Dissimilatory Fe(III)- and Mn(IV)-Reducing Prokaryotes

  • Derek LovleyEmail author


Dissimilatory Fe(III) reduction is the process in which microorganisms transfer electrons to external ferric iron [Fe(III)], reducing it to ferrous iron [Fe(II)] without assimilating the iron. A wide phylogenetic diversity of microorganisms, including archaea as well as bacteria, are capable of dissimilatory Fe(III) reduction. Most microorganisms that reduce Fe(III) also can transfer electrons to Mn(IV), reducing it to Mn(II).


Electron Donor Electron Acceptor Aquatic Sediment Electron Shuttle Organic Matter Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson RT, Lovley DR (1997) Ecology and biogeochemistry of in situ groundwater bioremediation. Adv Microbial Ecol 15:289–350Google Scholar
  2. Anderson RT, Rooney-Varga J, Gaw CV, Lovley DR (1998) Anaerobic benzene oxidation in the Fe(III)-reduction zone of petroleum-contaminated aquifers. Environ Sci Technol 32:1222–1229CrossRefGoogle Scholar
  3. Balashova VV, Zavarzin GA (1980) Anaerobic reduction of ferric iron by hydrogen bacteria. Microbiology 48:635–639Google Scholar
  4. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296PubMedGoogle Scholar
  5. Barns SM, Takala SL, Kuske CR (1999) Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65:1731–1737PubMedGoogle Scholar
  6. Beliaev AS, Saffarini DA (1998) Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J Bacteriol 180:6292–6297PubMedGoogle Scholar
  7. Benz M, Schink B, Brune A (1998) Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Appl Environ Microbiol 64:4507–4512PubMedGoogle Scholar
  8. Boone DR, Liu Y, Zhao Z-J, Balkwill DL, Drake GT, Stevens TO, Aldrich HC (1995) Bacillus infernus sp. nov., an Fe(III)-and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol 45:441–448PubMedCrossRefGoogle Scholar
  9. Bridge TM, Johnson DB (1998) Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl Environ Microbiol 64:2181–2186PubMedGoogle Scholar
  10. Brock TD, Gustafson J (1976) Ferric iron reduction by sulfur-and iron-oxidizing bacteria. Appl Environ Microbiol 32:567–571PubMedGoogle Scholar
  11. Bromfield SM (1954) The reduction of iron oxide by bacteria. J Soil Sci 5:129–139CrossRefGoogle Scholar
  12. Burdige DJ, Dhakar SP, Nealson KH (1992) Effects of manganese oxide mineralogy on microbial and chemical manganese reduction. Geomicrobiol J 10:27–48CrossRefGoogle Scholar
  13. Caccavo F Jr, Blakemore RP, Lovley DR (1992) A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay Estuary, New Hampshire. Appl Environ Microbiol 58:3211–3216PubMedGoogle Scholar
  14. Caccavo F Jr, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ (1994) Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759PubMedGoogle Scholar
  15. Caccavo F Jr, Coates JD, Rossello-Mora RA, Ludwig W, Schleifer KH, Lovley DR, McInerney MJ (1996) Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch Microbiol 165:370–376PubMedCrossRefGoogle Scholar
  16. Caccavo F Jr, Schamberger PC, Keiding K, Nielsen PH (1997) Role of hydrophobicity in adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga to amorphous Fe(IIII) oxide. Appl Environ Microbiol 63:3837–3843PubMedGoogle Scholar
  17. Cairns-Smith AG, Hall AJ, Russell MJ (1992) Mineral theories of the origin of life and an iron sulfide example. Orig Life Evol Biosphere 22:161–180CrossRefGoogle Scholar
  18. Canfield DE, Jørgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP, Hall POJ (1993) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113:27–40PubMedCrossRefGoogle Scholar
  19. Chapelle FH, Lovley DR (1992) Competitive exclusion of sulfate reduction by Fe(III)-reducing bacteria: a mechanism for producing discrete zones of high-iron ground water. Ground Water 30:29–36CrossRefGoogle Scholar
  20. Christiansen N, Ahring BK (1996) Desulfitobacterium hafniense sp. nov., an anerobic, reductively dechlorinating bacterium. Int J Syst Bacteriol 46:442–448CrossRefGoogle Scholar
  21. Coates JD, Lonergan DJ, Lovley DR (1995) Desulfuromonas palmitatis sp. nov., a long-chain fatty acid oxidizing Fe(III) reducer from marine sediments. Arch Microbiol 164:406–413PubMedCrossRefGoogle Scholar
  22. Coates JD, Lonergan DJ, Jenter H, Lovley DR (1996) Isolation of Geobacter species from diverse sedimentary environments. Appl Environ Microbiol 62:1531–1536PubMedGoogle Scholar
  23. Coates JD, Ellis DJ, Roden E, Gaw K, Blunt-Harris EL, Lovley DR (1998) Recovery of humics-reducing bacteria from a diversity of sedimentary environment. Appl Environ Microbiol 64:1504–1509PubMedGoogle Scholar
  24. Coates JD, Ellis DJ, Lovley DR (1999a) Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Bacteriol 49(4):1615–1622PubMedCrossRefGoogle Scholar
  25. Coates JD, Councell TB, Ellis DJ, Lovley DR (1999b) Carbohydrate-oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism. Anaerobe 4:277–282CrossRefGoogle Scholar
  26. Coates JD, Council T, Ellis DJ (1999c) Carbohydrate oxidation coupled to Fe(III) reduction—a novel form of anaerobic metabolism. Anaerobe 4:277–282CrossRefGoogle Scholar
  27. Coates JD, Bhupathivaju V, Achenbach LA, McInerney MJ. Geobacter hydrogenophilus, Geobacter chapellii, Geobacter grbicium – three new strictly anaerobic dissimilatory Fe(III)-reducers. IJSB (submitted)Google Scholar
  28. Coleman ML, Hedrick DB, Lovley DR, White DC, Pye K (1993) Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature 361:436–438CrossRefGoogle Scholar
  29. Cord-Ruwisch R, Lovley DR, Schink B (1998) Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl Environ Microbiol 64:2232–2236PubMedGoogle Scholar
  30. Cummings DE, Caccavo F Jr, Spring S, Rosenzweig RF (1999) Ferribacter limneticum, gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch Microbiol 171:183–188CrossRefGoogle Scholar
  31. Das A, Mishra AK, Roy P (1992) Anaerobic growth on elemental sulfur using dissimilar iron reduction by autotrophic Thiobacillus ferrooxidans. FEMS Microbiol Lett 97:167–172CrossRefGoogle Scholar
  32. De Castro AF, Ehrlich HL (1970) Reduction of iron oxide minerals by a marine Bacillus. Ant v Leeuwenhoek 36:317–327CrossRefGoogle Scholar
  33. de Duve C (1995) Vital dust. Basic Books, New York, p 362Google Scholar
  34. DiChristina TJ, DeLong EF (1993) Design and application of rRNA-targeted oligonulceotide probes for dissimilatory iron-and manganese-reducing bacterium Shewanella putrefaciens. Appl Environ Microbiol 59:4152–4160PubMedGoogle Scholar
  35. Dixon JB, Skinner HCW (1992) Manganese minerals in surface environments. In: Skinner HCW, Fitzpatrick RW (eds) Biomineralization processes of iron and manganese. Catena Verlag, pp 31–50Google Scholar
  36. Dobbin PS, Warren LH, Cook NJ, McEwan AG, Powell AK, Richardson DJ (1996) Dissimilatory iron(III) reduction by Rhodobacter capsulatus. Microbiology 142:765–774CrossRefGoogle Scholar
  37. Fredrickson JK, Gorby YA (1996) Environmental processes mediated by iron-reducing bacteria. Curr Opin Biotech 7:287–294PubMedCrossRefGoogle Scholar
  38. Fredrickson JK, Zachara JM, Kennedy DW, Dong H, Onstott TC, Hinman NW, Li SM (1998) Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim Cosmochim Acta 62:3239–3257CrossRefGoogle Scholar
  39. Gaspard S, Vazquez F, Holliger C (1998) Localization and solubilization of the iron(III) reductase of Geobacter sulfurreducens. Appl Environ Microbiol 64:3188–3194PubMedGoogle Scholar
  40. Gold T (1992) The deep, hot biosphere. Proc Natl Acad Sci USA 89:6045–6049PubMedCrossRefGoogle Scholar
  41. Gorby YA, Lovley DR (1991) Electron transport in the dissimilatory iron-reducer, GS-15. Appl Environ Microbiol 57:867–870PubMedGoogle Scholar
  42. Gorby YA, Lovley DR (1992) Enzymatic uranium precipitation. Environ Sci Technol 26:205–207CrossRefGoogle Scholar
  43. Greene AC, Patel BKC, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese-and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509PubMedCrossRefGoogle Scholar
  44. Gunner HB, Alexander M (1964) Anaerobic growth of Fusarium oxysporum. J Bacteriol 87:1309–1316PubMedGoogle Scholar
  45. Hammann R, Ottow JCG (1974) Reductive dissolution of Fe2O2 by saccharolytic Clostridia and Bacillus polymyxa under anaerobic conditions. Z Pflanzenernaehr Bodenkd 137:108–115CrossRefGoogle Scholar
  46. Heijman CG, Holliger C, Glaus MA, Schwarzenbach RP, Zeyer J (1993) Abiotic reduction of 4-chloronitrobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture. Appl Environ Microbiol 59:4350–4353PubMedGoogle Scholar
  47. Hofstetter TB, Heijman CG, Haderlein SB, Holliger C, Schwarzenbach RP (1999) Complete reduction of TNT and other (poly)nitroaromatic compounds under iron-reducing subsurface conditions. Environ Sci Technol 33:1479–1487CrossRefGoogle Scholar
  48. Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132CrossRefGoogle Scholar
  49. Johnson DB, McGinness S (1991) Ferric iron reduction by acidophilic heterotrophic bacteria. Appl Environ Microbiol 57:207–211PubMedGoogle Scholar
  50. Jones JG, Gardener S, Simon BM (1983) Bacterial reduction of ferric iron in a stratified eutrophic lake. J Gen Microbiol 129:131–139Google Scholar
  51. Jones JG, Davison W, Gardener S (1984a) Iron reduction by bacteria: range of organisms involved and metals reduced. FEMS Microbiol Lett 21:133–136CrossRefGoogle Scholar
  52. Jones JG, Gardener S, Simon BM (1984b) Reduction of ferric iron by heterotrophic bacteria in lake sediments. J Gen Microbiol 130:45–51Google Scholar
  53. Kashefi K, Lovley DR (2000) Reduction of Fe(III) Mn (IV), and toxic metals 100 °C by Pyrobaculum islandicum. Appl Environ Microbiol 66(3):1050–1060PubMedCrossRefGoogle Scholar
  54. Kieft TL, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey TJ, Kennedy DW, Li W, Plymale AE, Spadoni CM, Gray MS (1999) Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl Environ Microbiol 65:1214–1221PubMedGoogle Scholar
  55. Kino K, Usami S (1982) Biological reduction of ferric iron by iron-and sulfur-oxidizing bacteria. Agric Biol Chem 46:803–805CrossRefGoogle Scholar
  56. Knight V, Blakemore R (1998) Reduction of diverse electron acceptors by Aeromonas hydrophila. Arch Microbiol 169:239–248PubMedCrossRefGoogle Scholar
  57. Kostka JE, Nealson KH (1995) Dissolution and reduction of magnetite by bacteria. Environ Sci Technol 29:2535–2540PubMedCrossRefGoogle Scholar
  58. Kostka JE, Stucki JW, Nealson KH, Wu J (1996) Reduction of structural Fe(III) in smectite by a pure culture of Shewanella putrefaciens strain MR-1. Clays Clay Min 44:522–529CrossRefGoogle Scholar
  59. Krumholz LR, Sharp R, Fishbain SS (1996) A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Appl Environ Microbiol 62:4108–4113PubMedGoogle Scholar
  60. Krumholz LR (1997) Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int J Syst Bacteriol 47:1262–1263CrossRefGoogle Scholar
  61. Laverman AM, Switzer Blum J, Schaefer JK, Phillips EJP, Lovley DR, Oremland RS (1995) Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl Environ Microbiol 61:3556–3561PubMedGoogle Scholar
  62. Liesack W, Finster K (1994) Phylogenetic analysis of five strains of gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov. Int J Syst Bacteriol 44:753–758CrossRefGoogle Scholar
  63. Lloyd JR, Macaskie LE (1996) A novel phosphorimager-based technique for monitoring the microbial reduction of technetium. Appl Environ Microbiol 62:578–582PubMedGoogle Scholar
  64. Lloyd JR, Blunt-Harris EL, Lovley DR (1999) The periplasmic 9.6 kDa c-type cytochrome of Geobacter sulfurreducens is not an electron shuttle to Fe(III). J Bacteriol 181(24):7647–7649PubMedGoogle Scholar
  65. Lonergan DJ, Jenter H, Coates JD, Phillips EJP, Schmidt T, Lovley DR (1996) Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178:2404–2408Google Scholar
  66. Lovley DR, Phillips EJP (1986a) Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac river. Appl Environ Microbiol 52:751–757PubMedGoogle Scholar
  67. Lovley DR, Phillips EJP (1986b) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689PubMedGoogle Scholar
  68. Lovley DR (1987) Organic matter mineralization with the reduction of ferric iron: a review. Geomicrobiol J 5:375–399CrossRefGoogle Scholar
  69. Lovley DR, Phillips EJP (1987) Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53:1536–1540PubMedGoogle Scholar
  70. Lovley DR, Stolz JF, Nord GL, Phillips EJP (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254CrossRefGoogle Scholar
  71. Lovley DR, Goodwin S (1988) Hydrogen concentrations as an indicator of the predominant terminal electron accepting reactions in aquatic sediments. Geochim Cosmochim Acta 52:2993–3003CrossRefGoogle Scholar
  72. Lovley DR, Phillips EJP (1988a) Manganese inhibition of microbial iron reduction in anaerobic sediments. Geomicrobiol J 6:145–155CrossRefGoogle Scholar
  73. Lovley DR, Phillips EJP (1988b) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480PubMedGoogle Scholar
  74. Lovley DR, Phillips EJP (1989) Requirement for a microbial consortium to completely oxidize glucose in Fe(III)-reducing sediments. Appl Environ Microbiol 55:3234–3236PubMedGoogle Scholar
  75. Lovley DR, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Phillips EJP, Siegel DI (1989) Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339:297–299CrossRefGoogle Scholar
  76. Lovley DR (1990) Magnetite formation during microbial dissimilatory iron reduction. In: Frankel RB, Blakemore RP (eds) Iron biominerals. Plenum, New York, pp 151–166Google Scholar
  77. Lovley DR, Chapelle FH, Phillips EJP (1990) Fe(III)-reducing bacteria in deeply buried sediments of the Atlantic Coastal Plain. Geology 18:954–957CrossRefGoogle Scholar
  78. Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287PubMedGoogle Scholar
  79. Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416CrossRefGoogle Scholar
  80. Lovley DR, Phillips EJP (1992) Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58:850–856PubMedGoogle Scholar
  81. Lovley DR (1993) Dissimilatory metal reduction. Ann Rev Microbiol 47:263–290CrossRefGoogle Scholar
  82. Lovley DR, Roden EE, Phillips EJP, Woodward JC (1993a) Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Marine Geol 113:41–53CrossRefGoogle Scholar
  83. Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJP, Gorby YA, Goodwin S (1993b) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344PubMedCrossRefGoogle Scholar
  84. Lovley DR, Phillips EJP (1994) Novel processes for anoxic sulfate production from elemental sulfur by sulfate-reducing bacteria. Appl Environ Microbiol 60:2394–2399PubMedGoogle Scholar
  85. Lovley DR, Chapelle FH, Woodward JC (1994a) Use of dissolved H2 concentrations to determine the distribution of microbially catalyzed redox reactions in anoxic ground water. Environ Sci Technol 28:1205–1210PubMedCrossRefGoogle Scholar
  86. Lovley DR, Woodward JC, Chapelle FH (1994b) Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370:128–131PubMedCrossRefGoogle Scholar
  87. Lovley DR (1995a) Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J Ind Microbiol 14:85–93PubMedCrossRefGoogle Scholar
  88. Lovley DR (1995b) Microbial reduction of iron, manganese, and other metals. Adv Agron 54:175–231CrossRefGoogle Scholar
  89. Lovley DR, Chapelle FH (1995) Deep subsurface microbial processes. Rev Geophys 33:365–381CrossRefGoogle Scholar
  90. Lovley DR, Phillips EJP, Lonergan DJ, Widman PK (1995) Fe(III) and S° reduction by Pelobacter carbinolicus. Appl Environ Microbiol 61:2132–2138PubMedGoogle Scholar
  91. Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448CrossRefGoogle Scholar
  92. Lovley DR (1997) Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers. J Ind Microbiol 18:75–81CrossRefGoogle Scholar
  93. Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotech 8:285–289PubMedCrossRefGoogle Scholar
  94. Lovley DR, Coates JD, Saffarini DA, Lonergan DJ (1997) Dissimilatory iron reduction. In: Winkelman G, Carrano CJ (eds) Iron and related transition metals in microbial metabolism. Harwood Academic, Chur, pp 187–215Google Scholar
  95. Lovley DR, Fraga JL, Blunt-Harris EL, Hayes LA, Phillips EJP, Coates JD (1998) Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim Hydrobiol 26:152–157CrossRefGoogle Scholar
  96. Lovley DR, Blunt-Harris EL (1999) Role of humics-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction. Appl Environ Microbiol 9:4252–4254Google Scholar
  97. Lovley DR, Fraga JL, Coates JD, Blunt-Harris EL (1999) Humics as an electron donor for anaerobic respiration. Environ Microbiol 1:89–98PubMedCrossRefGoogle Scholar
  98. Lovley DR, Kashefi K, Vargas M, Tor JM, Blunt-Harris EL (2000) Reduction of humic substances and Fe(III) by hyperthermophilic microorganisms. Chem GeolGoogle Scholar
  99. Magnuson TS, Hodges-Myerson AL, Lovley DR (2000) Purification of the membrane-bound Fe(III) reductase complex from the dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens. FEMS Microbiol Lett 185(2):205–211PubMedCrossRefGoogle Scholar
  100. Malcolm RL, MacCarthy P (1986) Limitations in the use of commercial humic acids in water and soil research. Environ Sci Tech 20:904–911CrossRefGoogle Scholar
  101. Miller TL, Wolin MJ (1974) A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987PubMedGoogle Scholar
  102. Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321PubMedCrossRefGoogle Scholar
  103. Myers CR, Myers JM (1992) Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J Bacteriol 174:3429–3438PubMedGoogle Scholar
  104. Myers CR, Myers JM (1993) Ferric reductase is associated with the membranes of anaerobically grown Shewanella putrefaciens MR-1. FEMS Microbiol Lett 108:15–22CrossRefGoogle Scholar
  105. Myers CR, Myers JM (1997) Cloning and sequencing of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens strain MR-1. J Bacteriol 179:1143–1152PubMedGoogle Scholar
  106. Nealson KH, Saffarini D (1994) Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Ann Rev Microbiol 48:311–343CrossRefGoogle Scholar
  107. Nevin KP, Lovley DR (2000) Potential for nonenzymatic reduction of Fe(III) during microbial oxidation of organic matter coupled to Fe(III) reduction. Environ Sci Technol 66(5):2248–2251Google Scholar
  108. Nevin KP, Lovley DR (2002) Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl Environ Microbiol 68(5):2294–2299PubMedCrossRefGoogle Scholar
  109. Newman DK, Ahmann D, Morel FMM (1998) A brief review of microbial arsenate respiration. Geomicrobiol J 15:255–268CrossRefGoogle Scholar
  110. Oremland RS (1994) Biogeochemical transformations of selenium in anoxic environments. In: Frankenberger WTJ, Benson SN (eds) Selenium in the environment. Marcel Dekker, New York, pp 389–419Google Scholar
  111. Oremland RS, Switzer Blum J, Culbertson CW, Visscher PT, Miller LG, Dowdle P, Strohmaier RE (1994) Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl Environ Microbiol 60:3011–3019PubMedGoogle Scholar
  112. Ottow JCG, von Klopotek A (1969) Enzymatic reduction of iron oxide by fungi. Appl Microbiol 18:41–43PubMedGoogle Scholar
  113. Ottow JCG (1970) Selection, characterization and iron-reducing capacity of nitrate reductaseless (nit-) mutants of iron-reducing bacteria. Z Allg Mikrobiol 10:55–62PubMedCrossRefGoogle Scholar
  114. Ottow JCG, Glathe H (1971) Isolation and identification of iron-reducing bacteria from gley soils. Soil Biol Biochem 3:43–55CrossRefGoogle Scholar
  115. Patrick JA, Achenbach LA, Coates JD (1999) Geobacter humireducens-Eight new humic-reducing bacteria from a diversity of environmentsGoogle Scholar
  116. Pedersen K, Arlinger J, Ekendahl S, Hallbeck L (1996) 16 S rRNA gene diversity of attached and unattached bacteria in boreholes along the access tunnel to the Aspo hard rock laboratory, Sweden. FEMS Microbiol Ecol 19:249–262Google Scholar
  117. Phillips EJP, Lovley DR (1987) Determination of Fe(III) and Fe(II) in oxalate extracts of sediment. Soil Sci Soc Am J 51:938–941CrossRefGoogle Scholar
  118. Phillips E, Lovley DR, Roden EE (1993) Composition of non-microbially reducible Fe(III) in aquatic sediments. Appl Environ Microbiol 59:2727–2729PubMedGoogle Scholar
  119. Ponnamperuma FN (1972) The chemistry of submerged soils. Adv Agron 24:29–96CrossRefGoogle Scholar
  120. Ponnamperuma FN (1984) Effects of flooding on soils. In: Kozlowski TT (ed) Flooding and plant growth. Academic, New York, pp 9–45Google Scholar
  121. Pronk JT, De Bruyn JC, Bos P, Kuenen JG (1992) Anaerobic growth of Thiobacillus ferrooxidans. Appl Environ Microbiol 58:2227–2230PubMedGoogle Scholar
  122. Roberts JL (1947) Reduction of ferric hydroxide by strains of Bacillus polymyxa. Soil Sci 63:135–140CrossRefGoogle Scholar
  123. Roden EE, Lovley DR (1993a) Dissimilatory Fe(III) reduction by the marine microorganism, Desulfuromonas acetoxidans. Appl Environ Microbiol 59:734–742PubMedGoogle Scholar
  124. Roden EE, Lovley DR (1993b) Evaluation of 55Fe as a tracer of Fe(III) reduction in aquatic sediments. Geomicrobiol J 11:49–56CrossRefGoogle Scholar
  125. Roden EE, Zachara JM (1996) Microbial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growth. Environ Sci Technol 30:1618–1628CrossRefGoogle Scholar
  126. Rooney-Varga JN, Anderson RT, Fraga JL, Ringelberg D, Lovley DR (1999) Microbial communities associated with anaerobic benzene mineralization in a petroleum-contaminated aquifer. Appl Environ Microbiol 65:3056–3063PubMedGoogle Scholar
  127. Rossello-Mora RA, Ludwig W, Kampfer P, Amann R, Schleifer K-H (1995) Ferrimonas balearica gen. nov. spec. nov., a new marine facultative Fe(III)-reducing bacterium. Syst Appl Microbiol 18:196–202CrossRefGoogle Scholar
  128. Schink B (1992) The genus Pelobacter. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The Prokaryotes. Springer, New York, pp 3393–3399,}&lcubGoogle Scholar
  129. Schnell S, Ratering S, Jansen KH (1998) Simultaneous determination of iron(III), iron(II), and manganese(II) in environmental samples by ion chromatography. Environ Sci Technol 32:1530–1537CrossRefGoogle Scholar
  130. Schwertmann U, Cornell RM (1991) Iron oxides in the laboratory. VCH, New York, p 138Google Scholar
  131. Schwertmann U, Fitzpatrick RW (1992) Iron minerals in surface environments. In: Skinner HCW, Fitzpatrick RW (eds) Biomineralization processes of iron and manganese. Catena Verlag, Cremlingen, pp 7–30Google Scholar
  132. Scott DT, McKnight DM, Blunt-Harris EL, Kolesar SE, Lovley DR (1998) Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ Sci Technol 32:2984–2989CrossRefGoogle Scholar
  133. Seeliger S, Cord-Ruwisch R, Schink B (1998) A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. J Bacteriol 180:3686–3691PubMedGoogle Scholar
  134. Slobodkin A, Reysenbach A-L, Strutz N, Dreier M, Wiegel J (1997) Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Int J Syst Bacteriol 47:541–547PubMedCrossRefGoogle Scholar
  135. Starkey RL, Halvorson HO (1927) Studies on the transformations of iron in nature. II: concerning the importance of microorganisms in the solution and precipitation of iron. Soil Sci 24:381–402CrossRefGoogle Scholar
  136. Stolz JF, Ellils JD, Switzer Blum J, Ahmann D, Lovley DR, Oremland RS (1999) Sulfurospirillum barnesii sp. nov., Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the ε Proteobacteria. Int J Syst Bacteriol 49:1177–1180PubMedCrossRefGoogle Scholar
  137. Stookey LL (1970) Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 42:779–781CrossRefGoogle Scholar
  138. Straub KL, Hanzlik M, Buchholz-Cleven BEE (1998) The use of biologically produced ferrihydrite for the isolation of novel iron-reducing bacteria. Syst Appl Microbiol 21:442–449PubMedCrossRefGoogle Scholar
  139. Tebo BM, Obraztsova AY (1998) Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett 162:193–198CrossRefGoogle Scholar
  140. Thamdrup B, Finster K, Hansen JW, Bak F (1993) Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol 59:101–108PubMedGoogle Scholar
  141. Troshanov EP (1968) Iron-and manganese-reducing microorganisms in ore-containing lakes of the Karelian Isthmus. Microbiology 37:786–790Google Scholar
  142. Utkin I, Woese C, Wiegel J (1994) Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorphenolic compounds. Int J Syst Bacteriol 44:612–619PubMedCrossRefGoogle Scholar
  143. Van der Peer Y, De Wachter R (1994) TREECON for windows: a software package for the construction and drawing of evolutionary trees for microsoft windows environment. Comp Appl Biosci 10:569–570PubMedGoogle Scholar
  144. Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67PubMedCrossRefGoogle Scholar
  145. Verschuur GL (1993) Hidden attraction: the history and mystery of magnetism. Oxford University Press, New YorkGoogle Scholar
  146. Walker JCG (1980) Atmospheric constraints on the evolution of metabolism. Origins Life 10:93–104CrossRefGoogle Scholar
  147. Walker JCG (1987) Was the Archaean biosphere upside down? Nature 329:710–712PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of MassachusettsAmherstUSA

Personalised recommendations