Skip to main content

Acetogenic Prokaryotes

  • Reference work entry
The Prokaryotes

Abstract

This chapter circumscribes the acetogens, a physiologically defined group of the domain Bacteria that are anaerobes, using the acetyl-CoA pathway as a mechanism for the reductive synthesis of acetyl-CoA from CO2, for a terminal-electron-accepting, energy-conserving process, and for mechanism for the fixation (assimilation) of CO2 in the synthesis of cell carbon. Three main metabolic features of these organisms were defined, such as the use of chemolithoautotrophic substrates (H2-CO2 or CO-CO2) as sole sources of carbon and energy under anoxic conditions, the capacity to convert certain sugars stoichiometrically to acetate, and the ability to O-demethylate methoxylated aromatic compounds and metabolize the O-methyl group via the 420 acetyl-CoA pathway. Acetogens have been assigned to more than 20 different genera and they differ in their morphology, cytology, and physiology. The most frequently isolated acetogenic species to date are members of the genera Clostridium and Acetobacterium. The habitat, the morphological and physiological properties, and the phylogenetic position of acetogenic species are presented. The electron flow of the “Wood/Ljungdahl” pathway as well as properties and function of enzymes involved in the acetyl-CoA pathway is shown in detail. Several biotechnological applications are described with the commercial production of acetic acid from sugars and the bioconversion of synthesis gas to acetic acid, ethanol, and other chemicals being the most important ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161:345–351

    Article  CAS  Google Scholar 

  • Adamse AD (1980) New isolation of Clostridium aceticum (Wieringa). Ant v Leeuwenhoek 46:523–531

    Article  CAS  Google Scholar 

  • Adamse AD, Velzeboer CTM (1982) Features of a Clostridium, strain CV-AA1, an obligatory anaerobic bacterium producing acetic acid from methanol. Ant v Leeuwenhoek 48:305–313

    Article  CAS  Google Scholar 

  • Albers BE, Ferry JG (1994) A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc Natl Acad Sci USA 91:6909–6913

    Article  Google Scholar 

  • Anderson RT, Chapelle FH, Lovley DR (1998) Evidence against hydrogen-based microbial ecosystems in basalt aquifers. Science 281:976–977

    Article  PubMed  CAS  Google Scholar 

  • Andreesen JR (1994) Acetate via glycine: a different form of acetogenesis. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 568–629

    Chapter  Google Scholar 

  • Andreesen JR, Gottschalk G, Schlegel HG (1970) Clostridium formicoaceticum nov. spec. isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch Microbiol 72:154–174

    CAS  Google Scholar 

  • Andreesen JR, Schaupp A, Neurauter C, Brown A, Ljungdahl LG (1973) Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: effect of metals on growth yield, enzymes, and the synthesis of acetate from CO2. J Bacteriol 114:743–751

    PubMed  CAS  Google Scholar 

  • Anonymous (2002) Chem Week 164:33

    Google Scholar 

  • Arendsen AF, Soliman MQ, Ragsdale SW (1999) Nitrate-dependent regulation of acetate biosynthesis and nitrate respiration by Clostridium thermoaceticum. J Bacteriol 181:1489–1495

    PubMed  CAS  Google Scholar 

  • Aufurth S, Madkour M, Mayer F, Müller V (1998) Structure of the Na-driven flagellum from the homoacetogenic bacterium Acetobacterium woodii. FEBS Lett 434:325–328

    Article  PubMed  CAS  Google Scholar 

  • Bache R, Pfennig N (1981) Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch Microbiol 130:255–261

    Article  CAS  Google Scholar 

  • Bak F, Finster K, Rothfuß F (1992) Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria. Arch Microbiol 157:529–534

    CAS  Google Scholar 

  • Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int J Sys Bacteriol 27:355–361

    Article  CAS  Google Scholar 

  • Balk M, Weijma J, Friedrich MW, Stams AJM (2003) Methanol utilization by a novel thermophilic homoacetogenic bacterium, Moorella mulderi sp. nov., isolated from a bioreactor. Arch Microbiol 179:315–320

    PubMed  CAS  Google Scholar 

  • Banerjee R, Ragsdale SW (2003) The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Ann Rev Biochem 72:209–247

    Article  PubMed  CAS  Google Scholar 

  • Barik S, Prieto S, Harrison SB, Clausen EC, Gaddy JL (1988) Biological production of alcohols from coal through indirect liquefaction. Appl Biochem Biotechnol 18:363–378

    Article  CAS  Google Scholar 

  • Barker HA (1944) On the role of carbon dioxide in the metabolism of Clostridium thermoaceticum. Proc Natl Acad Sci USA 30:88–90

    Article  PubMed  CAS  Google Scholar 

  • Barker HA, Kamen MD (1945) Carbon dioxide utilization in the synthesis of acetic acid by Clostridium thermoaceticum. Proc Natl Acad Sci USA 31:219–225

    Article  PubMed  CAS  Google Scholar 

  • Barlaz MA (1997) Microbial studies of landfills and anaerobic refuse decomposition. In: Hurst CJ (ed) Manual of environmental microbiology. ASM Press, Washington, DC, pp 541–557

    Google Scholar 

  • Baronofsky JJ, Schreurs WJA, Kashket ER (1984) Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermoaceticum. Appl Environ Microbiol 48:1134–1139

    PubMed  CAS  Google Scholar 

  • Beaty PS, Ljungdahl LG (1990) Thiosulfate reduction by Clostridium thermoaceticum and Clostridium thermoautotrophicum during growth on methanol. Abstr Ann Meet Am Soc Microbiol I-7:199

    Google Scholar 

  • Beaty PS, Ljungdahl LG (1991) Growth of Clostridium thermoaceticum on methanol, ethanol, propanol, and butanol in medium containing either thiosulfate or dimethylsulfoxide. Abstr Ann Meet Am Soc Microbiol K-131:236

    Google Scholar 

  • Berman MH, Frazer AC (1992) Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers. Appl Environ Microbiol 58:925–931

    PubMed  CAS  Google Scholar 

  • Bernalier A, Lelait M, Rochet V, Grivet J-P, Gibson GR, Durand M (1996a) Acetogenesis from H2 and CO2 by methane-and non-methane-producing human colonic bacterial communities. FEMS Microbiol Ecol 19:193–202

    Article  CAS  Google Scholar 

  • Bernalier A, Rochet V, Leclerc M, Doré J, Pochart P (1996b) Diversity of H2/CO2-utilizing acetogenic bacteria from feces of non-methane-producing humans. Curr Microbiol 33:94–99

    Article  PubMed  CAS  Google Scholar 

  • Bernalier A, Willems A, Leclerc M, Rochet V, Collins MD (1996c) Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces. Arch Microbiol 166:176–183

    Article  PubMed  CAS  Google Scholar 

  • Boga H, Brune A (2003) Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts. Appl Environ Microbiol 69:779–786

    Article  PubMed  CAS  Google Scholar 

  • Boga HI, Ludwig W, Brune A (2003) Sporomusa aerivorans sp. nov., an oxygen-reducing homoacetogenic bacterium from a soil-feeding termite. Int J Syst Evol Microbiol 53:1397–1404

    Article  PubMed  CAS  Google Scholar 

  • Bogdahn M, Andreesen JR, Kleiner D (1983) Pathways and regulation of N2, ammonium and glutamate assimilation by Clostridium formicoaceticum. Arch Microbiol 134:167–169

    Article  CAS  Google Scholar 

  • Bomar M, Hippe H, Schink B (1991) Lithotrophic growth and hydrogen metabolism by Clostridium magnum. FEMS Microbiol Lett 83:347–350

    Article  CAS  Google Scholar 

  • Boone DR (1991) Ecology of methanogenesis. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes. American Society for Microbiology, Washington, DC, pp 57–70

    Google Scholar 

  • Braker G, Zhou J, Lu L, Devol AH, Tiedje JM (2000) Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities. Appl Environ Microbiol 66:2096–2104

    Article  PubMed  CAS  Google Scholar 

  • Bramlett MR, Tan X, Lindahl PA (2003) Inactivation of acetyl-CoA synthase/carbon monoxide dehydrogenase by copper. J Am Chem Soc 125:9316–9317

    Article  PubMed  CAS  Google Scholar 

  • Brauman A, Kane MD, Labat M, Breznak JA (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387

    Article  PubMed  CAS  Google Scholar 

  • Braun K, Gottschalk G (1981) Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum. Arch Microbiol 128:294–298

    Article  PubMed  CAS  Google Scholar 

  • Braun M, Gottschalk G (1982) Acetobacterium wieringae sp. nov., a new species producing acetic acid from molecular hydrogen and carbon dioxide. Zbl Bakt Hyg I Abt Orig C3:368–376

    Google Scholar 

  • Braun K, Schoberth S, Gottschalk G (1979) Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats. Arch Microbiol 120:201–204

    Article  PubMed  CAS  Google Scholar 

  • Braun M, Mayer F, Gottschalk G (1981) Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch Microbiol 128:288–293

    Article  PubMed  CAS  Google Scholar 

  • Braus-Stromeyer SA, Wagner C, Drake HL (1996) Expression and localization of CO2-fixing enzymes during autotrophic growth by the acetogen Acetogenium kivuii. Abstr Ann Meet Am Soc Microbiol K-162:563

    Google Scholar 

  • Braus-Stromeyer SA, Schnappauf G, Braus GH, Gößner AS, Drake HL (1997) Carbonic anhydrase in Acetobacterium woodii and other acetogenic bacteria. J Bacteriol 179:7197–7200

    PubMed  CAS  Google Scholar 

  • Breznak JA (1992) The genus Sporomusa. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 2016–2021

    Google Scholar 

  • Breznak JA (1994) Acetogenesis from carbon dioxide in termite guts. In: Drake HL (ed) Acetogenesis. Chapmann and Hall, New York, pp 303–330

    Chapter  Google Scholar 

  • Breznak JA, Kane MD (1990) Microbial H2/CO2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol Rev 87:309–314

    Article  CAS  Google Scholar 

  • Breznak JA, Switzer JM (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52:623–630

    PubMed  CAS  Google Scholar 

  • Breznak JA, Switzer Blum J (1991) Mixotrophy in the termite gut acetogen, Sporomusa termitida. Arch Microbiol 156:105–110

    Article  CAS  Google Scholar 

  • Breznak JA, Switzer JM, Seitz H-J (1988) Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch Microbiol 150:282–288

    Article  CAS  Google Scholar 

  • Brock TD (1989) Evolutionary relationships of the autotrophic bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech, Madison, pp 499–512

    Google Scholar 

  • Brulla WJ, Bryant MP (1989) Growth of the syntrophic anaerobic acetogen, strain PA-1, with glucose or succinate as energy source. Appl Environ Microbiol 55:1289–1290

    PubMed  CAS  Google Scholar 

  • Brumm PJ (1988) Fermentation of single and mixed substrates by the parent and an acid-tolerant, mutant strain of Clostridium thermoaceticum. Biotechnol Bioengin 32:444–450

    Article  CAS  Google Scholar 

  • Brune A, Emerson D, Breznak JA (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61:2681–2687

    PubMed  CAS  Google Scholar 

  • Brune A, Frenzel P, Cypionka H (2000) Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710

    PubMed  CAS  Google Scholar 

  • Bryant MP (1979) Microbial methane production—theoretical aspects. J Anim Sci 48:193–201

    CAS  Google Scholar 

  • Budavari S (ed) (1989) The Merck index, 18th edn. Merck, Rahway, p 792

    Google Scholar 

  • Busche RM (1991) Extractive fermentation of acetic acid: economic tradeoff between yield of Clostridium and concentration of Acetobacter. Appl Biochem Biotechnol 28/29:605–621

    Google Scholar 

  • Buschhorn H, Dürre P, Gottschalk G (1989) Production and utilization of ethanol by the homoacetogen Acetobacterium woodii. Appl Environ Microbiol 55:1835–1840

    PubMed  CAS  Google Scholar 

  • Byrer DE, Rainey FA, Wiegel J (2000) Novel strains of Moorella thermoacetica form unusually heat-resistant spores. Arch Microbiol 174:334–339

    Article  PubMed  CAS  Google Scholar 

  • Cato EP, George WL, Finegold SM (1986) Genus Clostridium Prazmowski 1880. In: Sneath PHA (ed) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1141–1200

    Google Scholar 

  • Causey TB, Zhou S, Shanmugam KT, Ingram LO (2003) Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc Natl Acad Sci USA 100:825–832

    Article  PubMed  CAS  Google Scholar 

  • Chaucheyras F, Fonty G, Bertin G, Gouet P (1995) In vitro H2 utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methanogen is stimulated by a probiotic strain of Saccharomyces cerevisiae. Appl Environ Microbiol 61:3466–3467

    PubMed  CAS  Google Scholar 

  • Cheryan M, Parekh S (1992) Acetate and calcium magnesium acetate (CMA) production with mutant strains of Clostridium thermoaceticum ATCC 49707. Abstr Ann Meet Am Soc Microbiol Abstr O-39:315

    Google Scholar 

  • Cheryan M, Parekh S, Shah M, Witjitra K (1997) Production of acetic acid by Clostridium thermoaceticum. Adv Appl Microbiol 43:1–33

    Article  PubMed  CAS  Google Scholar 

  • Chidthaisong A, Rosenstock B, Conrad R (1999) Measurement of monosaccharides and conversion of glucose to acetate in anoxic rice field soil. Appl Environ Microbiol 65:2350–2355

    PubMed  CAS  Google Scholar 

  • Chin K-J, Conrad R (1995) Intermediary metabolism in methanogenic paddy soil and the influence of temperature. FEMS Microbiol Ecol 18:85–102

    Article  CAS  Google Scholar 

  • Christiansen N, Ahring BK (1996) Desulfitobacterium hafniense sp. nov., an anaerobic reductively dechloronating bacterium. Int J Syst Bacteriol 46:442–448

    Article  Google Scholar 

  • Clark JE, Ljungdahl LG (1984) Purification and properties of 5,10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum. J Biol Chem 259:10845–10849

    PubMed  CAS  Google Scholar 

  • Cleveland LR (1925) The effect of oxygenation and starvation on the symbiosis between the termite, termopsis, and its intestinal flagellates. Biol Bull 48:309–326

    Article  CAS  Google Scholar 

  • Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JAE (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826

    Article  PubMed  CAS  Google Scholar 

  • Conrad R (1993) Mechanisms controlling methane emission from wetland rice fields. In: Oremalnd RS (ed) The biogeochemistry of global change: radiative trace gases. Chapman and Hall, New York, pp 317–335

    Chapter  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640

    PubMed  CAS  Google Scholar 

  • Conrad R, Bak F, Seitz HJ, Thebrath B, Mayer HP, Schütz H (1989) Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol Ecol 62:285–294

    Article  CAS  Google Scholar 

  • Cord-Ruwisch R, Ollivier B (1986) Interspecific hydrogen transfer during methanol degradation by Sporomusa acidovorans and hydrogenophilic anaerobes. Arch Microbiol 144:163–165

    Article  CAS  Google Scholar 

  • Cord-Ruwisch R, Seitz H-J, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol 149:350–357

    Article  CAS  Google Scholar 

  • Cunningham DP, Lundie LL Jr (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59:7–14

    PubMed  CAS  Google Scholar 

  • Cypionka H (2000) Oxygen respiration by Desulfovibrio species. Ann Rev Microbiol 54:827–848

    Article  CAS  Google Scholar 

  • Daniel SL, Drake HL (1993) Oxalate-and glyoxylate-dependent growth and acetogenesis by Clostridium thermoaceticum. Appl Environ Microbiol 59:3062–3069

    PubMed  CAS  Google Scholar 

  • Daniel SL, Hsu T, Dean SI, Drake HL (1990) Characterization of the H2-and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol 172:4464–4471

    PubMed  CAS  Google Scholar 

  • Daniel SL, Keith ES, Yang H, Lin Y-S, Drake HL (1991) Utilization of methoxylated aromatic compounds by the acetogen Clostridium thermoaceticum: expression and specificity of the CO-dependent O-demethylating activity. Biochem Biophys Res Commun 180:416–422

    Article  PubMed  CAS  Google Scholar 

  • Daniel SL, Pilsl C, Drake HL (2004) Oxalate metabolism by the acetogenic bacterium Moorella thermoacetica. FEMS Microbiol Lett 231:39–43

    Article  PubMed  CAS  Google Scholar 

  • Darnault C, Volberg A, Kim EJ, Legrand P, Vernède X, Lindahl PA, Fontecilla-Camps JC (2003) Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open α subunits of acetylCoA synthase/carbon monoxide dehydrogenase. Nat Struct Biol 10:271–279

    Article  PubMed  CAS  Google Scholar 

  • Das A, Ljungdahl LG (2000) Acetogenesis and acetogenic bacteria. In: Lederberg J (ed) Encyclopedia of microbiology, vol 1, 2nd edn. Academic, San Diego, pp 18–27

    Google Scholar 

  • Das A, Ljungdahl LG (2003) Electron transport systems in acetogens. In: Ljungdahl LG, Adams M, Barton L, Ferry JG, Johnson M (eds) Biochemistry and physiology of anaerobic bacteria. Springer, New York, pp 191–204

    Chapter  Google Scholar 

  • Das A, Hugenholtz J, van Halbeek H, Ljungdahl LG (1989) Structure and function of a menaquinone involved in electron transport in membranes of Clostridium thermoautotrophicum and Clostridium thermoaceticum. J Bacteriol 171:5823–5829

    PubMed  CAS  Google Scholar 

  • Das A, Ivey DM, Ljungdahl LG (1997) Purification and reconstitution into proteoliposomes of the F1F0 ATP synthase from the obligately anaerobic Gram-positive bacterium Clostridium thermoautotrophicum. J Bacteriol 179:1714–1720

    PubMed  CAS  Google Scholar 

  • Das A, Coulter ED, Kurtz DM Jr, Ljungdahl LG (2001) Five-gene cluster in Clostridium thermoaceticum consisting of two divergent operons encoding rubredoxin oxidoreductase—rubredoxin and rubrerythrin-type flavodoxin—high-molecular-weight rubredoxin. J Bacteriol 183:1560–1567

    Article  PubMed  CAS  Google Scholar 

  • Davidova IA, Stams AJM (1996) Sulfate reduction with methanol by a thermophilic consortium obtained from a methanogenic reactor. Appl Microbiol Biotechnol 46:297–302

    Article  CAS  Google Scholar 

  • Davydova-Charakhch’yan IA, Mileeva AN, Mityushina LL, Belyaev SS (1992) Acetogenic bacteria from oil fields of Tataria and western Siberia. Mikrobiologiya 61:306–315

    Google Scholar 

  • Dehning I, Stieb M, Schink B (1989) Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate. Arch Microbiol 151:421–426

    Article  CAS  Google Scholar 

  • DeWeerd KA, Saxena A, Nagle DP Jr, Suflita JM (1988) Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria. Appl Environ Microbiol 54:1237–1242

    PubMed  CAS  Google Scholar 

  • Diekert G (1992) The acetogenic bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 517–533

    Google Scholar 

  • Diekert G, Ritter M (1983) Purification of the nickel protein carbon monoxide dehydrogenase of Clostridium thermoaceticum. FEBS Lett 151:41–44

    Article  PubMed  CAS  Google Scholar 

  • Diekert G, Thauer RK (1978) Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J Bacteriol 136:597–606

    PubMed  CAS  Google Scholar 

  • Diekert G, Wohlfarth G (1994a) Energetics of acetogenesis from C1 units. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 157–179

    Chapter  Google Scholar 

  • Diekert G, Wohlfarth G (1994b) Metabolism of homoacetogens. Ant v Leeuwenhoek 66:209–221

    Article  CAS  Google Scholar 

  • Diekert G, Hansch M, Conrad R (1984) Acetate synthesis from 2 CO2 in acetogenic bacteria: is carbon monoxide an intermediate? Arch Microbiol 138:224–228

    Article  CAS  Google Scholar 

  • Diekert G, Schrader E, Harder W (1986) Energetics of CO formation and CO oxidation in cell suspensions of Acetobacterium woodii. Arch Microbiol 144:386–392

    Article  CAS  Google Scholar 

  • Dobrindt U, Blaut M (1996) Purification and characterization of a membrane-bound hydrogenase from Sporomusa sphaeroides involved in energy-transducing electron transport. Arch Microbiol 165:141–147

    Article  PubMed  CAS  Google Scholar 

  • Dolfing J (1988) Acetogenesis. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 417–468

    Google Scholar 

  • Doré J, Bryant MP (1990) Metabolism of one-carbon compounds by the ruminal acetogen Syntrophococcus sucromutans. Appl Environ Microbiol 56:984–989

    PubMed  Google Scholar 

  • Doré J, Pochart P, Bernalier A, Goderel I, Morvan B, Rambaud JC (1995) Enumeration of H2-utilizing methanogenic archaea, acetogenic and sulfate-reducing bacteria from human feces. FEMS Microbiol Ecol 17:279–284

    Article  Google Scholar 

  • Dorn M, Andreesen JR, Gottschalk G (1978) Fermentation of fumarate and L-malate by Clostridium formicoaceticum. J Bacteriol 133:26–32

    PubMed  CAS  Google Scholar 

  • Dörner C, Schink B (1991) Fermentation of mandelate to benzoate and acetate by a homoacetogenic bacterium. Arch Microbiol 156:302–306

    Article  Google Scholar 

  • Doukov TI, Iverson TM, Sevavalli J, Ragsdale SW, Drennan CL (2002) Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Science 298:567–572

    Article  PubMed  CAS  Google Scholar 

  • Drake HL (1982) Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum. J Bacteriol 150:702–709

    PubMed  CAS  Google Scholar 

  • Drake HL (1992) Acetogenesis and acetogenic bacteria. In: Lederberg J (ed) Encyclopedia of microbiology, vol 1. Academic, San Diego, pp 1–15

    Google Scholar 

  • Drake HL (1993) CO2, reductant, and the autrophic acetyl-CoA pathway: alternative origins and destinations. In: Murrell C, Kelly DP (eds) Microbial growth on C1 compounds. Intercept Ltd, Andover, pp 493–507

    Google Scholar 

  • Drake HL (1994) Acetogenesis, acetogenic bacteria, and the acetyl-CoA “Wood/Ljungdahl” pathway: past and current perspectives. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 3–60

    Chapter  Google Scholar 

  • Drake HL, Daniel SL (2004) Physiology of the thermophilic acetogen Moorella thermoacetica. Res Microbiol 155(6):422–36

    Article  PubMed  CAS  Google Scholar 

  • Drake HL, Küsel K (2003) How the diverse physiological potentials of acetogens determine their in situ realities. In: Ljungdahl LG, Adams M, Barton L, Ferry JG, Johnson M (eds) Biochemistry and physiology of anaerobic bacteria. Springer, New York, pp 171–190

    Chapter  Google Scholar 

  • Drake HL, Küsel K (2005) Acetogenic clostridia. In: Dürre P (ed) Handbook on Clostridia. CRC Press, Boca Raton, p 920

    Google Scholar 

  • Drake HL, Hu S-I, Wood HG (1980) Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermoaceticum. J Biol Chem 255:7174–7180

    PubMed  CAS  Google Scholar 

  • Drake HL, Hu S-I, Wood HG (1981a) Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate: properties of phosphotransacetylase. J Biol Chem 255:7174–7180

    Google Scholar 

  • Drake HL, Hu SI, Wood HG (1981b) The synthesis of acetate from carbon monoxide plus methyltetrahydrofolate and the involvement of the nickel enzyme CO dehydrogenase. Abstr Ann Meet Am Soc Microbiol Abstr 42:144

    Google Scholar 

  • Drake HL, Daniel SL, Küsel K, Matthies C, Kuhner C, Braus-Stromeyer S (1997) Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities? BioFactors 6:13–24

    Article  PubMed  CAS  Google Scholar 

  • Drake HL, Küsel K, Matthies C (2002) Ecological consequences of the phylogenetic and physiological diversities of acetogens. Ant v Leeuwenhoek 81:203–213

    Article  CAS  Google Scholar 

  • Drent WJ, Gottschal JC (1991) Fermentation of inulin by a new strain of Clostridium thermoautotrophicum isolated from dahlia tubers. FEMS Microbiol Lett 78:285–292

    Article  CAS  Google Scholar 

  • Dumitru R, Palencia H, Schroeder SD, DeMontigny BA, Takacs JM, Rasche ME, Miner JL, Ragsdale SW (2003) Targeting methanopterin biosynthesis to inhibit methanogenesis. Appl Environ Microbiol 69:7236–7241

    Article  PubMed  CAS  Google Scholar 

  • Ebert A, Brune A (1997) Hydrogen concentration profiles at the oxic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ Microbiol 63:4039–4046

    PubMed  CAS  Google Scholar 

  • Eck R, Simon H (1994a) Preparation of both enantiomers of malic and citramalic acid and other hydroxysuccinic acid derivatives by stereospecific hydrations of cis and trans 2-butene-1,4-dioic acids with resting cells of Clostridium formicoaceticum. Tetrahedron 50:13641–13654

    Article  CAS  Google Scholar 

  • Eck R, Simon H (1994b) Preparation of (S)-2-substituted succinates by stereospecific reductions of fumarate and derivatives with resting cells of Clostridium formicoaceticum. Tetrahedron 50:13631–13640

    Article  CAS  Google Scholar 

  • Eden G, Fuchs G (1982) Total synthesis of acetyl coenzyme A involved in autotrophic CO2 fixation in Acetobacterium woodii. Arch Microbiol 133:66–74

    Article  CAS  Google Scholar 

  • Eden G, Fuchs G (1983) Autotrophic CO2 fixation in Acetobacterium woodii II: demonstration of enzymes involved. Arch Microbiol 135:68–73

    Article  CAS  Google Scholar 

  • Egli C, Tschan T, Scholtz R, Cook AM, Leisinger T (1988) Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii. Appl Environ Microbiol 54:2819–2824

    PubMed  CAS  Google Scholar 

  • Eichler B, Schink B (1984) Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch Microbiol 140:147–152

    Article  CAS  Google Scholar 

  • El Ghazzawi E (1967) Neuisolierung von Clostridium formicoaceticum Wieringa und stoffwechselphysiologische Untersuchungen. Arch Mikrobiol 57:1–19

    Article  CAS  Google Scholar 

  • Emde R, Schink B (1987) Fermentation of triacetin and glycerol by Acetobacterium sp.: no energy is conserved by acetate excretion. Arch Microbiol 149:142–148

    Article  CAS  Google Scholar 

  • Ezaki T, Li N, Hashimoto Y, Miura H, Yamamoto H (1994) 16S ribosomal DNA sequences of anaerobic cocci and proposal of Ruminococcus hansenii comb. nov. and Ruminococcus productus comb. nov. Int J Syst Bacteriol 44:130–136

    Article  PubMed  CAS  Google Scholar 

  • Gaston LW, Stadtman ER (1963) Fermentation of ethylene glycol by Clostridium glycolicum sp. n. J Bacteriol 85:356–362

    PubMed  CAS  Google Scholar 

  • Geerligs G, Aldrich HC, Harder W, Diekert G (1987) Isolation and characterization of a carbon monoxide utilizing strain of the acetogen Peptostreptococcus productus. Arch Microbiol 148:305–313

    Article  CAS  Google Scholar 

  • Geerligs G, Schönheit P, Diekert G (1989) Sodium dependent acetate formation from CO2 in Peptostreptococcus productus (strain Marburg). FEMS Microbiol Lett 57:253–258

    CAS  Google Scholar 

  • Gilbert B, Frenzel P (1995) Methanotrophic bacteria in the rhizosphere of rice microcosms and their effect on porewater methane concentration and methane emission. Biol Fertil Soils 20:93–100

    Article  CAS  Google Scholar 

  • Gößner A, Drake HL (1997) Characterization of a new thermophilic acetogen (PT-1) isolated from aggregated Kansas prairie soil. Abstr Ann Meet Am Soc Microbiol Abstr N-122:401

    Google Scholar 

  • Gößner A, Daniel SL, Drake HL (1994) Acetogenesis coupled to the oxidation of aromatic aldehyde groups. Arch Microbiol 161:126–131

    Article  Google Scholar 

  • Gößner AS, Kuesel K, Devereux R, Drake HL (1998) Occurrence of thermophilic acetogens in Egyptian soils. Abstr Ann Meet Am Soc Microbiol Abstr N-1:366

    Google Scholar 

  • Gößner A, Devereux R, Ohnemüller N, Acker G, Stackebrandt E, Drake HL (1999) Thermicanus aegyptius gen. nov., sp. nov., isolated from oxic soil, a facultative microaerophile that grows commensally with the thermophilic acetogen Moorella thermoacetica. Appl Environ Microbiol 65:5124–5133

    PubMed  Google Scholar 

  • Gottschalk G, Braun M (1981) Revival of the name Clostridium aceticum. Int J Syst Bacteriol 31:476

    Article  Google Scholar 

  • Graber JR, Breznak J (2004) Physiology and nutrition of Treponema primitia, an H2-CO2-acetogenic spirochete from termite hindguts. Appl Environ Microbiol 70:1307–1314

    Article  PubMed  CAS  Google Scholar 

  • Graber JR, Leadbetter JR, Breznak J (2004) Description of Treponema azotonutricium sp. nov., and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl Environ Microbiol 70:1315–1320

    Article  PubMed  CAS  Google Scholar 

  • Grahame DA (2003) Acetate C-C bond formation and decomposition in the anaerobic world: the structure of a central enzyme and its key active-site metal cluster. Trends Biochem Sci 28:221–224

    Article  PubMed  CAS  Google Scholar 

  • Greening RC, Leedle JAZ (1989) Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch Microbiol 151:399–406

    Article  PubMed  CAS  Google Scholar 

  • Grethlein AJ, Jain MK (1992) Bioprocessing of coal-derived synthesis gases by anaerobic bacteria. TIBTECH 10:418–423

    Article  CAS  Google Scholar 

  • Grethlein AJ, Worden RM, Jain MK, Datta R (1991) Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum. J Ferment Bioengin 72:58–60

    Article  CAS  Google Scholar 

  • Großkopf R, Stubner S, Liesack W (1998) Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 64:4983–4989

    Google Scholar 

  • Gunsalus RP, Romesser JA, Wolfe RS (1978) Preparation of coenzyme M analogs and their activity in the methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. Biochemistry 17:2374–2377

    Article  PubMed  CAS  Google Scholar 

  • Günther H, Walter K, Köhler P, Simon H (2000) On a new artificial mediator accepting NADP(H) oxidoreductase from Clostridium thermoaceticum. J Biotechnol 83:253–267

    Article  PubMed  Google Scholar 

  • Häggblom MM, Berman MH, Frazer AC, Young LY (1993) Anaerobic O-demethylation of chlorinated guaiacols by Acetobacterium woodii and Eubacterium limosum. Biodegradation 4:107–114

    Article  Google Scholar 

  • Hall IC, O’Toole E (1935) Intestinal florain newborn infants with a description of a new patogenic anaerobe, Bacillus difficilis. Am J Dis Child 49:390–402

    Google Scholar 

  • Hansen B, Bokranz M, Schönheit P, Kröger A (1988) ATP formation coupled to caffeate reduction by H2 in Acetobacterium woodii Nzva16. Arch Microbiol 150:447–451

    Article  CAS  Google Scholar 

  • Harriott OT, Frazer AC (1997) Enumeration of acetogens by a colorimetric most-probable-number assay. Appl Environ Microbiol 63:296–300

    PubMed  CAS  Google Scholar 

  • Hashsham SA, Freedman DL (1999) Enhanced biotransformation of carbon tetrachloride by Acetobacterium woodii upon addition of hydroxocobalamin and fructose. Appl Environ Microbiol 65:4537–4542

    PubMed  CAS  Google Scholar 

  • Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermoacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50:1601–1609

    Article  PubMed  CAS  Google Scholar 

  • Haveman SA, Pedersen K (2002) Distribution of culturable microorganisms in Fennoscandian Shield groundwater. FEMS Microbiol Ecol 39:129–137

    Article  PubMed  CAS  Google Scholar 

  • Heijthuijsen JHFG, Hansen TA (1986) Interspecies hydrogen transfer in co-cultures of methanol-utilizing acidogens and sulfate-reducing or methanogenic bacteria. FEMS Microbiol Ecol 38:57–64

    Article  CAS  Google Scholar 

  • Heijthuijsen JHFG, Hansen TA (1989) Selection of sulphur sources for the growth of Butyribacterium methylotrophicum and Acetobacterium woodii. Appl Microbiol Biotechnol 32:186–192

    Article  CAS  Google Scholar 

  • Heinonen JK, Drake HL (1988) Comparative assessment of inorganic pyrophosphate and pyrophosphatase levels of Escherichia coli, Clostridium pasteurianum, and Clostridium thermoaceticum. FEMS Microbiol Lett 52:205–208

    Article  CAS  Google Scholar 

  • Heise R, Müller V, Gottschalk G (1989) Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii. J Bacteriol 171:5473–5478

    PubMed  CAS  Google Scholar 

  • Heise R, Reidlinger J, Müller V, Gottschalk G (1991) A sodium-stimulated ATP synthase in the acetogenic bacterium Acetobacterium woodii. FEBS Lett 295:119–122

    Article  PubMed  CAS  Google Scholar 

  • Heise R, Müller V, Gottschalk G (1992) Presence of a sodium-translocating ATPase in membrane vesicles of the homoacetogenic bacterium Acetobacterium woodii. Eur J Biochem 206:553–557

    Article  PubMed  CAS  Google Scholar 

  • Heise R, Müller V, Gottschalk G (1993) Acetogenesis and ATP synthesis in Acetobacterium woodii are coupled via a transmembrane primary sodium ion gradient. FEMS Microbiol Lett 112:261–268

    Article  CAS  Google Scholar 

  • Hermann M, Popoff M-R, Sebald M (1987) Sporomusa paucivorans sp. nov., a methylotrophic bacterium that forms acetic acid from hydrogen and carbon dioxide. Int J Sys Bacteriol 37:93–101

    Article  CAS  Google Scholar 

  • Hines ME, Evans RS, Sharak Genthner BR, Willis SG, Friedman S, Rooney-Varga JN, Devereux R (1999) Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora. Appl Environ Microbiol 65:2209–2216

    PubMed  CAS  Google Scholar 

  • Hippe H, Andreesen JR, Gottschalk G (1992) The genus Clostridium–nonmedical. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 1800–1866

    Google Scholar 

  • Hoehler TM, Albert DB, Alperin MJ, Martens CS (1999) Acetogenesis from CO2 in an anoxic marine sediment. Limnol Oceanogr 44:662–667

    Article  CAS  Google Scholar 

  • Holdeman LV, Cato EP, Moore WEC (1977) Anaerobe laboratory manual, vol VI, 4th edn. Anaerobe Laboratory, Virginia Polytechnic Institute and State University, Blacksburg, pp 1–156

    Google Scholar 

  • Holdeman-Moore LV, Johnson JL, Moore WEC (1986) Genus Peptostreptococcus Kluyver and Van Niel 1936. In: Sneath PHA (ed) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1083–1092

    Google Scholar 

  • Holliger C, Schraa G (1994) Physiological meaning and potential for application of reductive dechlorination by anaerobic bacteria. FEMS Microbiol Rev 15:297–305

    Article  PubMed  CAS  Google Scholar 

  • Hsu T, Daniel SL, Lux MF, Drake HL (1990a) Biotransformations of carboxylated aromatic compounds by the acetogen Clostridium thermoaceticum: generation of growth-supportive CO2 equivalents under CO2-limited conditions. J Bacteriol 172:212–217

    PubMed  CAS  Google Scholar 

  • Hsu T, Lux MF, Drake HL (1990b) Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum. J Bacteriol 172:5901–5907

    PubMed  CAS  Google Scholar 

  • Hu S-I, Drake HL, Wood HG (1982) Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes from Clostridium thermoaceticum. J Bacteriol 149:440–448

    PubMed  CAS  Google Scholar 

  • Hu S-I, Pezacka E, Wood HG (1984) Acetate synthesis from carbon monoxide by Clostridium thermoaceticum: purification of the corrinoid protein. J Biol Chem 259:8892–8897

    PubMed  CAS  Google Scholar 

  • Huang S, Lindahl PA, Wang C, Bennett GN, Rudolph FB, Hughes JB (2000) 2,4,6-trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum. Appl Environ Microbiol 66:1474–1478

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz J, Ljungdahl LG (1989) Electron transport and electrochemical proton gradient in membrane vesicles of Clostridium thermoautotrophicum. J Bacteriol 171:2873–2875

    PubMed  CAS  Google Scholar 

  • Hugenholtz J, Ljungdahl LG (1990) Amino acid transport in membrane vesicles of Clostridium thermoautotrophicum. FEMS Microbiol Lett 69:117–122

    Article  CAS  Google Scholar 

  • Hugenholtz J, Ivey DM, Ljungdahl LG (1987) Carbon monoxide-driven electron transport in Clostridium thermoautotrophicum membranes. J Bacteriol 169:5845–5847

    PubMed  CAS  Google Scholar 

  • Hungate RE (1943) Quantitative analyses on the cellulose fermentation by termite protozoa. Ann Entomol Soc Am 36:730–739

    CAS  Google Scholar 

  • Hungate RE (1966) The Rumen and its microbes. Academic Press, New York

    Google Scholar 

  • Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3B. Academic, New York, pp 117–132

    Google Scholar 

  • Hungate RE (1976) The rumen fermentation. In: Schlegel HG, Gottschalk G, Pfennig N (eds) Microbial production and utilization of gases. Goltze, Göttingen, pp 119–124

    Google Scholar 

  • Ibba M, Fynn GH (1991) Two stage methanogenesis of glucose by Acetogenium kivui and acetoclastic methanogenic sp. Biotechnol Lett 13:671–676

    Article  CAS  Google Scholar 

  • Imkamp F, Müller V (2002) Chemiosmotic energy conservation with Na+ as the coupling ion during hydrogen-dependent caffeate reduction by Acetobacterium woodii. J Bacteriol 184:1947–1951

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Kageyama S, Miki K, Morinaga T, Kamagata Y, Nakamura K, Mikami E (1992) Vitamin B12 production by Acetobacterium sp. and its tetrachloromethane-resistant mutants. J Ferment Bioengin 73:76–78

    Article  CAS  Google Scholar 

  • Ivey DM, Ljungdahl LG (1986) Purification and characterization of the F1-ATPase from Clostridium thermoaceticum. J Bacteriol 165:252–257

    PubMed  CAS  Google Scholar 

  • Jansen M, Hansen TA (2001) Non-growth-associated demethylation of dimethylsulfoniopropionate by (homo)acetogenic bacteria. Appl Environ Microbiol 67:300–306

    Article  PubMed  CAS  Google Scholar 

  • Johnson MS, Zhulin IB, Gapuzan ME, Taylor BL (1997) Oxygen-dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough. J Bacteriol 179:5598–5601

    PubMed  CAS  Google Scholar 

  • Kamen MD (1963) The early history of carbon-14. J Chem Ed 40:234–242

    Article  CAS  Google Scholar 

  • Kamlage B, Blaut M (1993) Isolation of a cytochrome-deficient mutant strain of Sporomusa sphaeroides not capable of oxidizing methyl groups. J Bacteriol 175:3043–3050

    PubMed  CAS  Google Scholar 

  • Kamlage B, Boelter A, Blaut M (1993) Spectroscopic and potentiometric characterization of cytochromes in two Sporomusa species and their expression during growth on selected substrates. Arch Microbiol 159:189–196

    Article  CAS  Google Scholar 

  • Kamlage B, Gruhl B, Blaut M (1997) Isolation and characterization of two new homoacetogenic hydrogen-utilizing bacteria from the human intestinal tract that are closely related to Clostridium coccoides. Appl Environ Microbiol 63:1732–1738

    PubMed  CAS  Google Scholar 

  • Kane MD, Breznak JA (1991) Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch Microbiol 156:91–98

    Article  PubMed  CAS  Google Scholar 

  • Kane MD, Brauman A, Breznak JA (1991) Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus. Arch Microbiol 156:99–104

    Article  CAS  Google Scholar 

  • Kaneuchi C, Benno Y, Mitsuoka T (1976) Clostridium coccoides, a new species from the feces of mice. Int J Syst Bacteriol 26:482–486

    Article  Google Scholar 

  • Kappler O, Janssen PH, Kreft J-U, Schink B (1997) Effects of alternative methyl group acceptors on the growth energetics of the O-demethylating anaerobe Holophaga foetida. Microbiology 143:1105–1114

    Article  CAS  Google Scholar 

  • Karita S, Nakayama K, Goto M, Sakka K, Kim WJ, Ogawa S (2003) A novel cellulolytic, anaerobic, and thermophilic bacterium, Moorella sp. strain F21. Biosci Biotechnol Biochem 67:183–185

    Article  PubMed  CAS  Google Scholar 

  • Karlsson JL, Volcani BE, Barker HA (1948) The nutritional requirements of Clostridium aceticum. J Bacteriol 56:781–782

    CAS  Google Scholar 

  • Karnholz A, Küsel K, Gößner A, Schramm A, Drake HL (2002) Tolerance and metabolic response of acetogenic bacteria toward oxygen. Appl Environ Microbiol 68:1005–1009

    Article  PubMed  CAS  Google Scholar 

  • Karrasch M, Bott M, Thauer RK (1989) Carbonic anhydrase activity in acetate grown Methanosarcina barkeri. Arch Microbiol 151:137–142

    Article  CAS  Google Scholar 

  • Kaufmann F, Wohlfarth G, Diekert G (1997) Isolation of O-demethylase, an ether-cleaving enzyme system of the homoacetogenic strain MC. Arch Microbiol 168:136–142

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann F, Wohlfarth G, Diekert G (1998) O-demethylase from Acetobacterium dehalogenans, substrate specificity and function of the participating proteins. Eur J Biochem 253:706–711

    Article  PubMed  CAS  Google Scholar 

  • Kellum R, Drake HL (1984) Effects of cultivation gas phase on hydrogenase of the acetogen Clostridium thermoaceticum. J Bacteriol 160:466–469

    PubMed  CAS  Google Scholar 

  • Kellum R, Drake HL (1986) Effects of carbon monoxide on one-carbon enzymes and energetics of Clostridium thermoaceticum. FEMS Microbiol Lett 34:41–45

    Article  CAS  Google Scholar 

  • Kerby R, Zeikus JG (1983) Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source. Curr Microbiol 8:27–30

    Article  CAS  Google Scholar 

  • Kerby R, Zeikus JG (1987) Anaerobic catabolism of formate to acetate and CO2 by Butyribacterium methylotrophicum. J Bacteriol 169:2063–2068

    PubMed  CAS  Google Scholar 

  • Kim JS, Kim H, Oh K, Kim YS (2002) Acetic acid production using xylose and corn steep liquor by Clostridium thermoaceticum strain. J Ind Engin Chem 8:519–523

    CAS  Google Scholar 

  • Kisker C, Schindelin H, Alber BE, Ferry JG, Rees DC (1996) A left-handed β-helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila. EMBO J 15:2323–2330

    PubMed  CAS  Google Scholar 

  • Klemps R, Cypionka H, Widdel F, Pfennig N (1985) Growth with hydrogen, and further physiological characteristics of Desulfotomaculum sp. Arch Microbiol 143:203–208

    Article  CAS  Google Scholar 

  • Klemps R, Schoberth SM, Sahm H (1987) Production of acetic acid by Acetogenium kivui. Appl Microbiol Biotechnol 27:229–234

    Article  CAS  Google Scholar 

  • Koesnandar S, Nishio N, Yamamoto A, Nagai S (1991) Enzymatic reduction of cystine into cysteine by cell-free extract of Clostridium thermoaceticum. J Ferment Bioengin 72:11–14

    Article  CAS  Google Scholar 

  • Kotelnikova S (2002) Microbial production and oxidation of methane in deep subsurface. Earth Sci Rev 58:367–395

    Article  CAS  Google Scholar 

  • Kotelnikova S, Pedersen K (1997) Evidence for methanogenic Archaea and homoacetogenic bacteria in deep granitic rock aquifers. FEMS Microbiol Rev 20:339–349

    Article  CAS  Google Scholar 

  • Kotelnikova S, Pedersen K (1998) Distribution and activity of methanogens in deep granitic aquifers at Äspö Hard Rock Laboratory, Sweden. FEMS Microbiol Ecol 26:21–134

    Google Scholar 

  • Kotsyurbenko OR, Simankova MV, Bolotina NP, Zhilina TN, Nozhevnikova AN (1992) Psychrotrophic homoacetogenic bacteria from several environments. In: Abstract of the 7th International Symposium on C1 Compounds, C136

    Google Scholar 

  • Kotsyurbenko OR, Simankova MV, Nozhevnikova AN, Zhilina TN, Bolotina NP, Lysenko AM, Osipov GA (1995) New species of psychrophilic acetogens: Acetobacterium bakii sp. nov., A. paludosum sp. nov., A. fimetarium sp. nov. Arch Microbiol 163:29–34

    Article  CAS  Google Scholar 

  • Kotsyurbenko OR, Nozhevnikova AN, Soloviova TI, Zavarin GA (1996) Methanogenesis at low temperatures by microflora of tundra wetland soil. Ant v Leeuwenhoek 69:75–86

    Article  CAS  Google Scholar 

  • Kreft J-U, Schink B (1993) Demethylation and degradation of phenylmethylethers by the sulfide-methylating homoacetogenic bacterium strain TMBS 4. Arch Microbiol 159:308–315

    Article  CAS  Google Scholar 

  • Kreft J-U, Schink B (1997) Specificity of O-demethylation in extracts of the homoacetogenic Holophaga foetida and demethylation kinetics measured by a coupled photometric assay. Arch Microbiol 167:363–368

    Article  Google Scholar 

  • Krumböck M, Conrad R (1991) Metabolism of position-labelled glucose in anoxic methanogenic paddy soil and lake sediment. FEMS Microbiol Ecol 85:247–256

    Article  Google Scholar 

  • Krumholz LR (2000) Microbial communities in the deep subsurface. Hydrogeol J 8:4–10

    Google Scholar 

  • Krumholz LR, Bryant MP (1985) Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate. Int J Sys Bacteriol 35:454–456

    Article  CAS  Google Scholar 

  • Krumholz LR, Bryant MP (1986) Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxymonobenzenoids or Methanobrevibacter as electron acceptor systems. Arch Microbiol 143:313–318

    Article  CAS  Google Scholar 

  • Krumholz LR, McKinley JP, Ulrich GA, Suflita JM (1997) Confined subsurface microbial communities in Cretaceous rock. Nature 386:64–66

    Article  CAS  Google Scholar 

  • Krumholz LR, Harris SH, Tay ST, Suflita SM (1999) Characterization of two subsurface H2-utilizing bacteria, Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov., and their ecological roles. Appl Environ Microbiol 65:2300–2306

    PubMed  CAS  Google Scholar 

  • Kuever J, Kulmer J, Jannsen S, Fischer U, Blotevogel K-H (1993) Isolation and characterization of a new spore-forming sulfate-reducing bacterium growing by complete oxidation of catechol. Arch Microbiol 159:282–288

    Article  PubMed  CAS  Google Scholar 

  • Kuever J, Rainey FA, Hippe H (1999) Description of Desulfotomaculum sp. Groll as Desulfotomaculum gibsoniae sp nov Int J Syst Bacteriol 49:1801–1808

    Article  CAS  Google Scholar 

  • Kuhner CH, Frank C, Grießhammer A, Schmittroth M, Acker G, Gößner A, Drake HL (1997) Sporomusa silvacetica sp. nov., an actogenic bacterium isolated from aggregated forest soil. Int J Syst Bacteriol 47:352–358

    Article  PubMed  CAS  Google Scholar 

  • Kuhner CH, Matthies C, Acker G, Schmittroth M, Gößner AS, Drake HL (2000) Clostridium akagii sp. nov. and Clostridium acidisoli sp. nov.: acid-tolerant, N2-fixing clostridia isolated from acidic forest soil and litter. Int J Syst Evol Microbiol 50:873–881

    Article  PubMed  CAS  Google Scholar 

  • Kurtz DM Jr (2003) Oxygen and anaerobes. In: Ljungdahl LG, Adams M, Barton L, Ferry JG, Johnson M (eds) Biochemistry and physiology of anaerobic bacteria. Springer, New York, pp 128–142

    Chapter  Google Scholar 

  • Küsel K, Drake HL (1994) Acetate synthesis in soil from a Bavarian beech forest. Appl Environ Microbiol 60:1370–1373

    PubMed  Google Scholar 

  • Küsel K, Drake HL (1995) Effects of environmental parameters on the formation and turnover of acetate by forest soils. Appl Environ Microbiol 61:3667–3675

    PubMed  Google Scholar 

  • Küsel K, Drake HL (1996) Anaerobic capacities of leaf litter. Appl Environ Microbiol 62:4216–4219

    PubMed  Google Scholar 

  • Küsel K, Drake HL (1999) Microbial turnover of low molecular weight organic acids during leaf litter decomposition. Soil Biol Biochem 31:107–118

    Article  Google Scholar 

  • Küsel K, Pinkart HC, Drake HL, Devereux R (1999a) Acetogenic and sulfate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the sea grass Halodule wrightii. Appl Environ Microbiol 65:5117–5123

    PubMed  Google Scholar 

  • Küsel K, Wagner C, Drake HL (1999b) Enumeration and metabolic product profiles of the anaerobic microflora in the mineral soil and litter of a beech forest. FEMS Microbiol Ecol 29:91–103

    Article  Google Scholar 

  • Küsel K, Dorsch T, Acker G, Stackebrandt E, Drake HL (2000) Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments. Int J Syst Evol Microbiol 50:537–546

    Article  PubMed  Google Scholar 

  • Küsel K, Karnholz A, Trinkwalter T, Devereux R, Acker G, Drake HL (2001) Physiological ecology of Clostridium glycolicum RD-1, an aerotolerant acetogen isolated from sea grass roots. Appl Environ Microbiol 67:4734–4741

    Article  PubMed  Google Scholar 

  • Küsel K, Wagner C, Trinkwalter T, Gößner AS, Bäumler R, Drake HL (2002) Microbial reduction of Fe(III) and turnover of acetate in Hawaiian soils. FEMS Microbiol Ecol 40:73–81

    Article  PubMed  Google Scholar 

  • Küsel K, Gößner A, Lovell CR, Drake HL (2003) Ecophysiology of an aerotolerant acetogen, Sporomusa ST-1, isolated from Juncus roots. Abstr Ann Meet Soc Microbiol Abstr Q-375:582

    Google Scholar 

  • Lajoie SF, Bank S, Miller TL, Wolin MJ (1988) Acetate production from hydrogen and [13C]carbon dioxide by the microflora of human feces. Appl Environ Microbiol 54:2723–2727

    PubMed  CAS  Google Scholar 

  • Laopaiboon R, Tanner RS (1999) Effect of nitrate on acetogenesis by Clostridium ljungdahlii. Abstr Ann Meet Am Soc Microbiol K-18:404

    Google Scholar 

  • Le Ruyet P, Dubourguier HC, Albagnac G (1984) Homoacetogenic fermentation of cellulose by a coculture of Clostridium thermocellum and Acetogenium kivui. Appl Environ Microbiol 48:893–894

    PubMed  Google Scholar 

  • Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631

    PubMed  CAS  Google Scholar 

  • Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by sprirochetes from termite guts. Science 283:686–689

    Article  PubMed  CAS  Google Scholar 

  • Leaphart A, Lovell CR (2001) Recovery and analysis of formyltetrahydrofolate synthetase gene sequences from natural populations of acetogenic bacteria. Appl Environ Microbiol 67:1392–1395

    Article  PubMed  CAS  Google Scholar 

  • Leaphart AB, Spencer HT, Lovell CR (2002) Site-directed mutagenesis of a potential catalytic and formyl phosphate binding site and substrate inhibition of N-10-formyltetrahydrofolate synthetase. Arch Biochem Biophys 408:137–143

    Article  PubMed  CAS  Google Scholar 

  • Leaphart AB, Friez MJ, Lovell CR (2003) Formyltetrahydrofolate synthetase sequences from salt marsh plant roots reveal a diversity of acetogenic bacteria and other bacterial functional groups. Appl Environ Microbiol 69:693–696

    Article  PubMed  CAS  Google Scholar 

  • Lebloas P, Loubiere P, Lindley ND (1994) Use of unicarbon substrate mixtures to modify carbon flux improves vitamin B12 production with the acetogenic methylotroph Eubacterium limosum. Biotechnol Lett 16:129–132

    Article  CAS  Google Scholar 

  • Leclerc M, Bernalier A, Donadille G, Lelait M (1997a) H2/CO2 metabolism in acetogenic bacteria isolted from the human colon. Anaerobe 3:307–315

    Article  PubMed  CAS  Google Scholar 

  • Leclerc M, Bernalier A, Lelait M, Grivet J-P (1997b) 13C-NMR study of glucose and pyruvate catabolism in four acetogenic species isolated from the human colon. FEMS Microbiol Lett 146:199–204

    Article  PubMed  CAS  Google Scholar 

  • Lee MJ, Zinder SH (1988) Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO22. Appl Environ Microbiol 54:124–129

    PubMed  CAS  Google Scholar 

  • Leedle JAZ, Greening RC (1988) Postprandial changes in methanogenic and acidogenic bacteria in the rumens of steers fed high-or low-forage diets once daily. Appl Environ Microbiol 54:502–506

    PubMed  CAS  Google Scholar 

  • Leedle JAZ, Lotrario J, Hovermale J, Craig AM (1995) Forestomach anaerobic microflora of the bowhead whale (Balaena mysticetus). Abstr Ann Meet Am Soc Microbiol Abstr N-8:334

    Google Scholar 

  • Leigh JA, Mayer F, Wolfe RS (1981) Acetogenium kivui, a new thermophilic hydrogen-oxidizing, acetogenic bacterium. Arch Microbiol 129:275–280

    Article  CAS  Google Scholar 

  • Lentz K, Wood HG (1955) Synthesis of acetate from formate and carbon dioxide by Clostridium thermoaceticum. J Biol Chem 215:645–654

    PubMed  CAS  Google Scholar 

  • Liesack W, Bak F, Kreft J-U, Stackebrandt E (1994) Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch Microbiol 162:85–90

    PubMed  CAS  Google Scholar 

  • Lilburn TG, Schmidt TM, Breznak JA (1999) Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1:331–345

    Article  PubMed  CAS  Google Scholar 

  • Lindahl PA (2002) The Ni-containing carbon monoxide dehydrogenase family: light at the end of the tunnel? Biochemistry (Moscow) 41:2097–2105

    Article  CAS  Google Scholar 

  • Lindahl PA, Chang B (2001) The evolution of acetyl-CoA synthase. Orig Life Evol Biosph 31:403–434

    Article  PubMed  CAS  Google Scholar 

  • Lindskog S, Henderson LE, Kannan KK, Liljas A, Strandberg POB (1971) Carbonic anhydrase. The enzymes 5:587–665

    Article  CAS  Google Scholar 

  • Liu S, Suflita JM (1993) H2/CO2-dependent anaerobic O-demethylation activity in subsurface sediments and by an isolated bacterium. Appl Environ Microbiol 59:1325–1331

    PubMed  CAS  Google Scholar 

  • Liu C-L, Hart N, Peck HD Jr (1982) Inorganic pyrophosphate: energy source for sulfate-reducing bacteria of the genus Desulfotomaculum. Science 217:363–364

    Article  PubMed  CAS  Google Scholar 

  • Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann Rev Microbiol 40:415–450

    Article  CAS  Google Scholar 

  • Ljungdahl LG (1994) The acetyl-CoA pathway and the chemiosmotic generation of ATP during acetogenesis. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 63–87

    Chapter  Google Scholar 

  • Ljungdahl LG, Eriksson K-E (1985) Ecology of microbial cellulose degradation. Adv Microb Ecol 8:237–299

    Article  CAS  Google Scholar 

  • Ljungdahl L, Wood HG (1965) Incorporation of C14 from carbon dioxide into sugar phosphates, carboxylic acids, and amino acids by Clostridium thermoaceticum. J Bacteriol 89:1055–1064

    PubMed  CAS  Google Scholar 

  • Ljungdahl LG, Wood HG (1969) Total synthesis of acetate from CO2 by heterotrophic bacteria. Ann Rev Microbiol 23:515–538

    Article  CAS  Google Scholar 

  • Ljungdahl L, Irion E, Wood HG (1966) Role of corrinoids in the total synthesis of acetate from CO2 by Clostridium thermoaceticum. Fed Proceed 25:1642–1648

    CAS  Google Scholar 

  • Ljungdahl LG, Carreira LH, Garrison RJ, Rabek NE, Wiegel J (1985) Comparison of three thermophilic acetogenic bacteria for production of calcium magnesium acetate. Biotechnol Bioengin Symp 15:207–223

    Google Scholar 

  • Ljungdahl LG, Hugenholtz J, Wiegel J (1989) Acetogenic and acid-producing clostridia. In: Minton NP, Clarke DK (eds) Clostridia. Plenum Press, New York, pp 145–191

    Google Scholar 

  • Loke HK, Lindahl PA (2003) Identification and preliminary characterization of AcsF, a putative Ni-insertase used in the biosynthesis of acetyl-CoA synthase from Clostridium thermoaceticum. J Inorg Biochem 93:33–40

    Article  PubMed  CAS  Google Scholar 

  • Lorowitz WH, Bryant MP (1984) Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl Environ Microbiol 47:961–964

    PubMed  CAS  Google Scholar 

  • Loubiere P, Gros E, Paquet V, Lindley ND (1992) Kinetics and physiological implications of the growth behaviour of Eubacterium limosum on glucose/methanol mixtures. J Gen Microbiol 138:979–985

    Article  CAS  Google Scholar 

  • Lovell CR (1994) Development of DNA probes for the detection and identification of acetogenic bacteria. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 236–253

    Chapter  Google Scholar 

  • Lovell CR, Hui Y (1991) Design and testing of a functional group-specific DNA probe for the study of natural populations of acetogenic bacteria. Appl Environ Microbiol 57:2602–2609

    PubMed  CAS  Google Scholar 

  • Lovell CR, Przybyla A, Ljungdahl LG (1990) Primary structure of the thermostable formyltetrahydrofolate synthetase from Clostridium thermoaceticum. Biochemistry 29:5687–5694

    Article  PubMed  CAS  Google Scholar 

  • Lovell CR, Piceno YM, Quattro JM, Bagwell CE (2000) Molecular analysis of diazotroph diversity in the rhizosphere of the smooth cordgrass Spartina alterniflora. Appl Environ Microbiol 66:3814–3822

    Article  PubMed  CAS  Google Scholar 

  • Lowe A, Jain MK, Zeikus JG (1993) Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to envionmental stresses in temperature, pH, salinity, or substrates. Microbiol Rev 57:451–509

    PubMed  CAS  Google Scholar 

  • Ludwig W, Bauer SH, Bauer M, Held I, Kirchhof G, Schulze R, Huber I, Spring S, Hartmann A, Schleifer K-H (1997) Detection of in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol Lett 153:181–190

    Article  PubMed  CAS  Google Scholar 

  • Lumppio HL, Shenvi NV, Summers AO, Voordrouw G, Kurtz DM Jr (2001) Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system. J Bacteriol 183:101–108

    Article  PubMed  CAS  Google Scholar 

  • Lundie LL Jr, Drake HL (1984) Development of a minimally defined medium for the acetogen Clostridium thermoaceticum. J Bacteriol 159:700–703

    PubMed  CAS  Google Scholar 

  • Lupas A, Engelhardt H, Peters J, Santarius U, Volker S, Baumeister W (1994) Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J Bacteriol 176:1224–1233

    PubMed  CAS  Google Scholar 

  • Lux MF, Drake HL (1992) Re-examination of the metabolic potentials of the acetogens Clostridium aceticum and Clostridium formicoaceticum: Chemolithoautotrophic and aromatic-dependent growth. FEMS Microbiol Lett 95:49–56

    Article  CAS  Google Scholar 

  • Lux MF, Keith E, Hsu T, Drake HL (1990) Biotransformation of aromatic aldehydes by acetogenic bacteria. FEMS Microbiol Lett 67:73–78

    Article  CAS  Google Scholar 

  • Lynd LH, Zeikus JG (1983) Metabolism of H2-CO2, methanol, and glucose by Butyribacterium methylotrophicum. J Bacteriol 153:1415–1423

    PubMed  CAS  Google Scholar 

  • Lynd L, Kerby R, Zeikus JG (1982) Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum. J Bacteriol 149:255–263

    PubMed  CAS  Google Scholar 

  • Mackie RI, Bryant MP (1994) Acetogenesis and the rumen: syntrophic relationships. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 331–364

    Chapter  Google Scholar 

  • Madsen T, Licht D (1992) Isolation and characterization of an anaerobic chlorophenol-transforming bacterium. Appl Environ Microbiol 58:2874–2878

    PubMed  CAS  Google Scholar 

  • Marschall C, Frenzel P, Cypionka H (1993) Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria. Arch Microbiol 159:168–173

    Article  CAS  Google Scholar 

  • Martin DR, Lundie LL, Kellum R, Drake HL (1983) Carbon monoxide-dependent evolution of hydrogen by the homoacetate-fermenting bacterium Clostridium thermoaceticum. Curr Microbiol 8:337–340

    Article  CAS  Google Scholar 

  • Martin DR, Misra A, Drake HL (1985) Dissimilation of carbon monoxide to acetic acid by glucose-limited cultures of Clostridium thermoaceticum. Appl Environ Microbiol 49:1412–1417

    PubMed  CAS  Google Scholar 

  • Matthies C, Freiberger A, Drake HL (1993) Fumarate dissimilation and differential reductant flow by Clostridium formicoaceticum and Clostridium aceticum. Arch Microbiol 160:273–278

    Article  CAS  Google Scholar 

  • Matthies C, Kuhner CH, Acker G, Drake HL (2001) Clostridium uliginosum sp. nov., a novel acid-tolerant, anaerobic bacterium with connecting filaments. Int J Syst Evol Microbiol 51:1119–1125

    Article  PubMed  CAS  Google Scholar 

  • Mayer F, Elliott JI, Sherod D, Ljungdahl LG (1982) Formyltetrahydrofolate synthetase from Clostridium thermoaceticum. Eur J Biochem 124:397–404

    Article  PubMed  CAS  Google Scholar 

  • Maynard EL, Lindahl PA (1999) Evidence of a molecular tunnel connecting the active sites for CO2 reduction and acetyl-CoA synthesis in acetyl-CoA synthase from Clostridium thermoaceticum. J Am Chem Soc 121:9221–9222

    Article  CAS  Google Scholar 

  • Maynard EL, Lindahl PA (2001) Catalytic coupling of the active sites in acetyl-CoA synthase, a bifunctional CO-channeling enzyme. Biochemistry 40:13262–13267

    Article  PubMed  CAS  Google Scholar 

  • McInerney MJ, Bryant MP (1981) Basic principles of bioconversions in anaerobic digestion and methanogenesis. In: Sofer SS, Zaborsky OR (eds) Biomass conversion processes for energy and fuels. Plenum Press, New York, pp 277–296

    Chapter  Google Scholar 

  • Mechichi T, Labat M, Woo THS, Thomas P, Garcia JL, Patel BKC (1998) Eubacterium aggregans sp. nov., a new homoacetogenic bacterium from olive mill wastewater treatment digestor. Anaerobe 4:283–291

    Article  PubMed  CAS  Google Scholar 

  • Mechichi T, Labat M, Patel BKC, Woo THS, Thomas P, Garcia JL (1999) Clostridium methoxybenzovorans sp. nov., a new aromatic O-demethylating homoacetogen from an olive mill wastewater treatment digester. Int J Syst Bacteriol 49:1201–1209

    Article  PubMed  CAS  Google Scholar 

  • Menzel U, Gottschalk G (1985) The internal pH of Acetobacterium wieringae and Acetobacter aceti during growth and production of acetic acid. Arch Microbiol 143:47–51

    Article  CAS  Google Scholar 

  • Meßmer M, Wohlfarth G, Diekert G (1993) Methyl chloride metabolism of the strictly anaerobic, methyl chloride-utilizing homoacetogen strain MC. Arch Microbiol 160:383–387

    Article  Google Scholar 

  • Meßmer M, Reinhardt S, Wohlfarth G, Diekert G (1996) Studies on methyl chloride dehalogenase and O-demethylase in cell extracts of the homoacetogen strain MC based on a newly developed coupled enzyme assay. Arch Microbiol 165:18–25

    Article  Google Scholar 

  • Meyer O (1988) Biology and biotechnology of aerobic carbon monoxide-oxidising bacteria. In: Schlingmann M, Crueger W, Esser K, Thauer R, Wagner F (eds) Biotechnology focus, vol 1. Hanser, Munich, pp 3–31

    Chapter  Google Scholar 

  • Meyer O, Frunzke K, Mörsdorf G (1993) Biochemistry of the aerobic utilization of carbon monoxide. In: Murrell JC, Kelly DP (eds) Microbial growth on C1 compounds. Intercept, Andover, pp 433–459

    Google Scholar 

  • Meyer O, Gremer L, Ferner R, Ferner M, Dobbek H, Gnida M, Meyer-Klaucke W, Huber R (2000) The role of Se, Mo and Fe in the structure and function of carbon monoxide dehydrogenase. Biol Chem 381:865–876

    Article  PubMed  CAS  Google Scholar 

  • Mikx FHM (1997) Environmental effects on the growth and proteolysis of Treponema denticola ATCC 33520. Oral Microbiol Immunol 12:249–253

    Article  PubMed  CAS  Google Scholar 

  • Miller TL, Wolin MJ (1982) Enumeration of Methanobrevibacter smithii in human feces. Arch Microbiol 141:116–122

    Article  Google Scholar 

  • Miller TL, Wolin MJ (1995) Bioconversion of cellulose to acetate with pure cultures of Ruminococcus albus and a hydrogen-using acetogen. Appl Environ Microbiol 61:3832–3835

    PubMed  CAS  Google Scholar 

  • Miller TL, Wolin MJ (1996) Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl Environ Microbiol 62:1589–1592

    PubMed  CAS  Google Scholar 

  • Min H, Zinder SH (1990) Isolation and characterization of a thermophilic sulfate-reducing bacterium Desulfotomaculum thermoacetoxidans sp. nov. Arch Microbiol 153:399–404

    Article  CAS  Google Scholar 

  • Misoph M, Drake HL (1996) Effect of CO2 on the fermentation capacities of the acetogen Peptostreptococcus productus U-1. J Bacteriol 178:3140–3145

    PubMed  CAS  Google Scholar 

  • Misoph M, Daniel SL, Drake HL (1996) Bidirectional usage of ferulate by the acetogen Peptostreptococcus productus U-1: CO2 and aromatic acrylate groups as competing electron acceptors. Microbiology 142:1983–1988

    Article  CAS  Google Scholar 

  • Moench TT, Zeikus JG (1983) An improved preparation method for a titanium (III) media reductant. J Microbiol Meth 1:199–202

    Article  CAS  Google Scholar 

  • Möller B, Oßmer R, Howard BH, Gottschalk G, Hippe H (1984) Sporomusa, a new genus of Gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch Microbiol 139:388–396

    Article  Google Scholar 

  • Moore W, Cato E (1965) Synonymy of Eubacterium limosum and Butyribacterium rettgeri. Int Bull Bacteriol Nomen Taxon 15:69–80

    Article  Google Scholar 

  • Moore WEC, Holdeman LV (1974) Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27:961–979

    PubMed  CAS  Google Scholar 

  • Morton TA, Chou C-F, Ljungdahl LG (1992) Cloning, sequencing, and expressions of genes encoding enzymes of the autotrophic acetyl-CoA pathway in the acetogen Clostridium thermoaceticum. In: Sebald M (ed) Genetics and molecular biology of anaerobic bacteria. Springer, New York, pp 389–406

    Google Scholar 

  • Müller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69:6345–6353

    Article  PubMed  CAS  Google Scholar 

  • Müller V, Bowien S (1995) Differential effects of sodium ions on motility in the homoacetogenic bacteria Acetobacterium woodii and Sporomusa sphaeroides. Arch Microbiol 164:363–369

    Article  Google Scholar 

  • Müller V, Gottschalk G (1994) The sodium ion cycle in acetogenic and methanogenic bacteria: generation and utilization of a primary electrochemical sodium ion gradient. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 127–156

    Chapter  Google Scholar 

  • Müller V, Aufurth S, Rahlfs S (2001) The Na+-cycle in Acetobacterium woodii: identification and characterization of a Na+-translocating F1F0-ATPase with a mixed oligomer of 8 and 16-kDa proteolipids. Biochim Biophys Acta 1505:108–120

    Article  PubMed  Google Scholar 

  • Müller V, Inkamp F, Rauwolf A, Küsel K, Drake HL (2004) Molecular and cellular biology of acetogenic bacteria. In: Nakano M, Zuber P (eds) Strict and facultative anaerobes: medical and environmental aspects horizon. Scientific Press, Norfolk, p 392

    Google Scholar 

  • Nagaranthal KR, Nagle DP Jr (1992) Inhibition of methanogenesis in Methanobacterium thermoautotrophicum by lumazine. Abstr Ann Meet Am Am Soc Microbiol I-23:240

    Google Scholar 

  • Naidu D, Ragsdale SW (2001) Characterization of a three-component vanillate O-demethylase from Moorella thermoacetica. J Bacteriol 183:3276–3281

    Article  PubMed  CAS  Google Scholar 

  • Nozhevnikova AN, Kotsyurbenko OR, Simankova MV (1994) Acetogenesis at low temperature. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 416–431

    Chapter  Google Scholar 

  • Nozhevnikova AN, Simankova MV, Parshina SN, Kotsyurbenko OR (2001) Temperature characteristics of methanogenic archaea and acetogenic bacteria isolated from cold environments. Water Sci Technol 44:41–48

    PubMed  CAS  Google Scholar 

  • O’Brien WE, Ljungdahl LG (1972) Fermentation of fructose and synthesis of acetate from carbon dioxide by Clostridium formicoaceticum. J Bacteriol 109:626–632

    PubMed  Google Scholar 

  • O’Brien WE, Brewer JM, Ljungdahl LG (1973) Purification and characterization of thermostable 5,10-methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum. J Biol Chem 248:403–408

    PubMed  Google Scholar 

  • Ohwaki K, Hungate RE (1977) Hydrogen utilization by clostridia in sewage sludge. Appl Environ Microbiol 33:1270–1274

    PubMed  CAS  Google Scholar 

  • Ollivier B, Cordruwisch R, Lombardo A, Garcia JL (1985a) Isolation and characterization of Sporomusa acidovorans sp. nov., a methylotrophic homoacetogenic bacterium. Arch Microbiol 142:307–310

    Article  CAS  Google Scholar 

  • Ollivier BM, Mah RA, Ferguson TJ, Boone DR, Garcia JL, Robinson R (1985b) Emendation of the genus Thermobacteroides: Thermobacteriodes proteolyticus sp. nov., a proteolytic acetogen from a methanogenic enrichment. Int J Sys Bacteriol 35:425–428

    Article  CAS  Google Scholar 

  • Ollivier B, Caumette P, Garcia J-L, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38

    PubMed  CAS  Google Scholar 

  • Oren A (1988) Anaerobic degradation of organic compounds at high salt concentrations. Ant v Leeuwenhoek 54:267–277

    Article  CAS  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Molec Rev 63:334–348

    CAS  Google Scholar 

  • Pacaud S, Loubiere P, Goma G (1985) Methanol metabolism by Eubacterium limosum B2: effects of pH and carbon dioxide on growth and organic acid production. Curr Microbiol 12:245–250

    Article  CAS  Google Scholar 

  • Parekh SR, Cheryan M (1991) Production of acetate by mutant strains of Clostridium thermoaceticum. Appl Microbiol Biotechnol 36:384–387

    Article  CAS  Google Scholar 

  • Parekh M, Keith ES, Daniel SL, Drake HL (1992) Comparative evaluation of the metabolic potentials of different strains of Peptostreptococcus productus: utilization and transformation of aromatic compounds. FEMS Microbiol Lett 94:69–74

    Article  CAS  Google Scholar 

  • Park EY, Clark JE, DerVartanian DV, Ljungdahl LG (1991) 5,10-methylenetetrahydrofolate reductases: iron-sulfur-zinc flavoproteins of two acetogenic clostridia. In: Müller F (ed) Chemistry and biochemistry of flavoenzymes, vol 1. CRC Press, Boca Raton, pp 389–400

    Google Scholar 

  • Patel BKC, Monk C, Littleworth H, Morgan HW, Daniel RM (1987) Clostridium fervidus sp. nov., a new chemoorganotrophic acetogenic thermophile. Int J Sys Bacteriol 37:123–126

    Article  CAS  Google Scholar 

  • Peters V, Conrad R (1995) Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. Appl Environ Microbiol 61:1673–1676

    PubMed  CAS  Google Scholar 

  • Peters V, Conrad R (1996) Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils. Soil Biol Biochem 28:371–382

    Article  CAS  Google Scholar 

  • Peters V, Janssen PH, Conrad R (1998) Efficiency of hydrogen utilization during unitrophic and mixotrophic growth of Acetobacterium woodii on hydrogen and lactate in the chemostat. FEMS Microbiol Ecol 26:317–324

    Article  CAS  Google Scholar 

  • Pezacka E, Wood HG (1984a) Role of carbon monoxide dehydrogenase in the autotrophic pathway used by acetogenic bacteria. Proc Natl Acad Sci USA 81:6261–6265

    Article  PubMed  CAS  Google Scholar 

  • Pezacka E, Wood HG (1984b) The synthesis of acetyl-CoA by Clostridium thermoaceticum from carbon dioxide, hydrogen, coenzyme A and methyltetrahydrofolate. Arch Microbiol 137:63–69

    Article  PubMed  CAS  Google Scholar 

  • Pezacka E, Wood HG (1986) The autotrophic pathway of acetogenic bacteria: role of CO dehydrogenase disulfide reductase. J Biol Chem 261:1609–1615

    PubMed  CAS  Google Scholar 

  • Pfennig N (1978) Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28:283–288

    Article  CAS  Google Scholar 

  • Phelps TJ, Zeikus JG (1984) Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake. Appl Environ Microbiol 48:1088–1095

    PubMed  CAS  Google Scholar 

  • Phillips JR, Clausen EC, Gaddy JL (1994) Synthesis gas as substrate for the biological production of fuels and chemicals. Appl Biochem Biotechnol 45/46:145–157

    Google Scholar 

  • Plugge CM, Grotenhuis JTC, Stams AJM (1990) Isolation and characterization of an ethanol-degrading anaerobe from methanogenic granular sludge. In: Belaich J-P, Bruschiand M, Garcia JL (eds) Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer. Plenum Press, New York, NY FEMS Symposium No. 54, pp 439–442

    Google Scholar 

  • Pochart P, Dore J, Lemann F, Goderel I, Rambaud JC (1992) Interrelations between populations of methanogenic archaea and sulphate-reducing bacteria in the human colon. FEMS Microbiol Lett 98:225–228

    CAS  Google Scholar 

  • Poston JM, Kuratomi K, Stadtman ER (1964) Methyl-vitamin B12 as a source of methyl groups for the synthesis of acetate by cell-free extracts of Clostridium thermoaceticum. Ann NY Acad Sci 112:804–806

    Article  PubMed  CAS  Google Scholar 

  • Preuss A, Fimpel J, Diekert G (1993) Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch Microbiol 159:345–353

    Article  PubMed  CAS  Google Scholar 

  • Prins RA, Lankhorst A (1977) Synthesis of acetate from CO2 in the cecum of some rodents. FEMS Microbiol Lett 1:255–258

    Article  CAS  Google Scholar 

  • Radfar R, Shin R, Sheldrick GM, Minor W, Lovell CR, Odom JD, Dunlap RB, Lebioda L (2000) The crystal structure of N10-formyltetrahydrofolate synthetase from Moorella thermoacetica. Biochemistry (Moscow) 39:3920–3926

    Article  CAS  Google Scholar 

  • Ragsdale SW (1991) Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit Rev Biochem Molec Biol 26:261–300

    Article  CAS  Google Scholar 

  • Ragsdale SW (1994) CO dehydrogenase and the central role of this enzyme in the fixation of carbon dioxide by anaerobic bacteria. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 88–126

    Chapter  Google Scholar 

  • Ragsdale SW (1997) The Eastern and Western branches of the Wood/Ljungdahl pathway: how the East and West were won. BioFactors 6:3–11

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale SW (2000) Nickel containing CO dehydrogenases and hydrogenases. In: Holzenburg A, Scrutton N (eds) Enzyme-catalyzed electron and radical transfer, vol 35. Plenum Press, New York, pp 487–518

    Chapter  Google Scholar 

  • Ragsdale SW (2003a) Anaerobic one-carbon catalysis. In: Horvath IT, Iglesia E, Klein MT, Lercher JA, Russell AJ, Stiefel EI (eds) Encyclopedia of catalysis. Wiley, New York, pp 665–695

    Google Scholar 

  • Ragsdale SW (2003b) Pyruvate ferredoxin oxidoreductase and its radical intermediate. Chem Rev 103:2333–2346

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale SW (2004) Life with carbon monoxide. CRC Crit Rev Biochem Molec Biol 39(3):165–95

    Article  CAS  Google Scholar 

  • Ragsdale SW, Kumar M (1996) Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase. Chem Rev 96:2515–2539

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale SW, Ljungdahl LG (1984) Hydrogenase from Acetobacterium woodii. Arch Microbiol 139:361–365

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale SW, Clark JE, Ljungdahl LG, Lundie LL, Drake HL (1983) Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfide protein. J Biol Chem 258:2364–2369

    PubMed  CAS  Google Scholar 

  • Ragsdale SW, Wood HG, Antholine WE (1985) Evidence that an iron-nickel-carbon complex is formed by reaction of CO with the CO dehydrogenase from Clostridium thermoaceticum. Proc Natl Acad Sci USA 82:6811–6814

    Article  PubMed  CAS  Google Scholar 

  • Rainey FA, Ward NL, Morgan HW, Toalster R, Stackebrandt E (1993) Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. J Bacteriol 175:4772–4779

    PubMed  CAS  Google Scholar 

  • Rasch M, Saxton WO, Baumeister W (1984) The regular surface layer of Acetogenium kivui: some structural, developmental and evolutionary aspects. FEMS Microbiol Lett 24:285–290

    Article  Google Scholar 

  • Ravinder T, Swamy MV, Seenaya G, Reddy G (2001) Clostridium lentocellum SG6—a potential organism for fermentation of cellulose to acetic acid. Biores Technol 80:171–177

    Article  CAS  Google Scholar 

  • Reidlinger J, Müller V (1994) Purification of ATP synthase from Acetobacterium woodii and identification as a Na+-translocating F1F0-type enzyme. Eur J Biochem 223:275–283

    Article  PubMed  CAS  Google Scholar 

  • Reidlinger J, Mayer F, Müller V (1994) The molecular structure of the Na+-translocating F1F0-ATPase of Acetobacterium woodii, as revealed by electron microscopy, resembles that of H+-translocating ATPases. FEBS Lett 356:17–20

    Article  PubMed  CAS  Google Scholar 

  • Reith F, Drake HL, Küsel K (2002) Anaerobic activities of bacteria and fungi in moderately acidic conifer and leaf litter. FEMS Microbiol Ecol 41:27–35

    Article  PubMed  CAS  Google Scholar 

  • Revsbech NP, Pedersen O, Reichardt W, Briones A (1999) Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biol Fertil Soils 29:379–385

    Article  Google Scholar 

  • Rieu-Lesme F, Fonty G, Doré J (1995) Isolation and characterization of a new hydrogen-utilizing bacterium from the rumen. FEMS Microbiol Lett 125:77–82

    Article  PubMed  CAS  Google Scholar 

  • Rieu-Lesme F, Dauga C, Morvan B, Bouvet OMM, Grimont PAD, Doré J (1996a) Acetogenic coccoid spore-forming bacteria isolated from the rumen. Res Microbiol 147:753–764

    Article  PubMed  CAS  Google Scholar 

  • Rieu-Lesme F, Morvan B, Collins MD, Fontyand G, Willems A (1996b) A new H2/CO2-using acetogenic bacterium from the rumen: description of Ruminococcus schinkii sp. nov. FEMS Microbiol Lett 140:281–286

    PubMed  CAS  Google Scholar 

  • Rieu-Lesme F, Dauga C, Fonty G, Doré J (1998) Isolation from the rumen of a new acetogenic bacterium phylogenetically closely related to Clostridium difficile. Anaerobe 4:89–94

    Article  PubMed  CAS  Google Scholar 

  • Rosencrantz D, Rainey FA, Janssen PH (1999) Culturable populations of Sporomusa spp. and Desulfovibrio spp. in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 65:3526–3533

    PubMed  CAS  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidising populations. Appl Environ Microbiol 63:4704–4712

    PubMed  CAS  Google Scholar 

  • Royall D, Wolever TMS, Jeejeebhoy KN (1990) Clinical significance of colonic fermentation. Am J Gastroenetrol 85:1307–1312

    CAS  Google Scholar 

  • Salmassi TM, Leadbetter JR (2003) Analysis of genes of tetrahydrofolate-dependent metabolism from cultivated spirochaetes and the gut community of the termite Zootermopsis angusticollis. Microbiology 149:2529–2537

    Article  PubMed  CAS  Google Scholar 

  • Samain E, Albangnac G, Dubourguier HC, Touzel J-P (1982) Characterization of a new propionic acid bacterium that ferments ethanol and displays a growth factor-dependent association with a gram-negative homoacetogen. FEMS Microbiol Lett 15:69–74

    Article  CAS  Google Scholar 

  • Sanford RA, Cole JR, Löffler FE, Tiedje JM (1996) Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl Environ Microbiol 62:3800–3808

    PubMed  CAS  Google Scholar 

  • Sansone FJ, Martens CS (1982) Volatile fatty acid cycling in organic-rich marine sediments. Geochim Cosmochim Acta 46:1575–1589

    Article  CAS  Google Scholar 

  • Savage MD, Drake HL (1986) Adaptation of the acetogen Clostridium thermoautotrophicum to minimal medium. J Bacteriol 165:315–318

    PubMed  CAS  Google Scholar 

  • Savage MD, Wu Z, Daniel SL, Lundie LL Jr, Drake HL (1987) Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum. Appl Environ Microbiol 53:1902–1906

    PubMed  CAS  Google Scholar 

  • Schauder R, Eikmanns B, Thauer RK, Widdel F, Fuchs G (1986) Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the critic acid cycle. Arch Microbiol 145:162–172

    Article  CAS  Google Scholar 

  • Schaupp A, Ljungdahl LG (1974) Purification and properties of acetate kinase from Clostridium thermoaceticum. Arch Microbiol 100:121–129

    Article  PubMed  CAS  Google Scholar 

  • Schink B (1984) Clostridium magnum sp. nov., a non-autotrophic homoacetogenic bacterium. Arch Microbiol 137:250–255

    Article  CAS  Google Scholar 

  • Schink B (1994) Diversity, ecology, and isolation of acetogenic bacteria. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 197–235

    Chapter  Google Scholar 

  • Schink B, Bomar M (1992) The genera Acetobacterium, Acetogenium, Acetoanaerobium, and Acetitomaculum. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 1925–1936

    Google Scholar 

  • Schmitt-Wagner D, Brune A (1999) Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4490–4496

    PubMed  CAS  Google Scholar 

  • Schnürer A, Houwen FP, Svensson BH (1994) Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonium concentration. Arch Microbiol 162:70–74

    Article  Google Scholar 

  • Schnürer A, Schink B, Svensson BH (1996) Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Bacteriol 46:1145–1152

    Article  PubMed  Google Scholar 

  • Schnürer A, Svensson BH, Schink B (1997) Enzyme activities in and energetics of acetate metabolism by the mesophilic syntrophically acetate-oxidizing anaerobe Clostridium ultunense. FEMS Microbiol Lett 154:331–336

    Article  Google Scholar 

  • Schopf JW, Hayes JM, Walter MR (1983) Evolution of the earth’s earliest ecosystems: recent progress and unsolved problems. In: Schopf JW (ed) Earth’s earliest biosphere. Princeton University Press, Princeton, pp 361–384

    Google Scholar 

  • Schramm E, Schink B (1991) Ether-cleaving enzyme and diol dehydratase involved in anaerobic polyethylene glycol degradation by a new Acetobacterium sp. Biodegradation 2:71–79

    Article  PubMed  CAS  Google Scholar 

  • Schulman M, Ghambeer RK, Ljungdahl LG, Wood HG (1973) Total synthesis of acetate from CO2. VII: evidence with Clostridium thermoaceticum that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2. J Biol Chem 248:6255–6261

    PubMed  CAS  Google Scholar 

  • Schulz S, Conrad R (1996) Influence of temperature on pathways to methane production in the permanently cold profundal sediment of Lake constance. FEMS Microbiol Ecol 20:1–14

    Article  CAS  Google Scholar 

  • Schulz M, Leichmann H, Günther H, Simon H (1995) Electromicrobial regeneration of pyridine nucleotides and other preparative redox transformations with Clostridium thermoaceticum. Appl Microbiol Biotechnol 42:916–922

    Article  CAS  Google Scholar 

  • Schuppert B, Schink B (1990) Fermentation of methoxyacetate to glycolate and acetate by newly isolated strains of Acetobacterium sp. Arch Microbiol 153:200–204

    Article  CAS  Google Scholar 

  • Schwartz RD, Keller FA Jr (1982) Isolation of a strain of Clostridium thermoaceticum capable of growth and acetic acid production at pH 4.5. Appl Environ Microbiol 43:117–123

    PubMed  CAS  Google Scholar 

  • Seifritz C, Daniel SL, Gößner A, Drake HL (1993) Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. J Bacteriol 175:8008–8013

    PubMed  CAS  Google Scholar 

  • Seifritz C, Fröstl JM, Drake HL, Daniel SL (1999) Glycolate as a metabolic substrate for the acetogen Moorella thermoacetica. FEMS Microbiol Lett 170:399–405

    Article  CAS  Google Scholar 

  • Seifritz C, Fröstl JM, Drake HL, Daniel SL (2002) Influence of nitrate on oxalate-and glyoxylate-dependent growth and acetogenesis by Moorella thermoacetica. Arch Microbiol 178:457–464

    Article  PubMed  CAS  Google Scholar 

  • Seifritz C, Drake HL, Daniel SL (2003) Nitrite as an energy-conserving electron sink for the acetogenic bacterium Moorella thermoacetica. Curr Microbiol 46:329–333

    Article  PubMed  CAS  Google Scholar 

  • Sembiring T, Winter J (1989) Anaerobic degradation of O-phenylphenol by mixed and pure cultures. Appl Microbiol Biotechnology 31:89–92

    CAS  Google Scholar 

  • Sembiring T, Winter J (1990) Demethylation of aromatic compounds by strain B10 and complete degradation of 3-methoxybenzoate in co-culture with Desulfosarcina strains. Appl Microbiol Biotechnol 33:233–238

    Article  CAS  Google Scholar 

  • Sexstone AJ, Revsbech NP, Parkin TB, Tiedje JM (1985) Direct measurement of oxygen profiles and denitrification rates in soil aggregates. Soil Sci Soc Am J 49:645–651

    Article  CAS  Google Scholar 

  • Sharak Genthner BR, Bryant MP (1982) Growth of Eubacterium limosum with carbon monoxide as the energy source. Appl Environ Microbiol 43:70–74

    Google Scholar 

  • Sharak Genthner BR, Bryant MP (1987) Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii. Appl Environ Microbiol 53:471–476

    PubMed  CAS  Google Scholar 

  • Sharak Genthner BR, Davies CL, Bryant MP (1981) Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol-and H CO2-CO CO2-utilizing species. Appl Environ Microbiol 42:12–19

    Google Scholar 

  • Shin WS, Kim JS, Lee SP, Kim YS, Shin JW, Lee SH (2001) Electrochemical conversion of CO CO2 to CO or acetate by enzymes of Clostridium thermoaceticum. Abstr Am Chem Soc 221:U504

    Google Scholar 

  • Silaghi-Dumitrescu R, Coulter ED, Das A, Ljungdahl LG, Jameson GNL, Huynh BH, Kurtz DM Jr (2003) A flavodiiron protein and high molecular weight rubredoxin from Moorella thermoacetica with nitric oxide reductase activity. Biochemistry 42:2806–2815

    Article  PubMed  CAS  Google Scholar 

  • Simankova MV, Kotsyurbenko OR, Stackebrandt E, Kostrikina NA, Lysenko AM, Osipov GA, Nozhevnikova AN (2000) Acetobacterium tundrae sp. nov., a new psychrophilic acetogenic bacterium from tundra soil. Arch Microbiol 174:440–447

    Article  PubMed  CAS  Google Scholar 

  • Singleton R Jr (1997a) Harland Goff Wood: an American biochemist. In: Semenza G, Jaenicke R (eds) Comprehensive biochemistry: history of biochemistry, vol 40. Elsevier Science, Amsterdam, pp 333–382

    Google Scholar 

  • Singleton R Jr (1997b) Heterotrophic CO2-fixation, mentors, and students: the Wood-Werkman reactions. J Hist Biol 30:91–120

    Article  PubMed  CAS  Google Scholar 

  • Singleton R Jr (2000) From bacteriology to biochemistry: Albert Jan Kluyver and Chester Werkman at Iowa State. J Hist Biol 33:141–180

    Article  PubMed  CAS  Google Scholar 

  • Sleat R, Mah RA, Robinson R (1985) Acetoanaerobium noterae gen. nov., sp. nov.: an anaerobic bacterium that forms acetate from H2 and CO2. Int J Sys Bacteriol 35:10–15

    Article  Google Scholar 

  • Slobodkin A, Reysenbach A-L, Mayer F, Wiegel J (1997) Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov. Int J Syst Bacteriol 47:969–974

    Article  PubMed  CAS  Google Scholar 

  • Smith KA, Arah JRM (1986) Anaerobic micro-environments in soil and the occurrence of anaerobic bacteria. In: Jensen V, Kjöller A, Sørensen LH (eds) Microbial communities in soil. Elsevier Applied Science, London, UK FEMS Symposium, No. 33, pp 247–261

    Google Scholar 

  • Smith MR, Mah RA (1981) 2-Bromoethanesulfonate: a selective agent for isolating resistant Methanosarcina mutants. Curr Microbiol 6:321–326

    Article  CAS  Google Scholar 

  • Spruth M, Reidlinger J, Müller V (1995) Sodium ion dependence of inhibition of the Na+-translocating F1F0-ATPase from Acetobacterium woodii: probing the site(s) involved in ion transport. Biochim Biophys Acta 1229:96–102

    Article  Google Scholar 

  • Stackebrandt E, Kramer I, Swiderski J, Hippe H (1999) Phylogenetic basis for a taxonomic dissection of the genus Clostridium. FEMS Immun Med Microbiol 24:253–258

    Article  CAS  Google Scholar 

  • Stams AJM, Dong X (1995) Role of formate and hydrogen in the degradation of propionate and butyrate by defined suspended cocultures of acetogenic and methanogenic bacteria. Ant v Leeuwenhoek 68:281–284

    Article  CAS  Google Scholar 

  • Stevens T, McKinley JP (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–454

    Article  CAS  Google Scholar 

  • Stromeyer SA, Stumpf K, Cook AM, Leisinger T (1992) Anaerobic degradation of tetrachloromethane by Acetobacterium woodii: separation of dechlorinative activities in cell extracts and roles of vitamin B12 and other factors. Biodegradation 3:113–123

    Article  CAS  Google Scholar 

  • Sugaya K, Tusé D, Jones JL (1986) Production of acetic acid by Clostridium thermoaceticum in batch and continuous fermentations. Biotechnol Bioengin 28:678–683

    Article  CAS  Google Scholar 

  • Talabardon M, Schwitzguébel J-P, Péringer P, Yang S-T (2000) Acetic acid production from lactose by an anaerobic thermoophilic coculture immobilized in a fibrous-bed bioreactor. Biotechnol Progr 16:1008–1017

    Article  CAS  Google Scholar 

  • Tanaka K, Pfennig N (1988) Fermentation of 2-methoxyethanol by Acetobacterium malicum sp. nov. and Pelobacter venetianus. Arch Microbiol 149:181–187

    Article  CAS  Google Scholar 

  • Tani M, Higashi T, Nagatsuka S (1993) Dynamics of low-molecular weight aliphatic carboxylic acids (LACAs) in forest soils. I: amount and composition of LACAs in different types of forest soils. Soil Sci Plant Nutr 39:485–495

    Article  CAS  Google Scholar 

  • Tanner RS, Woese CR (1994) A phylogenetic assessment of the acetogens. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 254–269

    Chapter  Google Scholar 

  • Tanner RS, Stackebrandt E, Fox GE, Woese CR (1981) A phylogenetic analysis of Acetobacterium woodii, Clostridium barkeri, Clostridium butyricum, Clostridium lituseburense, Eubacterium limosum, and Eubacterium tenue. Curr Microbiol 5:35–38

    Article  Google Scholar 

  • Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., and acetogenic species in clostridial rRNA homology group I. Int J Sys Bacteriol 43:232–236

    Article  CAS  Google Scholar 

  • Tasaki M, Kamagata Y, Nakamura K, Mikami E (1992) Utilization of methoxylated benzoates and formation of intermediates by Desulfotomaculum thermobenzoicum in the presence or absence of sulfate. Arch Microbiol 157:209–212

    Article  PubMed  CAS  Google Scholar 

  • Tasaki M, Kamagata Y, Nakamura K, Okamura K, Mikami E (1993) Acetogenesis from pyruvate by Desulfotomaculum thermobenzoicum and differences in pyruvate metabolism among three sulfate-reducing bacteria in the absence of sulfate. FEMS Microbiol Lett 106:259–264

    Article  CAS  Google Scholar 

  • Terracciano JS, Schreurs WJA, Kashket ER (1987) Membrane H+ conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: evidence for electrogenic Na+/H+ antiport in Clostridium thermoaceticum. Appl Environ Microbiol 53:782–786

    PubMed  CAS  Google Scholar 

  • Terzenbach DP, Blaut M (1994) Transformation of tetrachloroethylene by homoacetogenic bacteria. FEMS Microbiol Lett 123:213–218

    Article  PubMed  CAS  Google Scholar 

  • Teske A, Ramsing NB, Habicht K, Fukui M, Küver J, Jørgensen BB, Cohen Y (1998) Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt). Appl Environ Microbiol 64:2943–2951

    PubMed  CAS  Google Scholar 

  • Thauer RK (1988) Citric acid cycle, 50 years on: modification and an alternative pathway in anaerobic bacteria. Eur J Biochem 176:497–508

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK, Fuchs G, Käufer B, Schnitker U (1974) Carbon-monoxide oxidation in cell-free extracts of Clostridium pasteurianum. Eur J Biochem 45:343–349

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  • Thauer RK, Möller-Zinkhan D, Spormann AM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Ann Rev Microbiol 43:43–67

    Article  CAS  Google Scholar 

  • Tholen A, Brune A (1999) Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4497–4505

    PubMed  CAS  Google Scholar 

  • Tholen A, Brune A (2000) Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ Microbiol 2:436–449

    Article  PubMed  CAS  Google Scholar 

  • Tholen A, Schink B, Brune A (1997) The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp. FEMS Microbiol Ecol 24:137–149

    Article  CAS  Google Scholar 

  • Tiedje JM, Sexstone AJ, Parkin TB, Revsbech NP, Shelton DR (1984) Anaerobic processes in soil. Plant Soil 76:197–212

    Article  CAS  Google Scholar 

  • Traunecker J, Preuß A, Diekert G (1991) Isolation and characterization of a methyl cloride utilizing, strictly anaerobic bacterium. Arch Microbiol 156:416–421

    Article  CAS  Google Scholar 

  • Tschech A, Pfennig N (1984) Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137:163–167

    Article  CAS  Google Scholar 

  • Tyler SC (1991) The global methane budget. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes. American Society for Microbiology, Washington, DC, pp 7–38

    Google Scholar 

  • Vandenberg JI, Carter ND, Bethell HWL, Nogradi A, Ridderstrale Y, Metcalfe JC, Grace AA (1996) Carbonic anhydrase and cardiac pH regulation. Am J Physiol 40:1838–1846

    Google Scholar 

  • Van der Lee GEM, de Winder B, Bouten W, Tietema A (1999) Anoxic microsites in douglas fir litter. Soil Biol Biochem 31:1295–1301

    Article  Google Scholar 

  • Varel VH, Bryant MP, Holdeman LV, Moore WEC (1974) Isolation of ureolytic Peptostreptococcus productus from feces using defined medium; failure of common urease tests. Appl Microbiol 28:594–599

    PubMed  CAS  Google Scholar 

  • Varma AK, Peck HD Jr (1983) Utilization of short and long-chain polyphosphates as energy sources for the anaerobic growth of bacteria. FEMS Microbiol Lett 16:281–285

    Article  CAS  Google Scholar 

  • Varma A, Kolli BK, Paul J, Saxena S, König H (1994) Lignocellulose degradation by microorganisms from termite hills and termite guts: a survey on the present state of art. FEMS Microbiol Rev 15:9–28

    Article  CAS  Google Scholar 

  • Von Eysmondt J, Vasic-Racki D, Wandrey C (1990) Acetic acid production by Acetogenium kivui in continuous culture—kinetic studies and computer simulations. Appl Microbiol Biotechnol 34:344–349

    Article  Google Scholar 

  • Wagener S, Schink B (1988) Fermentative degradation of nonionic surfactants and polyethylene glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria. Appl Environ Microbiol 54:561–565

    PubMed  CAS  Google Scholar 

  • Wagner C, Grießhammer A, Drake HL (1996) Acetogenic capacities and the anaerobic turnover of carbon in a Kansas prairie soil. Appl Environ Microbiol 62:494–500

    PubMed  CAS  Google Scholar 

  • Waisel Y, Agami M (1996) Ecophysiology of roots of submerged aquatic plants. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker, New York, pp 895–909

    Google Scholar 

  • Wang G, Wang DIC (1983) Production of acetic acid by immobilized whole cells of Clostridium thermoaceticum. Appl Biochem Biotechnol 8:491–503

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Wang DIC (1984) Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum. Appl Environ Microbiol 47:294–298

    PubMed  CAS  Google Scholar 

  • Weinberg M, Ginsbourg B (1927) Données récéntes sur les microbes anaérobies et leur role en pathologie. Masson Paris, France, pp 1–291

    Google Scholar 

  • Wellsbury P, Goodman K, Barth T, Cragg BA, Barnes SP, Parkes RJ (1997) Deep marine biosphere fuelled by increasing organic matter availability during burial and heating. Nature 388:573–576

    Article  CAS  Google Scholar 

  • Wellsbury P, Goodman K, Cragg BA, Parkes J (2000) The geomicrobiology of deep marine sediments from Blake Ridge containing methane hydrate (sites 994, 995, and 997). In: Proceedings of the Ocean drilling program, Scientific results, vol 164, pp 379–391

    Google Scholar 

  • Wellsbury P, Mather I, Parkes RJ (2002) Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean. FEMS Microbiol Ecol 42:59–70

    Article  PubMed  CAS  Google Scholar 

  • Whitman WB (1994) Autotrophic acetyl coenzyme a biosynthesis in methanogens acetogenesis. Chapman and Hall, New York, pp 521–538

    Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  PubMed  CAS  Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulfate and sulfur-reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 469–587

    Google Scholar 

  • Wiegel J, Braun M, Gottschalk G (1981) Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr Microbiol 5:255–260

    Article  CAS  Google Scholar 

  • Wiegel J, Carreira LH, Garrison RJ, Robek NE, Ljungdahl LG (1990) Calcium magnesium acetate (CMA) manufacture from glucose by fermentation with thermophilic homoacetogenic bacteria. In: Wise DL, Levendis Y, Metghalchi M (eds) Calcium magnesium acetate. Elsevier, Amsterdam, pp 359–416

    Google Scholar 

  • Wiegel J (1994) Acetate and the potential of homoacetogenic bacteria for industrial applications. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 484–504

    Chapter  Google Scholar 

  • Wieringa KT (1936) Over het verdwijnen van waterstof en koolzuur onder anaerobe voorwaarden. Ant v Leeuwenhoek 3:263–273

    Article  Google Scholar 

  • Wieringa KT (1939–1940) The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Ant v Leeuwenhoek 6:251–262

    Article  Google Scholar 

  • Wieringa KT (1941) Über die Bildung von Essigsäure aus Kohlensäure und Wasserstoff durch anaerobe. Bazillen Brennstoff-Chemie 22:161–164

    CAS  Google Scholar 

  • Winter JU, Wolfe RS (1980) Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens. Arch Microbiol 124:73–39

    Article  PubMed  CAS  Google Scholar 

  • Wofford NQ, Beaty PS, McInerney MJ (1986) Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei. J Bacteriol 167:179–185

    PubMed  CAS  Google Scholar 

  • Wohlfarth G, Diekert G (1991) Thermodynamics of methylenetetrahydrofolate reduction to methyltetrahydrofolate and its implications for the energy metabolism of homoacetogenic bacteria. Arch Microbiol 155:378–381

    Article  CAS  Google Scholar 

  • Wolin MJ, Miller TL (1983) Carbohydrate fermentation. In: Hentges DA (ed) Human intestinal flora in health and disease. Academic Press, New York, pp 147–165

    Chapter  Google Scholar 

  • Wolin MJ, Miller TL (1993) Bacterial strains from human feces that reduce CO2 to acetic acid. Appl Environ Microbiol 59:3551–3556

    PubMed  CAS  Google Scholar 

  • Wolin MJ, Miller TL (1994) Acetogenesis from CO2 in the human colonic ecosystem. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 365–385

    Chapter  Google Scholar 

  • Wolin MJ, Miller TL, Yerry S, Zhang Y, Bank S, Weaver GA (1999) Changes of fermentation pathways of fecal microbial communities associated with a drug treatment that increases dietary starch in the human colon. Appl Environ Microbiol 65:2807–2812

    PubMed  CAS  Google Scholar 

  • Wolin MJ, Miller TL, Collins MD, Lawson PA (2003) Formate-dependent growth and homoacetogenic fermentation by a bacterium from human feces: description of Bryantella formatexigens gen. nov., sp. nov. Appl Environ Microbiol 69:6321–6326

    Article  PubMed  CAS  Google Scholar 

  • Wood HG, Werkman CH (1936) Mechanism of glucose dissimilation by the propionic acid bacteria. Biochem J 30:618–623

    PubMed  CAS  Google Scholar 

  • Wood HG, Werkman CH (1938) The utilization of CO2 by the propionic acid bacteria. Biochem J 32:1262–1271

    PubMed  CAS  Google Scholar 

  • Wood HG, Werkman CH, Hemingway A, Nier AO (1941a) Heavy carbon as a tracer in heterotrophic carbon dioxide assimilation. J Biol Chem 139:365–376

    CAS  Google Scholar 

  • Wood HG, Werkman CH, Hemingway A, Nier AO (1941b) The position of carbon dioxide carbon in succinic acid synthesized by heterotrophic bacteria. J Biol Chem 139:377–381

    CAS  Google Scholar 

  • Wood HG (1952a) A study of carbon dioxide fixation by mass determination on the types of C13-acetate. J Biol Chem 194:905–931

    PubMed  CAS  Google Scholar 

  • Wood HG (1952b) Fermentation of 3,4-C14-and 1-C14-labeled glucose by Clostridium thermoaceticum. J Biol Chem 199:579–583

    PubMed  CAS  Google Scholar 

  • Wood HG (1972) My life and carbon dioxide fixation. In: Woessner Jr JF, Huijing F (eds) The molecular basis of biological transport. Academic Press, New York, NY. Miami winter symposium, vol 3, pp 1–54

    Google Scholar 

  • Wood HG (1976) Trailing the propionic acid bacteria. In: Kornberg A, Horecker BL, Cornudella L, Oro J (eds) Reflections on biochemistry. Pergamon, Oxford, UK, pp 105–115

    Google Scholar 

  • Wood HG (1982) The discovery of the fixation of CO2 by heterotrophic organisms and metabolism of the propionic bacteria. In: Semenza G (ed) Of oxygen, fuels, and living matter, vol 2. Wiley, New York, pp 173–250

    Google Scholar 

  • Wood HG (1985) Then and now. Ann Rev Biochem 54:1–41

    Article  PubMed  CAS  Google Scholar 

  • Wood HG (1989) Past and present of CO2 utilization. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech, Madison, pp 33–52

    Google Scholar 

  • Wood HG (1991) Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J 5:156–163

    PubMed  CAS  Google Scholar 

  • Wood HG, Ljungdahl LG (1991) Autotrophic character of the acetogenic bacteria. In: Shively JM, Barton LL (eds) Variations in autotrophic life. Academic, San Diego, pp 201–250

    Google Scholar 

  • Worden RM, Grethlein AJ, Zeikus JG, Datta R (1989) Butyrate production from carbon monoxide by Butyribacterium methylotrophicum. Appl Biochem Biotechnol 20/21:687–698

    Google Scholar 

  • Wu Z, Daniel SL, Drake HL (1988) Characterization of a CO-dependent O-demethylating enzyme system from the acetogen Clostridium thermoaceticum. J Bacteriol 170:5747–5750

    PubMed  CAS  Google Scholar 

  • Yamamoto I, Saiki T, Liu S-M, Ljungdahl LG (1983) Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J Biol Chem 258:1826–1832

    PubMed  CAS  Google Scholar 

  • Yang H, Drake HL (1990) Differential effects of sodium on hydrogen-and glucose-dependent growth of the acetogenic bacterium Acetogenium kivui. Appl Environ Microbiol 56:81–86

    PubMed  CAS  Google Scholar 

  • Zavarzin GA, Zhilina TN, Pusheva MA (1994) Halophilic acetogenic bacteria. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 432–444

    Chapter  Google Scholar 

  • Zehnder AJB, Wuhrmann K (1976) Titanium III citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 194:1165–1166

    Article  PubMed  CAS  Google Scholar 

  • Zehnder AJB, Huser BA, Brock TD, Wuhrmann K (1980) Characterization of an acetate-decarboxylating non-hydrogen oxidizing methane bacterium. Arch Microbiol 124:1–11

    Article  PubMed  CAS  Google Scholar 

  • Zeikus JG, Lynd LH, Thompson TE, Krzycki JA, Weimer PJ, Hegge PW (1980) Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the Marburg strain. Curr Microbiol 3:381–386

    Article  CAS  Google Scholar 

  • Zeikus JG (1983) Metabolism of one-carbon compounds by chemotrophic anaerobes. Adv Microb Physiol 24:215–299

    Article  PubMed  CAS  Google Scholar 

  • Zeikus JG, Kerby R, Krzycki JA (1985) Single-carbon chemistry of acetogenic and methanogenic bacteria. Science 227:1167–1173

    Article  PubMed  CAS  Google Scholar 

  • Zhilina TN, Zavarzin GA (1990) Extremely halophilic, methylotrophic, anaerobic bacteria. FEMS Microbol Rev 87:315–322

    Article  CAS  Google Scholar 

  • Zhilina TN, Zavarzin GA, Detkova EN, Rainey FA (1996) Natroniella acetigena gen. nov. sp. nov., an extremely halophilic, homoacetogenic bacterium: a new member of Haloanaerobiales. Curr Microbiol 32:320–326

    Article  PubMed  CAS  Google Scholar 

  • Zhilina TN, Detkova EN, Rainey FA, Osipov GA, Lysenko AM, Kostrikina NA, Zavarzin GA (1998) Natronoincola histidinovorans gen. nov., sp. nov., a new alkaliphilic acetogenic anaerobe. Curr Microbiol 37:177–185

    Article  PubMed  CAS  Google Scholar 

  • Zinder SH, Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch Microbiol 138:263–272

    Article  CAS  Google Scholar 

  • Zinder SH (1994) Syntrophic acetate oxidation and “reversible acetogenesis”. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 386–415

    Chapter  Google Scholar 

Download references

Dedication and Acknowledgment

This tapestry is dedicated to Harland G. Wood and Lars G. Ljungdahl, the two individuals who carried the ball when no one else could. The authors express their appreciation to Anita Gößner for her many years of excellence in culturing and analyzing acetogens, to Marcus Horn for assistance with the phylogenetic analyses, to Georg Acker for electron microscopy of isolates, to Millie Wood for permission to publish the photo of Harland Wood, to Volker Müller for helpful discussions on bioenergetics, and to John Breznak, Paul Lindahl, Terry Miller, Steve Ragsdale, and Meyer Wolin for providing unpublished information and helpful suggestions. Current support for the authors’ laboratory is derived in part from funds from the German Research Society (DFG) and the German Ministry of Education, Research, and Technology (BMBF), which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Drake, H.L., Küsel, K., Matthies, C. (2013). Acetogenic Prokaryotes. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30141-4_61

Download citation

Publish with us

Policies and ethics