Advertisement

Aerobic Methylotrophic Prokaryotes

  • Ludmila Chistoserdova
  • Mary E. Lidstrom

Abstract

This chapter describes biochemical pathways operating in aerobic methylotrophic bacteria. We first define aerobic methylotrophy as a specific metabolic capability and describe the phylogenetic diversity of these bacteria. We then describe enzymes involved in primary oxidation of different single carbon substrates, resulting in formaldehyde or methyl or methylene radical, and describe the variety of pathways used for their assimilation and dissimilation. We also give a brief account of genetic manipulation tools in methylotrophic bacteria and examples of systems approaches for studying their metabolism, including availability of whole genome sequence information.

Keywords

Methylotrophic Bacterium Methanol Dehydrogenase Methylococcus Capsulatus Serine Cycle NC10 Phylum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alber BE (2010) Biotechnological potential of the ethylmalonyl-CoA pathway. Appl Microbiol Biotechnol 89:17–25PubMedCrossRefGoogle Scholar
  2. Ali H, Murrell JC (2009) Development and validation of promoter-probe vectors for the study of methane monooxygenase gene expression in Methylococcus capsulatus Bath. Microbiology 155:761–771PubMedCrossRefGoogle Scholar
  3. Ali H, Scanlan J, Dumont MG, Murrell JC (2006) Duplication of the mmoX gene in Methylosinus sporium: cloning, sequencing and mutational analysis. Microbiology 152:2931 –2942PubMedCrossRefGoogle Scholar
  4. Anthony C (1982) The biochemistry of methylotrophs. Academic, New York, 404Google Scholar
  5. Anthony C (2011) How half a century of research was required to understand bacterial growth on C1 and C2 compounds; the story of the serine cycle and the ethylmalonyl-CoA pathway. Sci Prog 94:109–137PubMedCrossRefGoogle Scholar
  6. Anthony C, Ghosh M (1998) The structure and function of the PQQ-containing quinoprotein dehydrogenases. Prog Biophys Mol Biol 69:1–21PubMedCrossRefGoogle Scholar
  7. Antony CP, Kumaresan D, Ferrando L, Boden R, Moussard H, Scavino AF, Shouche YS, Murrell JC (2010) Active methylotrophs in the sediments of Lonar Lake, a saline and alkaline ecosystem formed by meteor impact. ISME J 4:1470–1480PubMedCrossRefGoogle Scholar
  8. Arfman N, Hektor HJ, Bystrykh LV, Govorukhina NI, Dijkhuizen L, Frank J (1997) Properties of an NAD(H)-containing methanol dehydrogenase and its activator protein from Bacillus methanolicus. Eur J Biochem 244:426–433PubMedCrossRefGoogle Scholar
  9. Attwood MM, Arfman N, Weusthuis RA, Dijkhuizen L (1992) Purification and characterization of an NAD-linked formaldehyde dehydrogenase from the facultative RuMP cycle methylotroph Arthrobacter P1. Antonie Van Leeuwenhoek 62:201–207PubMedCrossRefGoogle Scholar
  10. Baker SC, Ferguson SJ, Ludwig B, Page MD, Richter OM, van Spanning RJ (1998) Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. Microbiol Mol Biol Rev 62:1046–1078PubMedGoogle Scholar
  11. Balasubramanian R, Rosenzweig AC (2008) Copper methanobactin: a molecule whose time has come. Curr Opin Chem Biol 12:245–249PubMedCrossRefGoogle Scholar
  12. Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC (2010) Oxidation of methane by a biological dicopper centre. Nature 465:115–119PubMedCrossRefGoogle Scholar
  13. Barber RD, Donohue TJ (1998) Function of a glutathione-dependent formaldehyde dehydrogenase in Rhodobacter sphaeroides formaldehyde oxidation and assimilation. Biochemistry 37:530–537PubMedCrossRefGoogle Scholar
  14. Baxter NJ, Hirt RP, Bodrossy L, Kovacs KL, Embley TM, Prosser JI, Murrell JC (2002) The ribulose-1,5-bisphosphate carboxylase/oxygenase gene cluster of Methylococcus capsulatus (Bath). Arch Microbiol 177:279–289PubMedCrossRefGoogle Scholar
  15. Boden R, Kelly DP, Murrell JC, Schäfer H (2010) Oxidation of dimethylsulfide to tetrathionate by Methylophaga thiooxidans sp. nov.: a new link in the sulfur cycle. Environ Microbiol 12:2688–2699PubMedGoogle Scholar
  16. Boden R, Cunliffe M, Scanlan J, Moussard H, Kits KD, Klotz MG, Jetten MS, Vuilleumier S, Han J, Peters L, Mikhailova N, Teshima H, Tapia R, Kyrpides N, Ivanova N, Pagani I, Cheng JF, Goodwin L, Han C, Hauser L, Land ML, Lapidus A, Lucas S, Pitluck S, Woyke T, Stein L, Murrell JC (2011a) Complete genome sequence of the aerobic marine methanotroph Methylomonas methanica MC09. J Bacteriol 193:7001–7002PubMedCrossRefGoogle Scholar
  17. Boden R, Ferriera S, Johnson J, Kelly DP, Murrell JC, Schäfer H (2011b) Draft genome sequence of the chemolithoheterotrophic halophilic methylotroph Methylophaga thiooxydans DMS010. J Bacteriol 193:3154–3155PubMedCrossRefGoogle Scholar
  18. Bodrossy L, Holmes EM, Holmes AJ, Kovacs KL, Murrell JC (1997) Analysis of 16 S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Arch Microbiol 168:493–503PubMedCrossRefGoogle Scholar
  19. Borodina E, Kelly DP, Rainey FA, Ward-Rainey NL, Wood AP (2000) Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter. Arch Microbiol 173:425–437PubMedCrossRefGoogle Scholar
  20. Borodina E, Kelly DP, Schumann P, Rainey FA, Ward-Rainey NL, Wood AP (2002) Enzymes of dimethylsulfone metabolism and the phylogenetic characterization of the facultative methylotrophs Arthrobacter sulfonivorans sp. nov., Arthrobacter methylotrophus sp. nov., and Hyphomicrobium sulfonivorans sp. Nov. Arch Microbiol 177:173–183PubMedCrossRefGoogle Scholar
  21. Bowman JP, McCammon SA, Skerratt JH (1997) Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143:1451–1459PubMedCrossRefGoogle Scholar
  22. Brown PJ, Kysela DT, Buechlein A, Hemmerich C, Brun YV (2011) Genome sequences of eight morphologically diverse Alphaproteobacteria. J Bacteriol 193:4567–4568PubMedCrossRefGoogle Scholar
  23. Bystrykh LV, Vonck J, van Bruggen EF, van Beeumen J, Samyn B, Govorukhina NI, Arfman N, Duine JA, Dijkhuizen L (1993) Electron microscopic analysis and structural characterization of novel NADP (H)-containing methanol: N, N′-dimethyl-4nitrosoaniline oxidoreductases from the gram-positive methylotrophic bacteria Amycolatopsis methanolica and Mycobacterium gastri MB19. J Bacteriol 175:1814–1822PubMedGoogle Scholar
  24. Bystrykh LV, Govorukhina NI, Dijkhuizen L, Duine JA (1997) Tetrazolium-dye-linked alcohol dehydrogenase of the methylotrophic actinomycete Amycolatopsis methanolica is a three-component complex. Eur J Biochem 247:280–287PubMedCrossRefGoogle Scholar
  25. Chang SL, Wallar BJ, Lipscomb JD, Mayo KH (1999) Solution structure of component B from methane monooxygenase derived through heteronuclear NMR and molecular modeling. Biochemistry 38:5799–5812PubMedCrossRefGoogle Scholar
  26. Chen Y, Crombie A, Rahman MT, Dedysh SN, Liesack W, Stott MB, Alam M, Theisen AR, Murrell JC, Dunfield PF (2010a) Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. J Bacteriol 192:3840–3841PubMedCrossRefGoogle Scholar
  27. Chen Y, McAleer KL, Murrell JC (2010b) Monomethylamine as a nitrogen source for a nonmethylotrophic bacterium, Agrobacterium tumefaciens. Appl Environ Microbiol 76:4102–4104PubMedCrossRefGoogle Scholar
  28. Chen Y, Scanlan J, Song L, Crombie A, Rahman MT, Schäfer H, Murrell JC (2010c) {gamma}-Glutamylmethylamide is an essential intermediate in the metabolism of methylamine by Methylocella silvestris. Appl Environ Microbiol 76:4530–4537PubMedCrossRefGoogle Scholar
  29. Chen Y, Patel NA, Crombie A, Scrivens JH, Murrell JC (2011) Bacterial flavin-containing monooxygenase is trimethylamine monooxygenase. Proc Natl Acad Sci USA 108:17791–17796PubMedCrossRefGoogle Scholar
  30. Chistoserdov AY, Chistoserdova LV, McIntire WS, Lidstrom ME (1994) The genetic organization of the mau gene cluster in Methylobacterium extorquens AM1: complete nucleotide sequence and generation and characteristics of mau mutants. J Bacteriol 176:4052–4065PubMedGoogle Scholar
  31. Chistoserdova L (2011) Modularity of methylotrophy, revisited. Environ Microbiol 13:2603–2622PubMedCrossRefGoogle Scholar
  32. Chistoserdova LV, Lidstrom ME (1994) Genetics of the serine cycle in Methylobacterium extorquens AM1: identification of sgaA and mtdA and sequences of sgaA, hprA, and mtdA. J Bacteriol 176:1957–1968PubMedGoogle Scholar
  33. Chistoserdova LV, Chistoserdov AY, Schklyar NL, Baev MV, Tsygankov YD (1991) Oxidative and assimilative enzyme activities in continuous cultures of the obligate methylotroph Methylobacillus flagellatum. Antonie Van Leeuwenhoek 60:101–108PubMedCrossRefGoogle Scholar
  34. Chistoserdova L, Vorholt J, Thauer RK, Lidstrom ME (1998) Enzymes and coenzymes thought to be archaeal-specific that are required for aerobic methylotrophy. Science 281:99–102PubMedCrossRefGoogle Scholar
  35. Chistoserdova L, Gomelsky L, Vorholt JA, Gomelsky M, Tsygankov YD, Lidstrom ME (2000) Analysis of two formaldehyde oxidation pathways in Methylobacillus flagellatus KT, a ribulose monophosphate cycle methylotroph. Microbiology 146:233–238PubMedGoogle Scholar
  36. Chistoserdova L, Chen SW, Lapidus A, Lidstrom ME (2003) Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185:2980–2987PubMedCrossRefGoogle Scholar
  37. Chistoserdova L, Jenkins C, Kalyuzhnaya MG, Marx CJ, Lapidus A, Vorholt JA, Staley JT, Lidstrom ME (2004a) The enigmatic planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol Biol Evol 21:1234–1241PubMedCrossRefGoogle Scholar
  38. Chistoserdova L, Laukel M, Portais JC, Vorholt JA, Lidstrom ME (2004b) Multiple formate dehydrogenase enzymes in the facultative methylotroph Methylobacterium extorquens AM1 are dispensable for growth on methanol. J Bacteriol 186:22–28PubMedCrossRefGoogle Scholar
  39. Chistoserdova L, Rasche ME, Lidstrom ME (2005a) Novel dephospho-tetrahydromethanopterin biosynthesis genes discovered via mutagenesis in Methylobacterium extorquens AM1. J Bacteriol 187:2508–2512PubMedCrossRefGoogle Scholar
  40. Chistoserdova L, Vorholt JA, Lidstrom ME (2005b) A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol 6:208PubMedCrossRefGoogle Scholar
  41. Chistoserdova L, Crowther GJ, Vorholt JA, Skovran E, Portais JC, Lidstrom ME (2007a) Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy. J Bacteriol 189:9076–9081PubMedCrossRefGoogle Scholar
  42. Chistoserdova L, Lapidus A, Han C, Goodwin L, Saunders L, Brettin T, Tapia R, Gilna P, Lucas S, Richardson PM, Lidstrom ME (2007b) The genome of Methylobacillus flagellatus, the molecular basis for obligate methylotrophy, and the polyphyletic origin of methylotrophy. J Bacteriol 189:4020–4027PubMedCrossRefGoogle Scholar
  43. Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63:477–499PubMedCrossRefGoogle Scholar
  44. Chongcharoen R, Smith TJ, Flint KP, Dalton H (2005) Adaptation and acclimatization to formaldehyde in methylotrophs capable of high-concentration formaldehyde detoxification. Microbiology 151:2615–2622PubMedCrossRefGoogle Scholar
  45. Coulter C, Hamilton JT, McRoberts WC, Kulakov L, Larkin MJ, Harper DB (1999) Halomethane: bisulfide/halide ion methyltransferase, an unusual corrinoid enzyme of environmental significance isolated from an aerobic methylotroph using chloromethane as the sole carbon source. Appl Environ Microbiol 65:4301–4312PubMedGoogle Scholar
  46. Crombie A, Murrell JC (2011) Development of a system for genetic manipulation of the facultative methanotroph Methylocella silvestris BL2. Methods Enzymol 495:119–133PubMedCrossRefGoogle Scholar
  47. Crowther GJ, Kosály G, Lidstrom ME (2008) Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. J Bacteriol 190:5057–5062PubMedCrossRefGoogle Scholar
  48. Cue D, Lam H, Dillingham RL, Hanson RS, Flickinger MC (1997) Genetic manipulation of Bacillus methanolicus, a Gram-positive, thermotolerant methylotroph. Appl Environ Microbiol 63:1406–1420PubMedGoogle Scholar
  49. Davidson VL (2005) Structure and mechanism of tryptophylquinone enzymes. Bioorg Chem 33:159–170PubMedCrossRefGoogle Scholar
  50. de Vries GE, Arfman N, Terpstra P, Dijkhuizen L (1992) Cloning, expression, and sequence analysis of the Bacillus methanolicus C1 methanol dehydrogenase gene. J Bacteriol 174:5346–5353PubMedGoogle Scholar
  51. De Zwart JMM, Nelisse PN, Kuenen JG (1996) Isolation and characterization of Methylophaga sulfidovorans sp. nov.: an obligately methylotrophic, aerobic, dimethylsulfide oxidizing bacterium from a microbial mat. FEMS Microbiol Ecol 20:261–270CrossRefGoogle Scholar
  52. DeBont JAM, VanDijken JP, Harder W (1981) Dimethylsulphoxide and dimethyl sulphide as a carbon, sulphur and energy source for growth of Hyphomicrobium. J Gen Microbiol 127:315–323Google Scholar
  53. Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969PubMedCrossRefGoogle Scholar
  54. Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Liesack W, Tiedje JM (2002) Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52:251–261PubMedGoogle Scholar
  55. Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670PubMedCrossRefGoogle Scholar
  56. Distel DL, Cavanaugh CM (1994) Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves. J Bacteriol 176:1932–1938PubMedGoogle Scholar
  57. Duine JA (1999) Thiols in formaldehyde dissimilation and detoxification. Biofactors 10:201–206PubMedCrossRefGoogle Scholar
  58. Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PL, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882PubMedCrossRefGoogle Scholar
  59. Dunfield PF, Belova SE, Vorob’ev AV, Cornish SL, Dedysh SN (2010) Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa. Int J Syst Evol Microbiol 60:2659–2664PubMedCrossRefGoogle Scholar
  60. Elango N, Radhakrishnan R, Froland WA, Wallar BJ, Earhart CA, Lipscomb JD, Ohlendorf DH (1997) Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b. Protein Sci 6:556–568PubMedCrossRefGoogle Scholar
  61. Erb TJ, Berg IA, Brecht V, Müller M, Fuchs G, Alber BE (2007) Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalyl-CoA pathway. Proc Natl Acad Sci USA 104:10631–10636PubMedCrossRefGoogle Scholar
  62. Erb TJ, Rétey J, Fuchs G, Alber BE (2008) Ethylmalonyl-CoA mutase from Rhodobacter sphaeroides defines a new subclade of coenzyme B12-dependent acyl-CoA mutases. J Biol Chem 283:32283–32293PubMedCrossRefGoogle Scholar
  63. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548PubMedCrossRefGoogle Scholar
  64. Ferrari D, Di Valentin M, Carbonera D, Merli A, Chen ZW, Mathews FS, Davidson VL, Rossi GL (2004) Electron transfer in crystals of the binary and ternary complexes of methylamine dehydrogenase with amicyanin and cytochrome c551i as detected by EPR spectroscopy. J Biol Inorg Chem 9:231–237PubMedCrossRefGoogle Scholar
  65. Gak ER, Chistoserdov AY, Lidstrom ME (1995) Cloning, sequencing, and mutation of a gene for azurin in Methylobacillus flagellatum KT. J Bacteriol 177:4575–4578PubMedGoogle Scholar
  66. Giovannoni SJ, Hayakawa DH, Tripp HJ, Stingl U, Givan SA, Cho JC, Oh HM, Kitner JB, Vergin KL, Rappé MS (2008) The small genome of an abundant coastal ocean methylotroph. Environ Microbiol 10:1771–1782PubMedCrossRefGoogle Scholar
  67. Goodwin PM, Anthony C (1998) The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv Microb Physiol 40:1–80PubMedCrossRefGoogle Scholar
  68. Greenberg DE, Porcella SF, Zelazny AM, Virtaneva K, Sturdevant DE, Kupko JJ 3rd, Barbian KD, Babar A, Dorward DW, Holland SM (2007) Genome sequence analysis of the emerging human pathogenic acetic acid bacterium Granulibacter bethesdensis. J Bacteriol 189:8727–8736PubMedCrossRefGoogle Scholar
  69. Hagemeier CH, Chistoserdova L, Lidstrom ME, Thauer RK, Vorholt JA (2000) Characterization of a second methylene tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1. Eur J Biochem 267:3762–3769PubMedCrossRefGoogle Scholar
  70. Hakemian AS, Rosenzweig AC (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76:223–241PubMedCrossRefGoogle Scholar
  71. Hakemian AS, Kondapalli KC, Telser J, Hoffman BM, Stemmler TL, Rosenzweig AC (2008) The metal centers of particulate methane monooxygenase from Methylosinus trichosporium OB3b. Biochemistry 47:6793–6801PubMedCrossRefGoogle Scholar
  72. Halsey KH, Carter AE, Giovannoni SJ (2012) Synergistic metabolism of a broad range of C1 compounds in the marine methylotrophic bacterium HTCC2181. Environ Microbiol. doi:10.1111/j.1462-2920.2011.02605.xGoogle Scholar
  73. Han GH, Kim W, Chun J, Kim SW (2011) Draft genome sequence of Methylophaga aminisulfidivorans MPT. J Bacteriol 193:4265PubMedCrossRefGoogle Scholar
  74. Hancock TL, Costello AM, Lidstrom ME, Oremland RS (1998) Strain IMB-1, a novel bacterium for the removal of methyl bromide in fumigated agricultural soils. Appl Environ Microbiol 64:2899–2905PubMedGoogle Scholar
  75. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471PubMedGoogle Scholar
  76. Harms N, Ras J, Reijnders WN, van Spanning RJ, Stouthamer AH (1996) S-formylglutathione hydrolase of Paracoccus denitrificans is homologous to human esterase D: A universal pathway for formaldehyde detoxification? J Bacteriol 178:6296–6299PubMedGoogle Scholar
  77. Heggeset TM, Krog A, Balzer S, Wentzel A, Ellingsen TE, Brautaset T (2012) Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol. Appl Environ Microbiol 78:5170–5181PubMedCrossRefGoogle Scholar
  78. Hendrickson EL, Beck DAC, Wang T, Lidstrom ME, Hackett M, Chistoserdova L (2010) The expressed genome of Methylobacillus flagellatus defined through comprehensive proteomics and new insights into methylotrophy. J Bacteriol 192:4859–4867PubMedCrossRefGoogle Scholar
  79. Hirt W, Papoutsakis E, Krug E, Lim HC, Tsao GT (1978) Formaldehyde incorporation by a new methylotroph (L3). Appl Environ Microbiol 36:56–62PubMedGoogle Scholar
  80. Holland MA, Polacco JC (1994) PPFMs and other covert contaminants: is there more to plant physiology than just plant? Annu Rev Plant Physiol Plant Molec Biol 45:197–209CrossRefGoogle Scholar
  81. Hou S, Makarova KS, Saw JH, Senin P, Ly BV, Zhou Z, Ren Y, Wang J, Galperin MY, Omelchenko MV, Wolf YI, Yutin N, Koonin EV, Stott MB, Mountain BW, Crowe MA, Smirnova AV, Dunfield PF, Feng L, Wang L, Alam M (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:26PubMedCrossRefGoogle Scholar
  82. Im J, Semrau JD (2011) Pollutant degradation by a Methylocystis strain SB2 grown on ethanol: bioremediation via facultative methanotrophy. FEMS Microbiol Lett 318:137–142PubMedCrossRefGoogle Scholar
  83. Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK (2008) Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci USA 105:300–304PubMedCrossRefGoogle Scholar
  84. Jensen LM, Sanishvili R, Davidson VL, Wilmot CM (2010) In crystallo posttranslational modification within a MauG/pre-methylamine dehydrogenase complex. Science 327:1392–1394PubMedCrossRefGoogle Scholar
  85. Kalyuzhnaya MG, Lidstrom ME (2003) QscR, a LysR-type transcriptional regulator and CbbR homolog, is involved in regulation of the serine cycle genes in Methylobacterium extorquens AM1. J Bacteriol 185:1229–1235PubMedCrossRefGoogle Scholar
  86. Kalyuzhnaya MG, Lidstrom ME (2005) QscR-mediated transcriptional activation of serine cycle genes in Methylobacterium extorquens AM1. J Bacteriol 187:7511–7517PubMedCrossRefGoogle Scholar
  87. Kalyuzhnaya MG, Korotkova N, Crowther CJ, Marx MEL, Chistoserdova L (2005) Analysis of gene islands involved in methanopterin-linked C1 transfer reactions reveals new functions and provides evolutionary insights. J Bacteriol 187:4607–4614PubMedCrossRefGoogle Scholar
  88. Kalyuzhnaya MG, Hristova KR, Lidstrom ME, Chistoserdova L (2008a) Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution. J Bacteriol 190:3817–3823PubMedCrossRefGoogle Scholar
  89. Kalyuzhnaya MG, Lapidus A, Ivanova N, Copeland AC, McHardy AC, Szeto E, Salamov A, Grigoriev IV, Suciu D, Levine SR, Markowitz VM, Rigoutsos I, Tringe SG, Bruce DC, Richardson PM, Lidstrom ME, Chistoserdova L (2008b) High resolution metagenomics targets major functional types in complex microbial communities. Nat Biotechnol 26:1029–1034PubMedCrossRefGoogle Scholar
  90. Kalyuzhnaya MG, Beck DAC, Vorobev A, Smalley N, Kunkel D, Lidstrom ME, Chistoserdova L (2011) Novel methylotrophic isolates from Lake Washington sediment and description of a new species in the genus Methylotenera, Methylotenera versatilis sp. nov. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.029165-0Google Scholar
  91. Kanagawa T, Kelly DP (1986) Breakdown of dimethyl sulphide by mixed cultures and by Thiobacillus thioparus. FEMS Microbiol Lett 34:13–19Google Scholar
  92. Kane SR, Chakicherla AY, Chain PS, Schmidt R, Shin MW, Legler TC, Scow KM, Larimer FW, Lucas SM, Richardson PM, Hristova KR (2007) Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J Bacteriol 189:1931–1945, Erratum 2007 J. Bacteriol. 189 4973PubMedCrossRefGoogle Scholar
  93. Kao WC, Chen YR, Yi EC, Lee H, Tian Q, Wu KM, Tsai SF, Yu SS, Chen YJ, Aebersold R, Chan SI (2004) Quantitative proteomic analysis of metabolic regulation by copper ions in Methylococcus capsulatus (Bath). J Biol Chem 279:51554–51560PubMedCrossRefGoogle Scholar
  94. Kato N, Yurimoto H, Thauer RK (2006) The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci Biotechnol Biochem 70:10–21PubMedCrossRefGoogle Scholar
  95. Kelly DP, Murrell JC (1999) Microbial metabolism of methanesulfonic acid. Arch Microbiol 172:341–348PubMedCrossRefGoogle Scholar
  96. Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs KJ, Stunnenberg HG, Jetten MS, Op den Camp HJ (2011) Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol 193:4438–4446PubMedCrossRefGoogle Scholar
  97. Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunskis D, Sherwood PM (2004) Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science 305:1612–1615PubMedCrossRefGoogle Scholar
  98. King GM (1992) Ecological aspects of methane oxidation, a key determinant of global methane dynamics. Adv Microb Ecol 12:431–474CrossRefGoogle Scholar
  99. Kip N, van Winden JF, Pan Y, Bodrossy L, Reichart G-J, Smolders AJP, Jetten MSM, Sinninghe Damsté JS, Op den Camp HJM (2010) Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat Geosci 3:617–621CrossRefGoogle Scholar
  100. Kiriuchin MY, Kletsova LV, Chistoserdov AY, Tsygnkov YD (1988) Properties of glucose 6-phosphate and 6-phosphogluconate dehydrogenases of the obligate methylotroph Methylobacillus flagellatum KT. FEMS Microbiol Lett 52:199–204CrossRefGoogle Scholar
  101. Kittichotirat W, Good NM, Hall R, Bringel F, Lajus S, Médigue C, Smalley NE, Beck D, Bumgarner R, Vuilleumier S, Kalyuzhnaya MG (2011) Genome sequence of Methyloversatilis universalis FAM5T, a methylotrophic representative of the order Rhodocyclales. J Bacteriol 193:4541–4542PubMedCrossRefGoogle Scholar
  102. Klein CR, Kesseler FP, Perrei C, Frank J, Duine JA, Schwartz AC (1994) A novel dye-linked formaldehyde dehydrogenase with some properties indicating the presence of a protein-bound redox-active quinone cofactor. Biochem J 301:289–295PubMedGoogle Scholar
  103. Knief C, Frances L, Vorholt JA (2010) Competitiveness of diverse Methylobacterium strains in the phyllosphere of Arabidopsis thaliana and identification of representative models, including M. extorquens PA1. Microb Ecol 60:440–452PubMedCrossRefGoogle Scholar
  104. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334PubMedCrossRefGoogle Scholar
  105. Lapidus A, Clum A, LaButti K, Kaluzhnaya MG, Lim S, Beck DAC, Glavina del Rio T, Nolan N, Mavromatis K, Huntemann M, Lucas S, Lidstrom ME, Ivanova N, Chistoserdova L (2011) Genomes of three methylotrophs from a single niche uncover genetic and metabolic divergence of Methylophilaceae. FEMS Microbiol Bacteriol 193:3757–3764CrossRefGoogle Scholar
  106. Latypova E, Yang S, Wang YS, Wang T, Chavkin TA, Hackett M (2010) Genetics of the glutamate-mediated methylamine utilization pathway in the facultative methylotrophic beta-proteobacterium Methyloversatilis universalis FAM5. Mol Microbiol 75:426–439PubMedCrossRefGoogle Scholar
  107. Laukel M, Chistoserdova L, Lidstrom ME, Vorholt JA (2003) The tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1: purification and properties. Eur J Biochem 270:325–333PubMedCrossRefGoogle Scholar
  108. Leisinger T, Braus-Stromeyer SA (1995) Bacterial growth with chlorinated methanes. Environ Health Perspect 103:33–36PubMedGoogle Scholar
  109. Leisinger T, Bader R, Hermann R, Schmid-Appert M, Vuilleumier S (1994) Microbes, enzymes and genes involved in dichloromethane utilization. Biodegradation 5:237–248PubMedCrossRefGoogle Scholar
  110. Levering PR, van Dijken JP, Veenhius M, Harder W (1981) Arthrobacter P1, a fast growing versatile methylotroph with amine oxidase as a key enzyme in the metabolism of methylated amines. Arch Microbiol 129:72–80PubMedCrossRefGoogle Scholar
  111. Levering PR, Croes LM, Tiesma L, Dijkhuizen L (1986) Regulation of methylamine and formaldehyde metabolism in Arthrobacter P1. Effect of pulse-wise addition of “heterotrophic” substrates to C1 substrate-limited continuous cultures. Arch Microbiol 144:272–278CrossRefGoogle Scholar
  112. Li K, Wang S, Shi Y, Qu J, Zhai Y, Xu L, Xu Y, Song J, Liu L, Rahman MA, Yan Y (2011) Genome sequence of Paracoccus sp. strain TRP, a chlorpyrifos biodegrader. J Bacteriol 193:1786–1787PubMedCrossRefGoogle Scholar
  113. Lieberman RL, Rosenzweig AC (2005) Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434:177–182PubMedCrossRefGoogle Scholar
  114. Lipscomb J (1994) Biochemistry of the soluble methane monoxygenase. Annu Rev Microbiol 48:371–399PubMedCrossRefGoogle Scholar
  115. Marison IW, Attwood MM (1982) A possible alternative mechanism for the oxidation of formaldehyde to formate. J Gen Microbiol 128:1441–1446Google Scholar
  116. Marx CJ (2008) Development of a broad-host-range sacB-based vector for unmarked allelic exchange. BMC Res Notes 1:1PubMedCrossRefGoogle Scholar
  117. Marx CJ, Lidstrom ME (2001) Development of improved versatile broad-host-range vectors for use in methylotrophs and other gram-negative bacteria. Microbiology 147:2065–2075PubMedGoogle Scholar
  118. Marx CJ, Lidstrom ME (2002) Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria. Biotechniques 33:1062–1067PubMedGoogle Scholar
  119. Marx CJ, Lidstrom ME (2004) Development of an insertional expression vector system for Methylobacterium extorquens AM1 and generation of null mutants lacking mtdA and/or fiche. Microbiology 150:9–19PubMedCrossRefGoogle Scholar
  120. Marx CJ, Chistoserdova L, Lidstrom ME (2003a) Formaldehyde-detoxifying role of the tetrahydromethanopterin-linked pathway in Methylobacterium extorquens AM1. J Bacteriol 185:7160–7168PubMedCrossRefGoogle Scholar
  121. Marx CJ, Laukel M, Vorholt JA, Lidstrom ME (2003b) Purification of the formate-tetrahydrofolate ligase from Methylobacterium extorquens AM1 and demonstration of its requirement for methylotrophic growth. J Bacteriol 185:7169–7175PubMedCrossRefGoogle Scholar
  122. Marx CJ, Miller JA, Chistoserdova L, Lidstrom ME (2004) Multiple formaldehyde oxidation/detoxification pathways in Burkholderia fungorum LB400. J Bacteriol 186:2173–2178PubMedCrossRefGoogle Scholar
  123. Marx CJ, Van Dien SJ, Lidstrom ME (2005) Flux analysis uncovers key role of functional redundancy in formaldehyde metabolism. PLoS Biol 3:e16PubMedCrossRefGoogle Scholar
  124. Marx CJ, Bringel F, Chistoserdova L, Moulin L, Farhan Ul Haque M, Fleischman DE, Gruffaz C, Jourand P, Knief C, Lee MC, Muller EE, Nadalig T, Peyraud R, Roselli S, Russ L, Goodwin LA, Ivanova N, Kyrpides N, Lajus A, Land ML, Médigue C, Mikhailova N, Nolan M, Woyke T, Stolyar S, Vorholt JA, Vuilleumier S (2012) Complete genome sequences of six strains of the genus Methylobacterium. J Bacteriol 194:4746–4748PubMedCrossRefGoogle Scholar
  125. McIntire WS (1990) Trimethylamine dehydrogenase from Bacterium W3A1. Methods Enzymol 188:250–260PubMedCrossRefGoogle Scholar
  126. McIntire WS, Hartman C (1993) Copper-containing amine oxidases. In: Davidson V (ed) Principles and applications of quinoproteins. Marcel Dekker, New York, pp 97–172Google Scholar
  127. Meschi F, Wiertz F, Klauss L, Cavalieri C, Blok A, Ludwig B, Heering HA, Merli A, Rossi GL, Ubbink M (2010) Amicyanin transfers electrons from methylamine dehydrogenase to cytochrome c-551i via a ping-pong mechanism, not a ternary complex. J Am Chem Soc 132:14537–14545PubMedCrossRefGoogle Scholar
  128. Murrell JC, Gilbert B, McDonald IR (2000) Molecular biology and regulation of methane monooxygenase. Arch Microbiol 173:325–332PubMedCrossRefGoogle Scholar
  129. Nagy PL, Marolewski A, Benkovic SJ, Zalkin H (1995a) Formyltetrahydrofolate hydrolase, a regulatory enzyme that functions to balance pools of tetrahydrofolate and one-carbon tetrahydrofolate adducts in Escherichia coli. J Bacteriol 177:1292–1298PubMedGoogle Scholar
  130. Nagy I, Verheijen S, De Schrijver A, Van Damme J, Proost P, Schoofs G, Vanderleyden J, De Mot R (1995b) Characterization of the Rhodococcus sp. NI86/21 gene encoding alcohol: N, N′-dimethyl-4-nitrosoaniline oxidoreductase inducible by atrazine and thiocarbamate herbicides. Arch Microbiol 163:439–446PubMedCrossRefGoogle Scholar
  131. Nesvera J, Hochmannova J, Patek M, Sroglova A, Becvarova V (1994) Transfer of the broad-host-range IncQ plasmid RSF1010 and other plasmid vectors to the gram-positive methylotroph Brevibacterium methylicum by electrotransformation. Appl Microbiol Biotechnol 40:864–866PubMedCrossRefGoogle Scholar
  132. Neufeld JD, Boden R, Moussard H, Schäfer H, Murrell JC (2008a) Substrate-specific clades of active marine methylotrophs associated with a phytoplankton bloom in a temperate coastal environment. Appl Environ Microbiol 74:7321–7328PubMedCrossRefGoogle Scholar
  133. Neufeld JD, Chen Y, Dumont MG, Murrell JC (2008b) Marine methylotrophs revealed by stable-isotope probing, multiple displacement amplification and metagenomics. Environ Microbiol 10:1526–1535PubMedCrossRefGoogle Scholar
  134. Nguyen HH, Elliott SJ, Yip JH, Chan SI (1998) The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme. Isolation and characterization. J Biol Chem 273:7957–7966PubMedCrossRefGoogle Scholar
  135. Nielsen AK, Gerdes K, Murrell JC (1997) Copper-dependent reciprocal transcriptional regulation of methane monooxygenase in Methylococcus capsulatus and Methylosinus trichosporium. Mol Microbiol 25:399–409PubMedCrossRefGoogle Scholar
  136. Ojala DS, Beck DA, Kalyuzhnaya MG (2011) Genetic systems for moderately halo(alkali)philic bacteria of the genus Methylomicrobium. Methods Enzymol 495:99–118PubMedCrossRefGoogle Scholar
  137. Okubo Y, Yang S, Chistoserdova L, Lidstrom ME (2010) Alternative route for glyoxylate consumption during growth on two-carbon compounds by Methylobacterium extorquens AM1. J Bacteriol 192:1813–1823PubMedCrossRefGoogle Scholar
  138. Op den Camp HGM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland N-K, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306CrossRefGoogle Scholar
  139. Oremland RS, Culbertson CW (1992) Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor. Nature 356:421–423CrossRefGoogle Scholar
  140. Park H, Lee H, Ro YT, Kim YM (2010) Identification and functional characterization of a gene for the methanol: N,N′-dimethyl-4-nitrosoaniline oxidoreductase from Mycobacterium sp. strain JC1 (DSM 3803). Microbiology 156:463–471PubMedCrossRefGoogle Scholar
  141. Pearson AR, Jones LH, Higgins L, Ashcroft AE, Wilmot CM, Davidson VL (2003) Understanding quinone cofactor biogenesis in methylamine dehydrogenase through novel cofactor generation. Biochemistry 42:3224–3230PubMedCrossRefGoogle Scholar
  142. Peyraud R, Kiefer P, Christen P, Massou S, Portais JC, Vorholt JA (2009) Demonstration of the ethylmalonyl-CoA pathway by using 13 C metabolomics. Proc Natl Acad Sci USA 106:4846–4851PubMedCrossRefGoogle Scholar
  143. Peyraud R, Schneider K, Kiefer P, Massou S, Vorholt JA, Portais JC (2011) Genome-scale reconstruction and system level investigation of the metabolic network of Methylobacterium extorquens AM1. BMC Syst Biol 5:189PubMedCrossRefGoogle Scholar
  144. Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MS, Op den Camp HJ (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–878PubMedCrossRefGoogle Scholar
  145. Pomper BK, Vorholt JA, Chistoserdova L, Lidstrom ME, Thauer RK (1999) A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1. Eur J Biochem 261:475–480PubMedCrossRefGoogle Scholar
  146. Quayle JR, Pfennig N (1975) Utilization of methanol by rhodospirillaceae. Arch Microbiol 102:193–198PubMedCrossRefGoogle Scholar
  147. Raghoebarsing AA, Smolders AJ, Schmid MC, Rijpstra WI, Wolters-Arts M, Derksen J, Jetten MS, Schouten S, Sinninghe Damsté JS, Lamers LP, Roelofs JG, Op den Camp HJ, Strous M (2005) Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436:1153–1156PubMedCrossRefGoogle Scholar
  148. Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. Biochim Biophys Acta 1784:1873–1898PubMedCrossRefGoogle Scholar
  149. Ras J, Van Ophem PW, Reijnders WN, Van Spanning RJ, Duine JA, Stouthamer AH, Harms N (1995) Isolation, sequencing, and mutagenesis of the gene encoding NAD-and glutathione-dependent formaldehyde dehydrogenase (GD-FALDH) from Paracoccus denitrificans, in which GD-FALDH is essential for methylotrophic growth. J Bacteriol 177:247–251PubMedGoogle Scholar
  150. Reisch CR, Moran MA, Whitman WB (2011) Bacterial catabolism of dimethylsulfoniopropionate (DMSP). Front Microbiol 2:172PubMedCrossRefGoogle Scholar
  151. Roca A, Rodríguez-Herva JJ, Ramos JL (2009) Redundancy of enzymes for formaldehyde detoxification in Pseudomonas putida. J Bacteriol 191:3367–3374PubMedCrossRefGoogle Scholar
  152. Rosenzweig AC, Frederick CA, Lippard SJ, Nordlund P (1993) Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366:537–543PubMedCrossRefGoogle Scholar
  153. Rosenzweig AC, Brandstetter H, Whittington DA, Nordlund P, Lippard SJ, Frederick CA (1997) Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for substrate gating and component interactions. Proteins 29:141–152PubMedCrossRefGoogle Scholar
  154. Schaefer JK, Oremland RS (1999) Oxidation of methyl halides by the facultative methylotroph strain IMB-1. Appl Environ Microbiol 65:5035–5041PubMedGoogle Scholar
  155. Schmidt S, Christen P, Kiefer P, Vorholt JA (2010) Functional investigation of methanol dehydrogenase-like protein XoxF Methylobacterium extorquens AM1. Microbiology 156:2575–2586PubMedCrossRefGoogle Scholar
  156. Schneider K, Peyraud R, Kiefer P, Christen P, Delmotte N, Massou S, Portais JC, Vorholt JA (2011) The ethylmalonyl-CoA pathway is used in place of the glyoxylate cycle by Methylobacterium extorquens AM1 during growth on acetate. J Biol Chem 287(1):757–766PubMedCrossRefGoogle Scholar
  157. Semrau JD, Dispirito AA, Vuilleumier S (2011) Facultative methanotrophy: false leads, true results, and suggestions for future research. FEMS Microbiol Lett 323:1–12PubMedCrossRefGoogle Scholar
  158. Siddavattam D, Karegoudar TB, Mudde SK, Kumar N, Baddam R, Avasthi TS, Ahmed N (2011) Genome of a novel isolate of Paracoccus denitrificans capable of degrading N,N-dimethylformamide. J Bacteriol 193:5598–5599PubMedCrossRefGoogle Scholar
  159. Skovran E, Crowther GJ, Guo X, Yang S, Lidstrom ME (2010) A systems biology approach uncovers cellular strategies used by Methylobacterium extorquens AM1 during the switch from multi- to single-carbon growth. PLoS One 5:e14091PubMedCrossRefGoogle Scholar
  160. Stein LY, Yoon S, Semrau JD, Dispirito AA, Crombie A, Murrell JC, Vuilleumier S, Kalyuzhnaya MG, Op den Camp HJ, Bringel F, Bruce D, Cheng JF, Copeland A, Goodwin L, Han S, Hauser L, Jetten MS, Lajus A, Land ML, Lapidus A, Lucas S, Médigue C, Pitluck S, Woyke T, Zeytun A, Klotz MG (2010) Genome sequence of the obligate methanotroph Methylosinus trichosporium strain OB3b. J Bacteriol 192:6497–6498PubMedCrossRefGoogle Scholar
  161. Stein LY, Bringel F, Dispirito AA, Han S, Jetten MS, Kalyuzhnaya MG, Kits KD, Klotz MG, Op den Camp HJ, Semrau JD, Vuilleumier S, Bruce DC, Cheng JF, Davenport KW, Goodwin L, Han S, Hauser L, Lajus A, Land ML, Lapidus A, Lucas S, Médigue C, Pitluck S, Woyke T (2011) Genome sequence of the methanotrophic alphaproteobacterium Methylocystis sp. Strain Rockwell (ATCC 49242). J Bacteriol 193:2668–2669PubMedCrossRefGoogle Scholar
  162. Stirling DI, Dalton H (1978) Purification and properties of an NAD(P) + −linked formaldehyde dehydrogenase from Methylococcus capsulatus (Bath). J Gen Microbiol 107:19–29PubMedCrossRefGoogle Scholar
  163. Strand SE, Lidstrom ME (1984) Characterization of a new marine methylotroph. FEMS Microbiol Lett 21:247–251CrossRefGoogle Scholar
  164. Studer A, Vuilleumier S, Leisinger T (1999) Properties of the methylcobalamin:H4folate methyltransferase involved in chloromethane utilization by Methylobacterium sp. strain CM4. Eur J Biochem 264:242–249PubMedCrossRefGoogle Scholar
  165. Studer A, McAnulla C, Büchele R, Leisinger T, Vuilleumier S (2002) Chloromethane-induced genes define a third C1 utilization pathway in Methylobacterium chloromethanicum CM4. J Bacteriol 184:3476–3484PubMedCrossRefGoogle Scholar
  166. Suylen GM, Kuenen JG (1986) Chemostat enrichment and isolation of Hyphomicrobium EG: a dimethyl-sulphide oxidizing methylotroph and reevaluation of Thiobacillus MS1. Antonie Van Leeuwenhoek 52:281–293PubMedCrossRefGoogle Scholar
  167. Svenning MM, Hestnes AG, Wartiainen I, Stein LY, Klotz MG, Kalyuzhnaya MG, Spang A, Bringel F, Vuilleumier S, Lajus A, Médigue C, Bruce DC, Cheng JF, Goodwin L, Ivanova N, Han J, Han CS, Hauser L, Held B, Land ML, Lapidus A, Lucas S, Nolan M, Pitluck S, Woyke T (2011) Genome sequence of the arctic methanotroph Methylobacter tundripaludum SV96. J Bacteriol 193:6418–6419PubMedCrossRefGoogle Scholar
  168. Sy A, Timmers AC, Knief C, Vorholt JA (2005) Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol 71:7245–7252PubMedCrossRefGoogle Scholar
  169. Tanaka N, Kusakabe Y, Ito K, Yoshimoto T, Nakamura KT (2003) Crystal structure of glutathione-independent formaldehyde dehydrogenase. Chem Biol Interact 143–144:211–218PubMedCrossRefGoogle Scholar
  170. Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson prize lecture. Microbiology 144:2377–2406PubMedCrossRefGoogle Scholar
  171. Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63:183–229PubMedCrossRefGoogle Scholar
  172. Van Ophem PW, Duine JA (1990) Different types of formaldehyde-oxidizing dehydrogenases in Nocardia sp. p. 239: purification and characterization of an NAD-dependent aldehyde dehydrogenase. Arch Biochem Biophys 282:248–253PubMedCrossRefGoogle Scholar
  173. Van Ophem PW, Van Beeumen J, Duine JA (1992) NAD-linked, factor-dependent formaldehyde dehydrogenase or trimeric, zinc-containing, long-chain alcohol dehydrogenase from Amycolatopsis methanolica. Eur J Biochem 206:511–518PubMedCrossRefGoogle Scholar
  174. Vannelli T, Messmer M, Studer A, Vuilleumier S, Leisinger T (1999) A corrinoid-dependent catabolic pathway for growth of a Methylobacterium strain with chloromethane. Proc Natl Acad Sci USA 96:4615–4620PubMedCrossRefGoogle Scholar
  175. Vorholt JA (2002) Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol 178:239–249PubMedCrossRefGoogle Scholar
  176. Vorholt J, Chistoserdova L, Lidstrom ME, Thauer RK (1998) The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 180:5351–5356PubMedGoogle Scholar
  177. Vorholt JA, Chistoserdova L, Stolyar SM, Thauer RK, Lidstrom ME (1999) Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J Bacteriol 181:5750–5757PubMedGoogle Scholar
  178. Vorholt JA, Kalyuzhnaya MG, Hagemeier CH, Lidstrom ME, Chistoserdova L (2005) MtdC, a novel class of methylene tetrahydromethanopterin dehydrogenases. J Bacteriol 187:6069–6074PubMedCrossRefGoogle Scholar
  179. Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium possessing only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61:2456–2463PubMedCrossRefGoogle Scholar
  180. Vrijbloed JW, van Hylckama VJ, van der Put NM, Hessels GI, Dijkhuizen L (1995) Molecular cloning with a pMEA300-derived shuttle vector and characterization of the Amycolatopsis methanolica prephenate dehydratase gene. J Bacteriol 177:6666–6669PubMedGoogle Scholar
  181. Vuilleumier S, Chistoserdova L, Lee MC, Bringel F, Lajus A, Zhou Y, Gourion B, Barbe V, Chang J, Cruveiller S, Dossat C, Gillett W, Gruffaz C, Haugen E, Hourcade E, Levy R, Mangenot S, Muller E, Nadalig T, Pagni M, Penny C, Peyraud R, Robinson DG, Roche D, Rouy Z, Saenampechek C, Salvignol G, Vallenet D, Wu Z, Marx CJ, Vorholt JA, Olson MV, Kaul R, Weissenbach J, Médigue C, Lidstrom ME (2009) Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS One 4:e5584PubMedCrossRefGoogle Scholar
  182. Vuilleumier S, Nadalig T, Ul Haque MF, Magdelenat G, Lajus A, Roselli S, Muller EE, Gruffaz C, Barbe V, Médigue C, Bringel F (2011) Complete genome sequence of the chloromethane-degrading Hyphomicrobium sp. strain MC1. J Bacteriol 193:5035–5036PubMedCrossRefGoogle Scholar
  183. Vuilleumier S, Khmelenina VN, Bringel F, Reshetnikov AS, Lajus A, Mangenot S, Rouy Z, Op den Camp HJM, Jetten MSM, Dispirito AA, Dunfield P, Klotz MG, Semrau JD, Stein LY, Barbe V, Médigue C, Trotsenko YA, Kalyuzhnaya MG (2012) Genome sequence of the haloalkaliphilic methanotrophic bacterium Methylomicrobium alcaliphilum 20Z. J Bacteriol 194(2):551–552PubMedCrossRefGoogle Scholar
  184. Walters KJ, Gassner GT, Lippard SJ, Wagner G (1999) Structure of the soluble methane monooxygenase regulatory protein B. Proc Natl Acad Sci USA 96:7877–7882PubMedCrossRefGoogle Scholar
  185. Ward N, Larsen Ø, Sakwa J, Bruseth L, Khouri H, Durkin AS, Dimitrov G, Jiang L, Scanlan D, Kang KH, Lewis M, Nelson KE, Methé B, Wu M, Heidelberg JF, Paulsen IT, Fouts D, Ravel J, Tettelin H, Ren Q, Read T, DeBoy RT, Seshadri R, Salzberg SL, Jensen HB, Birkeland NK, Nelson WC, Dodson RJ, Grindhaug SH, Holt I, Eidhammer I, Jonasen I, Vanaken S, Utterback T, Feldblyum TV, Fraser CM, Lillehaug JR, Eisen JA (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2:e303PubMedCrossRefGoogle Scholar
  186. Weaver CW, Lidstrom ME (1985) Methanol dissimilation in Xanthobacter H4-14: activities, induction and comparison to Pseudomonas AM1 and Paracoccus denitrificans. J Gen Microbiol 131:2183–2197PubMedGoogle Scholar
  187. Whittenbury R, Dalton H (1981) The methylotrophic bacteria. In: Starr MP, Stolp H, Trüper JG, Balows A, Schlegel HG (eds) [{http://www.prokaryotes.com}The Prokaryotes]. Springer, New York, pp 894–902
  188. Wilmot CM, Davidson VL (2009) Uncovering novel biochemistry in the mechanism of tryptophan tryptophylquinone cofactor biosynthesis. Curr Opin Chem Biol 13:469–474PubMedCrossRefGoogle Scholar
  189. Wilson SM, Gleisten MP, Donohue TJ (2008) Identification of proteins involved in formaldehyde metabolism by Rhodobacter sphaeroides. Microbiology 154:296–305PubMedCrossRefGoogle Scholar
  190. Xu HH, Viebahn M, Hanson RS (1993) Identification of methanol-regulated promoter sequences from the facultative methylotrophic bacterium Methylobacterium organophilum XX. J Gen Microbiol 139:743–752PubMedCrossRefGoogle Scholar
  191. Yang CC, Packman LC, Scrutton NS (1995) The primary structure of Hyphomicrobium X dimethylamine dehydrogenase: relationship to trimethylamine dehydrogenase and implications for substrate recognition Eur. J Biochem 232:264–271Google Scholar
  192. Yasueda H, Kawahara Y, Sugimoto S (1999) Bacillus subtilis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression. J Bacteriol 181:7154–7160PubMedGoogle Scholar
  193. Yoch DC (2002) Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl Environ Microbiol 68:5804–5815PubMedCrossRefGoogle Scholar
  194. Zahn JA, DiSpirito AA (1996) Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). J Bacteriol 178:1018–1029PubMedGoogle Scholar
  195. Zahn JA, Bergmann DJ, Boyd JM, Kunz RC, DiSpirito AA (2001) Membrane-associated quinoprotein formaldehyde dehydrogenase from Methylococcus capsulatus Bath. J Bacteriol 183:6832–6840PubMedCrossRefGoogle Scholar
  196. Zatman LJ (1981) A search for patterns in methylotrophic pathways. In: Dalton H (ed) Microbial growth on C1 compounds. Heyden, London, pp 42–54Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of WashingtonSeattleUSA
  2. 2.Department of Chemical Engineering and Department of MicrobiologyUniversity of WashingtonSeattleUSA

Personalised recommendations