004) Coregulation of lux genes and riboflavin genes in bioluminescent bacteria of Photobacterium phosphoreum. J Microbiol 42:194–199PubMedGoogle Scholar
  339. Surete MG, Miller MB, Bassler BL (1999) Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci USA 96:1639–1644CrossRefGoogle Scholar
  340. Suwanto A, Yuhana M, Herawaty E, Angka SL (1998) Genetic diversity of luminous Vibrio isolated from shrimp larvae. In: Flegel TW (ed) Advances in shrimp biotechnology. National Center for Genetic Engineering and Biotechnology, Bangkok, pp 217–224Google Scholar
  341. Swartzman E, Kapoor S, Graham AF, Meighen EA (1990a) A new Vibrio fischeri lux gene precedes a bidirectional termination site for the lux operon. J Bacteriol 172:6797–6802PubMedGoogle Scholar
  342. Swartzman E, Miyamoto C, Graham A, Meighen E (1990b) Delineation of the transcriptional boundaries of the lux operon of Vibrio harveyi demonstrates the presence of two new lux genes. J Biol Chem 265:3513–3517PubMedGoogle Scholar
  343. Swartzman E, Silverman M, Meighen EA (1992) The luxR gene product of Vibrio harveyi is a transcriptional activator of the lux promoter. J Bacteriol 174:7490–7493PubMedGoogle Scholar
  344. Swift S, Williams P, Stewart GSAB (1999) N–Acylhomoserine lactones and quorum sensing in proteobacteria. In: Dunny GM, Winans SC (eds) Cell–cell signaling in bacteria. American Society for Microbiology Press, Washington, pp 291–313Google Scholar
  345. Tailliez P, Laroui C, Ginibre N, Paule A, Pagès S, Boemare N (2010) Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein–coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. Int J Syst Evol Microbiol 60:1921–1937PubMedCrossRefGoogle Scholar
  346. Thompson FL, Thompson CC, Li Y, Gomez Gil B, Vandenberghe J, Hoste B, Swings J (2003) Vibrio kanaloae sp. nov., Vibrio pomeroyi sp. nov. and Vibrio chagasii sp. nov., from sea water and marine animals. Int J Syst Evol Microbiol 53:753–759PubMedCrossRefGoogle Scholar
  347. Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S, Hoste B, Munn CB, Swings J (2005) Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71:5107–5115PubMedCrossRefGoogle Scholar
  348. Tiews K, Caces Borja P (1965) On the availability of fish of the family Leiognathidae Lacepede in Manila Bay and San Miguel Bay and on their accessibility to controversial fishing gears. Phil J Fish 7:59–83Google Scholar
  349. Tu KC, Bassler BL (2007) Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi. Genes Dev 21:221–233PubMedCrossRefGoogle Scholar
  350. Tu KC, Long T, Svenningsen SL, Wingreen NS, Bassler BL (2010) Negative feedback loops involving small regulatory RNAs precisely control the Vibrio harveyi quorum–sensing response. Mol Cell 37:567–579PubMedCrossRefGoogle Scholar
  351. Ulitzur S, Dunlap PV (1995) Regulatory circuitry controlling luminescence autoinduction in Vibrio fischeri. Photochem Photobiol 62:625–632CrossRefGoogle Scholar
  352. Ulitzur S, Hastings JW (1979) Autoinduction in a luminous bacterium: a confirmation of the hypothesis. Curr Microbiol 2:345–348CrossRefGoogle Scholar
  353. Ulitzur S, Yashphe J (1975) An adenosine 3',5'–monophosphate–requiring mutant of the luminous bacteria Beneckea harveyi. Biochim Biophys Acta 404:321–328PubMedCrossRefGoogle Scholar
  354. Urakawa H, Kita Tsukamoto K, Ohwada K (1999) Reassessment of the taxonomic position of Vibrio iliopiscarius (Onarheim et al. 1994) and proposal for Photobacterium iliopiscarium comb. nov. Int J Syst Bacteriol 49:257–260PubMedCrossRefGoogle Scholar
  355. Urbanczyk H, Ast JC, Higgins MJ, Carson J, Dunlap PV (2007) Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol 57:2823–2829PubMedCrossRefGoogle Scholar
  356. Urbanczyk H, Ast JC, Kaeding AJ, Oliver JD, Dunlap PV (2008) Phylogenetic analysis of the incidence of lux gene horizontal transfer in Vibrionaceae. J Bacteriol 190:3494–3504PubMedCrossRefGoogle Scholar
  357. Urbanczyk H, Ast JC, Dunlap PV (2011a) Phylogeny, genomics, and symbiosis of Photobacterium. FEMS Microbiol Rev 35:324–342PubMedCrossRefGoogle Scholar
  358. Urbanczyk H, Ast JC, Dunlap PV (2011b) Phylogeny, genomics, and symbiosis of Photobacterium. FEMS Microbiol Rev 35:324–342PubMedCrossRefGoogle Scholar
  359. Urbanczyk H, Ogura Y, Hendry TA, Gould AL, Kiwaki N, Atkinson JT, Hayashi T, Dunlap PV (2011c) Genome Sequence of Photobacterium mandapamensis svers.11, the bioluminescent symbiont of the cardinal fish Siphamia versicolor. J Bacteriol 193:3144–3145PubMedCrossRefGoogle Scholar
  360. Urbanczyk H, Furukawa T, Yamamoto Y, Dunlap PV (2012a) Natural replacement of vertically inherited lux-rib genes of Photobacterium aquimaris by horizontally acquired homologs. Environ Microbiol Rep 4:412–416CrossRefGoogle Scholar
  361. Urbanczyk H, Kiwaki N, Furukawa T, Iwatsuki Y (2012b) Limited geographic distribution of certain strains of the bioluminescent symbiont Photobacterium leiognathi. FEMS Microbiol Ecol 81: 355–363PubMedCrossRefGoogle Scholar
  362. van Iterson G, Jr. den Dooren de Jong LE, Kluyver AJ (1940) Martinus Willem Beijerinck. His life and work. Martinus Nijhoof, The HagueGoogle Scholar
  363. Vezzi A, Campanaro S, D'Angelo M et al (2005) Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:1459–1461PubMedCrossRefGoogle Scholar
  364. Visick KL, Ruby EG (2006) Vibrio fischeri and its host it takes two to tango. Curr Opin Microbiol 9:632–638PubMedCrossRefGoogle Scholar
  365. Wada M, Azuma N, Mizuno N, Kurokura H (1999) Transfer of symbiotic luminous bacteria from parental Leiognathus nuchalis to offspring. Mar Biol 135:683–687CrossRefGoogle Scholar
  366. Wada M, Kamiya A, Uchiyama N, Yoshizawa S, Kita Tsukamoto K, Ikejima K, Yu R, Imada C, Karatani H, Mizuno N, Suzuki Y, Nishid M, Kogure K (2006) luxA gene of light organ symbionts of the bioluminescent fish Acropoma japonicum (Acropomatidae) and Siphamia versicolor (Apogonidae) forms a lineage closely related to that of Photobacterium leiognathi ssp. mandapamensis. FEMS Microbiol Lett 260:186–192PubMedCrossRefGoogle Scholar
  367. Walker EL, Bose JL, Stabb EV (2006) Photolyase confers resistance to UV light but does not contribute to the symbiotic benefit of bioluminescence in Vibrio fischeri ES114. Appl Environ Microbiol 72:6600–6606PubMedCrossRefGoogle Scholar
  368. Waterfield NR, Ciche T, Clarke D (2009) Photorhabdus and a host of hosts. Annu Rev Microbiol 63:557–574PubMedCrossRefGoogle Scholar
  369. Waters CM, Bassler BL (2005) Quorum sensing cell–to–cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346PubMedCrossRefGoogle Scholar
  370. Waters CM, Bassler BL (2006) The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers. Genes Dev 20:2754–2767PubMedCrossRefGoogle Scholar
  371. Wei SL, Young RE (1989) Development of symbiotic bacterial bioluminescence in a nearshore cephalopod, Euprymna scolopes. Mar Biol 103:541–546CrossRefGoogle Scholar
  372. Wei Y, Perez LJ, Ng WL, Semmelhack MF, Bassler BL (2011) Mechanism of Vibrio cholerae autoinducer–1 biosynthesis. ACS Chem Biol 6:356–365PubMedCrossRefGoogle Scholar
  373. Weleminsky F (1895) Die Ursachen des Leuchtens bei Choleravibrionen. Prager med Wochenschr Bd 20:263–264Google Scholar
  374. West PA, Lee JV (1982) Ecology of Vibrio species, including Vibrio cholerae, in natural waters of Kent, England. J Appl Bacteriol 52:435–448PubMedCrossRefGoogle Scholar
  375. West PA, Lee JV, Bryant TN (1983) A numerical taxonomic study of species of Vibrio isolated from the aquatic environment and birds in Kent, England. J Appl Microbiol 55:263–283CrossRefGoogle Scholar
  376. Widder EA (2010) Bioluminescence in the ocean origins of biological, chemical, and ecological diversity. Science 328:704–708PubMedCrossRefGoogle Scholar
  377. Wilkinson P, Waterfield NR, Crossman L, Corton C, Sanchez Contreras M, Vlisidou I, Barron A, Bignell A, Clark L, Ormond D, Mayho M, Bason N, Smith F, Simmonds M, Churcher C, Harris D, Thompson NR, Quail M, Parkhill J, Ffrench Constant RH (2009) Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens. BMC Genomics 10:302PubMedCrossRefGoogle Scholar
  378. Wilson T, Hastings JW (1998) Bioluminescence. Annu Rev Cell Dev Biol 14:197–230PubMedCrossRefGoogle Scholar
  379. Wimpee CF, Nadeau TL, Nealson KH (1991) Development of species–specific hybridization probes for marine luminous bacteria by using in vitro DNA amplification. Appl Environ Microbiol 57:1319–1324PubMedGoogle Scholar
  380. Wolfe CJ, Haygood MG (1991) Restriction fragment length polymorphism analysis reveals high levels of genetic divergence among the light organ symbionts of flashlight fish. Biol Bull 181:135–143CrossRefGoogle Scholar
  381. Wollenberg MS, Preheim SP, Polz MF, Ruby EG (2011) Polyphyly of non–bioluminescent Vibrio fischeri sharing a lux–locus deletion. Environ Microbiol. doi:101111/j.1462-2920201102608xGoogle Scholar
  382. Woodland DJ, Cabanban AS, Taylor VM, Taylor RJ (2002) A synchronized rhythmic flashing light display by schooling Leiognathus splendens (Leiognathidae: Perciformes) Mar. Mar Freshwater Res 53:159–162CrossRefGoogle Scholar
  383. Yang Y, Yeh LP, Cao Y, Baumann L, Baumann P, Tang JSE, Beaman B (1983) Characterization of marine luminous bacteria isolated off the coast of China and description of Vibrio orientalis sp. nov. Curr Microbiol 8:95–100CrossRefGoogle Scholar
  384. Yasaki Y (1927) Bacteriologic studies on bioluminescence. 1 On the cause of luminescence in the fresh water shrimp, Xiphocaridina compressa (De Haan). J Infect Dis 40:404–407CrossRefGoogle Scholar
  385. Yasaki Y (1928) On the nature of the luminescence of the knight fish, Monocentris japonicus (Houttuyn). J Exp Zool 50:495–505CrossRefGoogle Scholar
  386. Yetinson T, Shilo M (1979) Seasonal and geographic distribution of luminous bacteria in the eastern Mediterranean Sea and the Gulf of Elat. Appl Environ Microbiol 37:1230–1238PubMedGoogle Scholar
  387. Yoshizawa S, Wada M, Kita Tsukamoto K, Ikemoto E, Yokota A, Kogure K (2009a) Vibrio azureus sp. nov., a luminous marine bacterium isolated from seawater. Int J Syst Evol Microbiol 59:1645–1649PubMedCrossRefGoogle Scholar
  388. Yoshizawa S, Wada M, Kita Tsukamoto K, Yokota A, Kogure K (2009b) Photobacterium aquimaris sp. nov., a luminous marine bacterium isolated from seawater. Int J Syst Evol Microbiol 59:1438–1442PubMedCrossRefGoogle Scholar
  389. Yoshizawa S, Karatani H, Wada M, Yokota A, Kogure K (2010a) Aliivibrio sifiae sp. nov., luminous marine bacteria isolated from seawater. J Gen Appl Microbiol 56:508–518Google Scholar
  390. Yoshizawa S, Wada M, Yokota A, Kogure K (2010b) Vibrio sagamiensis sp. nov., luminous marine bacteria isolated from seawater. J Gen Appl Microbiol 56:499–507PubMedCrossRefGoogle Scholar
  391. Zarubin M, Belkin S, Ionescu M, Genin A (2012) Bacterial bioluminescence as a lure for marine zooplankton and fish. Proc Natl Acad Sci USA. doi:101073/pnas.1116683109Google Scholar
  392. Zenno H, Saigo K (1994) Identification of the genes encoding NAD(P)H–flavin oxidoreductases that are similar in sequence to Escherichia coli Fre in four species of luminous bacteria Photorhabdus luminescens, Vibrio fischeri, Vibrio harveyi, and Vibrio orientalis. J Bacteriol 176:3544–3551PubMedGoogle Scholar
  393. Zenno I, Inouye S, Saigo K (1992) Does the luxG gene in luminous bacteria code for an NAD(P)H–FMN oxidoreductase? Genetics. Life Sci Adv 11:85–91Google Scholar
  394. Zenno H, Saigo K, Kanoh H, Inouye S (1994) Identification of the gene encoding the major NAD(P)H–flavin oxidoreductase of the bioluminescent bacterium Vibrio fischeri ATCC 7744. J Bacteriol 176:3536–3543PubMedGoogle Scholar
  395. Zo YG, Chokesajjawatee N, Grim C, Arakawa E, Watanabe H, Colwell RR (2009) Diversity and seasonality of bioluminescent Vibrio cholerae populations in Chesapeake Bay. Appl Environ Microbiol 75:135–146PubMedCrossRefGoogle Scholar
  396. Zobell CE (1946) Marine microbiology. Chronica Botanica Company, WalthamGoogle Scholar
  397. Zobell CE, Upham HC (1944) A list of marine bacteria including descriptions of sixty new species. Bull Scripps Inst Oceanogr 5:239–292Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of MichiganAnn ArborUSA
  2. 2.University of MiyazakiMiyazaki CityJapan

Personalised recommendations