Hydrocarbon-Oxidizing Bacteria

  • Eugene RosenbergEmail author


Hydrocarbon-oxidizing bacteria have been isolated from a variety of terrestrial and aquatic environments, using both enrichment and direct plating techniques. Although bacteria able to grow on aliphatic and aromatic hydrocarbons are found in many genera, the genera Alcanivorax appear to be special because these bacteria are specialized for growth on hydrocarbons. The initial step in the bacterial degradation of hydrocarbons is the introduction of oxygen into the molecules by group-specific oxygenases. Since these oxygenases are membrane bound, the cell must come into direct contact with their water-insoluble substrate. Hydrocarbon-oxidizing bacteria have potential applications in bioremediation of oil pollution, enhanced oil recovery, production of surface-active agents, and in the use of hydrocarbons as substrates for industrial fermentation processes.
  1. 1.

    Microbial spoilage of petroleum products

  2. 2.

    Treatment of oil spills and disposal of petroleum wastes

  3. 3.

    Enhanced oil recovery

  4. 4.

    Production of surface-active agents

  5. 5.

    Hydrocarbons as substrates in industrial fermentation processes



Enrichment Culture Mineral Salt Medium Minimal Salt Medium Hydrocarbon Degradation Hydrocarbon Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. American Public Health Association (1995) Standard methods for the examination of water, sewage and industrial wastes. American Public Health Association, New YorkGoogle Scholar
  2. Antoniewski J, Schaefer R (1972) Researches sur les reactions des coenoses microbiennes de sols impregnes par des hydrocarbures. Modification de l’activite respiratoire. Ann Inst Pasteur 123:805–819Google Scholar
  3. Asperger O, Kleber HP (1991) Metabolism of alkanes y Acinetobacter. In: Towner KJ, Bergogne-Berezine E, Fewson CA (eds) The biology of Acinetobacter. Plenum Press, New York, pp 323–351Google Scholar
  4. Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209PubMedGoogle Scholar
  5. Atlas RM, Bartha R (1972) Degradation and mineralization of petroleum by two bacteria isolated from coastal waters. Biotechnol Bioeng 14:297–305PubMedCrossRefGoogle Scholar
  6. Atlas RM, Bartha R (1973a) Stimulated biodegradation of oil slicks using oleophilic fertilizers. Environ Sci Technol 7:535–541CrossRefGoogle Scholar
  7. Atlas RM, Bartha R (1973b) Abundance, distribution and oil biodegradation potential of microorganisms in Raritan Bay. Environ Pollut 4:291–300CrossRefGoogle Scholar
  8. Atlas RM, Schofield EA (1975) Petroleum biodegradation in the Arctic. In: Bourquin AW, Ahearn DG, Meyers SP (eds) Impact on the use of microorganisms on the aquatic environment. Environmental Protection Agency, Corvallis, pp 183–198. EPA-660-3-75-001Google Scholar
  9. Atlas RM, Horowitz A, Busdosh M (1978) Prudhoe crude oil in Arctic marine ice, water and sediment eco-systems; degradation and interactions with microbial and benthic communities. J Fish Res Board Can 35:585–590CrossRefGoogle Scholar
  10. Austin B, Calomiris JJ, Walker JD, Colwell RL (1977a) Numerical taxonomy and ecology of petroleum-degrading bacteria. Appl Environ Microbiol 34:60–68PubMedGoogle Scholar
  11. Austin B, Colwell RR, Walker JD, Calomiris JJ (1977b) The application of numerical taxonomy to the study of petroleum degrading bacteria isolated from the aquatic environment. Dev Ind Microbiol 18:685–695Google Scholar
  12. Barabas G, Sorkhoh NA, Fardoon F, Radwan SS (1995) n-Alkane-utilization by oligocarbophilic actinomycete strains from oil-polluted Kuwaiti desert soil. Actinomycetol 9:13–18CrossRefGoogle Scholar
  13. Bartha R, Atlas RM (1977) The microbiology of aquatic oil spills. Adv Appl Microbiol 22:225–266PubMedCrossRefGoogle Scholar
  14. Beauchop T, Elsden SR (1960) The growth of organisms in relation to their energy supply. J Gen Microbiol 23:457–469CrossRefGoogle Scholar
  15. Bertrand JC, Dour JM, Azoulay E (1976) Metabolisme des hydrobarbures chez une bacterie marine. Biochemie 58:843–854CrossRefGoogle Scholar
  16. Bossert L, Bartha R (1984) The fate of petroleum in oil ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 435–473Google Scholar
  17. Buckley EN, Jones RB, Pfaender FF (1976) Characterization of microbial isolates from an estuarine eco-system: relationship of hydrocarbon utilization to ambient hydrocarbon concentration. Appl Environ Microbiol 32:232–237PubMedGoogle Scholar
  18. Burback BL, Perry JJ (1993) Biodegradation and biotransformation of groundwater pollutant mixtures by Mycobacterium vaccae. Appl Environ Microbiol 59:1025–1029PubMedGoogle Scholar
  19. Byrom JA, Beastall S, Scotland S (1970) Bacterial degradation of crude oil. Mar Pollut Bull 1:25–26CrossRefGoogle Scholar
  20. Cappello S, Yakimov MM (2010) Alcanivorax. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, HeidelbergGoogle Scholar
  21. Cerniglia CE (1984) Microbial transformation of aromatic hydrocarbons. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 95–128Google Scholar
  22. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368CrossRefGoogle Scholar
  23. Chakrabarty AM, Chou G, Gunsalas LC (1973) Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc Natl Acad Sci 70:1137–1140PubMedCrossRefGoogle Scholar
  24. Champagnat A, Llewelyn DAB (1962) Protein from petroleum. New Sci 16:612–613Google Scholar
  25. Champagnat A, Verne C, Laine B, Filosa J (1963) Biosynthesis of protein-vitamin concentrates. Nature 197:13–14CrossRefGoogle Scholar
  26. Churchill SAJP (1999) Isolation and characterization of a Mycobacterium species capable of degrading three-and four-ring aromatic and aliphatic hydrocarbons. Appl Environ Microbiol 65:549–552PubMedGoogle Scholar
  27. Colwell RR, Walker JD, Nelson JD Jr (1973) Microbial ecology and the problem of petroleum degradation in Chesapeake Bay. In: Ahearn DG, Meyers SR (eds) The microbial degradation of oil pollutants. Center for Wetland Resources, Baton Rouge, pp 186–197. Publ. No. LSU-SG-73-91Google Scholar
  28. Cook WL, Massey JL, Ahearn DG (1973) The degradation of crude oil by yeasts and its effects on Lebistes reticulatis. In: Ahearn DG, Meyers SP (eds) The microbial degradation of oil pollutants. Center for Wetland Resources, Baton Rouge, pp 252–297. Publ. No. LSU-SG-73-01Google Scholar
  29. Coty VF (1967) Atmospheric nitrogen fixation of hydrocarbon-oxidizing bacteria. Biotechnol Bioeng 9:25–32CrossRefGoogle Scholar
  30. Crow SA, Hood MA, Meyers SP (1975) Microbiological aspects of oil intrusion in southeastern Louisiana. In: Bourquin AW, Ahearn DG, Meyers SP (eds) Impact of the use of microorganism on the aquatic environment. Environmental Protection Agency, Corvallis, pp 221–227. EPA-660-3-75-001Google Scholar
  31. Cundell AM, Traxler RW (1973a) The isolation and characterization of hydrocarbon utilizing bacteria from Chedabucto Bay, Nova Scotia. In: Proceedings of joint conference on prevention and control of oil spills. American Petroleum Institute, Washington, DC, pp 421–426Google Scholar
  32. Cundell AM, Traxler RW (1973b) Microbial degradation of petroleum at low temperature. Mar Pollut Bull 4:125–127CrossRefGoogle Scholar
  33. Cundell AM, Traxler RW (1976) Psychrophillic hydrocarbon degrading bacteria from Narragansett Bay, Rhode Island, USA. Mater Org 11:1–17Google Scholar
  34. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64PubMedGoogle Scholar
  35. Dibble JT, Bartha R (1976) Effect of iron on the biodegradation of petroleum in seawater. Appl Environ Microbiol 31:544–550PubMedGoogle Scholar
  36. Evans WC, Fernley HN, Griffiths E (1965) Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads: the ring-fission mechanism. Biochem J 95:819–831PubMedGoogle Scholar
  37. Fehler SWG, Light RJ (1970) Biosynthesis of hydrocarbons in Anabaena variabilis. Incorporation of (methyl-14C)-and (methyl2H3)-methionine into 7-and 8-methyl-heptadecanes. Biochemistry 9:418–422PubMedCrossRefGoogle Scholar
  38. Floodgate GD (1973) A threnody concerning the biodegradation of oil in natural waters. In: Ahearn DG, Meyers SP (eds) The microbial degradation of oil pollutants. Center for Wetland Resources, Baton Rouge, pp 17–22. Publication No. LSU-SG-73-01Google Scholar
  39. Floodgate GD (1984) The fate of petroleum in marine ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 355–398Google Scholar
  40. Foght JM, Gutnick DL, Westlake DWS (1989) Effect of emulsan on biodegradation of crude oil by pure and mixed bacterial cultures. Appl Environ Microbiol 55:36–42PubMedGoogle Scholar
  41. Geiselbrecht AD, Herwig RP, Deming JW, Staley JT (1996) Enumeration and phylogenetic analysis of polycyclic aromatic hydrocarbon-degrading marine bacteria from Puget Sound sediments. Appl Environ Microbiol 62:3344–3349PubMedGoogle Scholar
  42. Genner C, Hill EC (1981) Fuels and oils. In: Rose AH (ed) Microbial biodeterioration. Academic, London, pp 260–306Google Scholar
  43. Gibson DT (1968) Microbial degradation of aromatic compounds. Science 161:1093–1097CrossRefGoogle Scholar
  44. Gibson DT (1971) Microbial degradation of hydrocarbons. In: Goldberg ED (ed) Physical and chemical sciences research report I. Dahlem workshop report on the nature of sea water, pp 667–696Google Scholar
  45. Gibson DT (1977) Biodegradation of aromatic petroleum hydrocarbons. In: Wolfe DA (ed) Fate of and effect of petroleum hydrocarbons in marine eco-systems and organisms. Pergamon Press, New York, pp 34–46Google Scholar
  46. Giger W, Blumer M (1974) Polycyclic aromatic hydrocarbons in the environment: isolation and characterization by chromatography, visible, ultraviolet and mass spectrometry. Anal Chem 46:1663–1671PubMedCrossRefGoogle Scholar
  47. Griffol M, Selifonov SA, Chapman PJ (1994) Evidence for a novel pathway in the degradation of fluorene by Pseudomonas sp. Strain. Appl Environ Microbiol 60:2438–2449Google Scholar
  48. Gunkel W, Trekel HH (1967) Zur Methodik der quantitative Erfassung olabbauender Sakterien in verolten Sedimenten und Boden, Ol-Wassergemischen, Olen and Teerartigen Substanzen. Helgolander wiss Meeresunters 16:336–348CrossRefGoogle Scholar
  49. Gutnick DL, Rosenberg E (1977) Oil tankers and pollution: a microbiological approach. Ann Rev Microbiol 31:379–396CrossRefGoogle Scholar
  50. Haines JR, Wrenn BA, Holder EL, Strohmeier KL, Herrington RT, Venosa AD (1996) Measurement of hydrocarbon-degrading microbial populations by a 96-well plat most-probable-number procedure. J Ind Microbiol 16:36–41PubMedCrossRefGoogle Scholar
  51. Hardwood JL, Russel NJ (1984) Lipids in plants and microbes. George Allen & Unwin, London, pp 110–111CrossRefGoogle Scholar
  52. Hisatsuka K, Nakahara T, Sano N, Yamada K (1971) Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric Biol Chem 35:686–692CrossRefGoogle Scholar
  53. Hitzman DO (1983) Petroleum microbiology and the history of its role in enhanced oil recovery. In: Donaldson ES, Clark SB (eds) Proceedings of 1982 intentional conference on the microbial enhancement of oil recovery technology transfer branch. Bartlesville Energy Technology Center, Bartlesville, pp 162–218Google Scholar
  54. Hollinger C, Zehnder AJ (1996) Anaerobic biodegradation of hydrocarbons. Curr Opin Biotechnol 3:326–330CrossRefGoogle Scholar
  55. Hood MA, Bishop WS Jr, Bishop FW, Meyers SP, Whelan T III (1975) Microbial indicators of oil-rich salt marsh sediments. Appl Microbiol 30:982–987PubMedGoogle Scholar
  56. Horowitz A, Atlas RM (1977a) Continuous open flow-through system as a model for oil degradation in the Arctic Ocean. Appl Environ Microbiol 33:647–653PubMedGoogle Scholar
  57. Horowitz A, Atlas RM (1977b) Response of microorganism to an accidental gasoline spoilage in an Arctic freshwater ecosystem. Appl Environ Microbiol 33:1252–1258PubMedGoogle Scholar
  58. Horowitz A, Gutnick D, Rosenberg E (1975) Sequential growth of bacteria on crude oil. Appl Microbiol 30:10–19PubMedGoogle Scholar
  59. Hunt JM, Miller RJ, Whelan JL (1980) Formation of C6,-C7 hydrocarbons from bacterial degradation of naturally occurring terpenoids. Nature (London) 288:577–578CrossRefGoogle Scholar
  60. Itoh S, Suzuki T (1972) Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin utilizing ability. Agric Biol Chem 6:2233–2235CrossRefGoogle Scholar
  61. Jensen V (1975a) Decomposition of oil wastes in soil. In: Kilbertus G, Reisinger O, Mourey A, Cancela da Fonseca J (eds) Proceedings of the first international conference on biodegradation and humification 1974. University of Nancy, NancyGoogle Scholar
  62. Jensen V (1975b) Bacterial flora of soil after application of oily waste. Oikios 26:152–158CrossRefGoogle Scholar
  63. Jobson A, Cook FD, Westlake DWS (1972) Microbial utilization of crude oil. Appl Microbiol 23:1082–1089PubMedGoogle Scholar
  64. Jones JG, Edington WA (1968) An ecological survey of hydrocarbon-oxidizing microorganisms. J Gen Microbiol 52:381–390CrossRefGoogle Scholar
  65. Juttner F (1976) Beta-Cyclocitral and alkanes in microcystis (Cyanophyceae). Zeitschrift fur Naturforschung 31c:491–495Google Scholar
  66. Kappeli O, Finnerty WR (1980) Characteristics of hexadecane partition by the growth medium of Acinetobacter sp. Biotechnol Bioeng 22:495–503CrossRefGoogle Scholar
  67. Kincannon CB (1972) Oily waste disposal by soil cultivation process. Government Printing Office, Washington, DC. EPA Publ. No. R2-72-110Google Scholar
  68. Kirchmann H, Ewnetu W (1998) Biodegradation of petroleum-based oil wastes through composting. Biodegradation 9:151–156PubMedCrossRefGoogle Scholar
  69. Kiyohara H, Nagao L, Kauno L, Yano L (1982) Phenanthrene-degrading enzyme phenotype of Alcaligenes faecalis AFK2. Appl Environ Microbiol 43:458–461PubMedGoogle Scholar
  70. Knezevich V, Koren O, Ron EZ, Rosenberg E (2006) Petroleum bioremediation in seawater using guano as the fertilizer. Bioremediat J 10:83–91CrossRefGoogle Scholar
  71. Kolattukudy PE, Buckner JS, Brown L (1972) Direct evidence for a decarboxylation mechanism in the biosynthesis of alkanes in B. oleracea. Biochem Biophys Res Commun 47:1306–1313PubMedCrossRefGoogle Scholar
  72. Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27:449–479PubMedCrossRefGoogle Scholar
  73. Lindstrom JE, Prince RC, Clark JC, Grossman MJ, Yeager TR, Braddock JF, Brown EJ (1991) Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spill. Appl Environ Microbiol 57:2514–2522PubMedGoogle Scholar
  74. Liu Z, Jacobson AM, Luthy RG (1995) Biodegradation of naphthalene in aqueous nonionic surfactant systems. Appl Environ Microbiol 61:145–151PubMedGoogle Scholar
  75. Makula RA, Lockwood PJ, Finnerty WR (1975) Comparative analysis of the lipids of Acinetobacter species grown on hexadecane. J Bacteriol 121:250–258PubMedGoogle Scholar
  76. Margesin R, Schinner F (1997) Efficiency of indigenous and inoculated cold-adapted soil microorganisms for biodegradation of diesel oil in alpine soils. Appl Environ Microbiol 63:2660–2664PubMedGoogle Scholar
  77. Markovetz AJ (1971) Subterminal oxidation of aliphatic hydrocarbons by microorganism. CRC Crit Rev Microbiol 1:225–238CrossRefGoogle Scholar
  78. McKee JE, Laverty FB, Hertel RM (1972) Gasoline in groundwater. J Water Pollut Contr Fed 44:293–302Google Scholar
  79. Mihelcic JR, Luthy RG (1988) Degradation of polycyclic aromatic compounds under various redox conditions in soil-water system. Appl Environ Microbiol 54(1):1182–1187PubMedGoogle Scholar
  80. Mikkelson JD, von Wettstein-Knowles P (1978) Biosynthesis of beta-diketones and hydrocarbons in barley spike epicuticular wax. Arch Biochem Biophys 188:172–181CrossRefGoogle Scholar
  81. Miller RM, Bartha R (1989) Evidence from liposome encapsulation for transport-limited microbial metabolism of solid alkanes. Appl Environ Microbiol 55:269–274PubMedGoogle Scholar
  82. Mimura A, Takeda I, Wakasa R (1973) Some characteristic phenomena of oxygen transfer in hydrocarbon fermentation. Biotechnol Bioeng Symp (4):467–484. Wiley, New YorkGoogle Scholar
  83. Mironov OC (1970) Role of microorganism growing on oil in the self purification and indication of oil pollution in the sea. Oceanology 10:650–656Google Scholar
  84. Mironov OC, Lebed AA (1972) Hydrocarbon oxidizing bacteria in the North Atlantic. Hydrobiol J 8:74Google Scholar
  85. Moses V, Springham DG (1982) Bacteria and the enhancement of oil recovery. Applied Science, LondonGoogle Scholar
  86. Mueller RF, Nielsen PH (1996) Characterization of thermophilic consortia from two souring oil reservoirs. Appl Environ Microbiol 62:3083–3087PubMedGoogle Scholar
  87. Mulkins-Phillips GJ, Stewart JE (1974a) Effect of environmental parameters on bacterial degradation of Bunker C. oil, crude oils, and hydrocarbons. Appl Microbiol 28:915–922PubMedGoogle Scholar
  88. Mulkins-Phillips GJ, Stewart JE (1974b) Distribution of hydrocarbon utilizing bacteria in north western Atlantic waters and coastal sediments. Can J Microbiol 20:955–962PubMedCrossRefGoogle Scholar
  89. Nakahara T, Hisatsuka K, Minoda Y (1981) Effect of hydrocarbon emulsification on growth and respiration of microorganism in hydrocarbon media. J Ferm Technol 59:415–418Google Scholar
  90. Nieder M, Shapiro J (1975) Physiological function of Pseudomonas putida PpG6 (Pseudomonas oleovarans) alkane hydroxylase: monoterminal oxidation of alkanes and fatty acids. J Bacterial 122:93–98Google Scholar
  91. Odu CTI (1978) Fermentation characteristics and biochemical reactions of some organisms isolated from oil-polluted soils. Environ Pollut 15:271–276CrossRefGoogle Scholar
  92. Pérez-Pantoja D, González B, Pieper DH (2010) Aerobic degradation of aromatic hydrocarbons. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, HeidelbergGoogle Scholar
  93. Perry JJ (1977) Microbial metabolism of cyclic hydrocarbons by microorganisms isolated from soil. Can J Microbiol 14:403–407CrossRefGoogle Scholar
  94. Perry JJ (1984) Microbial metabolism of cyclic alkanes, R61-98. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 61–67Google Scholar
  95. Pirnik MP (1977) Microbial oxidation of methyl branched alkanes. CRC Crit Rev Microbiol 5:413–422PubMedCrossRefGoogle Scholar
  96. Powlowski J, Sealy J, Shingler V, Cadieux E (1997) On the role of DmpK, an auxiliary protein associated with multicomponent phenol hydroxylase from Pseudomonas sp. CF600. J Biol Chem 272:945–951PubMedCrossRefGoogle Scholar
  97. Rabus R, Wilkes H, Schramm A, Harms G, Behrends A, Amann R, Widdel F (1999) Anaerobic utilization of alkylbenzenes and n-alkanes from crude oil in an enrichment culture of denitrifying bacteria affiliating with the beta-subclass of Proteobacteria. Environ Microbiol 1:145–157PubMedCrossRefGoogle Scholar
  98. Ratajczak A, Geibdorfer W, Hillen W (1998) Expression of alkane hydroxylase from Acinetobacter sp. Strain ADP1 is induced by a broad range of n-alkanes and requires the transcriptional activator AlkR. J Bacteriol 180:5822–5827PubMedGoogle Scholar
  99. Raymond RL, Hudson JO, Jamison VW (1976) Oil degradation in soil. Appl Environ Microbiol 31:522–535PubMedGoogle Scholar
  100. Reisfeld A, Rosenberg E, Gutnick D (1972) Microbial degradation of crude oil: factors affecting the dispersion in sea water by mixed and pure cultures. Appl Microbiol 24:363–368PubMedGoogle Scholar
  101. Robertson B, Arhelger S, Kinney PJ, Button DL (1973) Hydrocarbon degradation in Alaskan waters. In: AhearnDO, Meyers SP (eds) The microbial degradation of oil pollutants. Center for Wetland Resources, Baton Rouge, pp 171–184. Publication No. LSU-SG-73-001Google Scholar
  102. Rogers MR, Kapian AM (1968) Screening of prospective biocides for hydrocarbon fuels. Dev Ind Microbiol 9:448–476Google Scholar
  103. Rosenberg E (1986) Microbial surfactants. CRC Crit Rev Biotechnol 3:109–132CrossRefGoogle Scholar
  104. Rosenberg E, Ron EZ (1997) Bioemulsans: microbial polymeric emulsifiers. Curr Opin Biotechnol 8:313–316PubMedCrossRefGoogle Scholar
  105. Rosenberg M, Rosenberg E (1985) Bacterial adherence at the hydrocarbon-water interface. Oil Petrochem Pollut 2:155–162CrossRefGoogle Scholar
  106. Rosenberg M, Bayer EA, Delaria J, Rosenberg E (1982) Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. Appl Environ Microbiol 44:929–937PubMedGoogle Scholar
  107. Rosenberg E, Kaplan N, Pines O, Rosenberg M, Gutnick D (1983) Capsular polysaccharides interfere with adherence of Acinetobacter. FEMS Microbiot Lett 17:157–161CrossRefGoogle Scholar
  108. Rosenberg E, Brown DR, Demain AL (1985) The influence of gramicidin S on hydrophobicity of germinating Bacillus brevis spores. Arch Microbiol 142:51–54CrossRefGoogle Scholar
  109. Rosenberg E, Rosenberg M, Shoham Y, Kaplan N, Sar N (1989) Adhesion and desorption during the growth of Acinetobacter calcoaceticus on hydrocarbons. In: Cohen Y, Rosenberg E (eds) Microbial mats. ASM, Washington, DC, pp 218–226Google Scholar
  110. Rosenberg E, Legmann R, Kushmaro A, Taube R, Adler E, Ron E (1992) Petroleum bioremediation—a multiphase problem. Biodegradation 3:337–350CrossRefGoogle Scholar
  111. Rosenberg E, Legmann R, Kushmaro A, Adler E, Abir H, Ron EZ (1996) Oil bioremediation using insoluble nitrogen source. J Biotechnol 51:273–278PubMedCrossRefGoogle Scholar
  112. Rosenfeld WD (1947) Anaerobic oxidation of hydrocarbons by sulfate-reducing bacteria. J Bacteriol 54:664–665Google Scholar
  113. Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulfate-reducing bacteria. Nature (London) 372:455–458CrossRefGoogle Scholar
  114. Schneiker S, Martins dos Santos VA, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M et al (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004PubMedCrossRefGoogle Scholar
  115. Schocken MJ, Gibson DT (1984) Bacterial oxidation of the polycyclic aromatic hydrocarbon acenaphthalene. Appl Environ Microbiol 48:10–16PubMedGoogle Scholar
  116. Senez JC, Azoulay E (1961) Dehydrogenation of d’hydrocarbures parafliniques par leis suspensions non-proliferants et les extracts de Pseudomonas aeruginosa. Biochimica et Biophysical Acta 47:307–316CrossRefGoogle Scholar
  117. Simon MJ, Osslund TD, Saunders R, Ensley BD, Suggs S, Harcourt A, Suen WC, Cruden DL, Gibson DT, Zylstra GJ (1993) Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene 127:31–37PubMedCrossRefGoogle Scholar
  118. Singer ME, Finnerty WL (1984) Microbial metabolism of straight-chain and branched alkanes. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 1–60Google Scholar
  119. Soli G (1973) Marine hydrocarbonoclastic bacteria: types and range of oil degradation. In: Ahearn DG, Meyers SP (eds) The microbial degradation of oil pollutants. Center for Wetland Resources, Baton Rouge, pp 141–146. Publ. No. UU-SG-73-001Google Scholar
  120. Song H-G, Bartha R (1990) Effects of jet fuel spills on the microbial community of soil. Appl Environ Microbiol 56:646–651PubMedGoogle Scholar
  121. Stevenson JJ (1966) Lipids in soil. J Am Oil Chem Soc 43:203–210CrossRefGoogle Scholar
  122. Thibault SL, Anderson M, Frankenberger WT Jr (1996) Influence of surfactants on pyrene desorption and degradation in soils. Appl Environ Microbiol 62:283–287PubMedGoogle Scholar
  123. Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol 60:258–263PubMedGoogle Scholar
  124. Vestal R, Cooney JJ, Crow S, Berger J (1984) The effects of hydrocarbons on aquatic microorganisms. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 475–506Google Scholar
  125. Walker JD, Colwell RR (1974) Microbial degradation of model petroleum at low temperatures. Microbiol Ecol 1:63–95CrossRefGoogle Scholar
  126. Walker JD, Colwell RR (1975) Factors affecting the enumeration and isolation of Actinomyces from Chesapeake Bay and south eastern Atlantic Ocean sediments. Mar Biol 30:193–201CrossRefGoogle Scholar
  127. Walker JD, Colwell RR (1976a) Measuring potential activity of hydrocarbon degrading bacteria. Appl Environ Microbiol 31:189–197PubMedGoogle Scholar
  128. Walker JD, Colwell RR (1976b) Enumeration of petroleum-degrading microorganism. Appl Environ Microbiol 31:195–207Google Scholar
  129. Walker JD, Seesman PA, Herbert TL, Colwell RR (1976) Petroleum hydrocarbons: degradation and growth potential of deep-sea sediment bacteria. Environ Pollut 10:89–99CrossRefGoogle Scholar
  130. Ward DM, Brock TD (1976) Environmental factors influencing the rate of hydrocarbon oxidation in temperate lakes. Appl Environ Microbiol 31:764–772PubMedGoogle Scholar
  131. Westlake DWS (1984) Heavy crude oils and oil shales: tertiary recovery of petroleum from oil-bearing formations. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 537–552Google Scholar
  132. Westlake DWS, Jobson A, Philippe R, Cooke FD (1974) Biodegradability and crude oil composition. Can J Microbiol 20:915–928PubMedCrossRefGoogle Scholar
  133. Whyte LG, Hawari J, Zhou E, Bourbonniere L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64:2578–2584PubMedGoogle Scholar
  134. Winters L, Parker PL, Van Baalen C (1969) Hydrocarbons of the blue-green algae: geochemical significance. Science 163:467–468PubMedCrossRefGoogle Scholar
  135. Wyndham RC, Costenon JW (1981) Heterotrophic potentials and hydrocarbon biodegradation potentials of sediment microorganisms within the Athabasca oil sands deposit. Appl Environ Microbiol 41:783–790PubMedGoogle Scholar
  136. Zhang W, Bouwer EJ (1997) Biodegradation of benzene, toluene and naphthalene in soil-water slurry microcosms. Biodegradation 8:167–175CrossRefGoogle Scholar
  137. Zhang Y, Miller RM (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 60:2101–2106PubMedGoogle Scholar
  138. ZoBell CE (1964) The occurrence, effects and fate of oil polluting the sea. Adv Water Pollut Res 3:85–118Google Scholar
  139. ZoBell CE, Prokop JF (1966) Microbial oxidation of mineral oils in Barataria Bay bottom deposits. Zeitschrifl fur Allgemeine Mikrobiologie 6:143–162CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Molecular Microbiology and BiotechnologyTel Aviv UniversityTel AvivIsrael

Personalised recommendations