Advertisement

Acetogenic Prokaryotes

  • Harold L. Drake
  • Kirsten Küsel
  • Carola Matthies

Abstract

This chapter circumscribes the acetogens, a physiologically defined group of the domain Bacteria that are anaerobes, using the acetyl-CoA pathway as a mechanism for the reductive synthesis of acetyl-CoA from CO2, for a terminal-electron-accepting, energy-conserving process, and for mechanism for the fixation (assimilation) of CO2 in the synthesis of cell carbon. Three main metabolic features of these organisms were defined, such as the use of chemolithoautotrophic substrates (H2-CO2 or CO-CO2) as sole sources of carbon and energy under anoxic conditions, the capacity to convert certain sugars stoichiometrically to acetate, and the ability to O-demethylate methoxylated aromatic compounds and metabolize the O-methyl group via the 420 acetyl-CoA pathway. Acetogens have been assigned to more than 20 different genera and they differ in their morphology, cytology, and physiology. The most frequently isolated acetogenic species to date are members of the genera Clostridium and Acetobacterium. The habitat, the morphological and physiological properties, and the phylogenetic position of acetogenic species are presented. The electron flow of the “Wood/Ljungdahl” pathway as well as properties and function of enzymes involved in the acetyl-CoA pathway is shown in detail. Several biotechnological applications are described with the commercial production of acetic acid from sugars and the bioconversion of synthesis gas to acetic acid, ethanol, and other chemicals being the most important ones.

Notes

Dedication and Acknowledgment

This tapestry is dedicated to Harland G. Wood and Lars G. Ljungdahl, the two individuals who carried the ball when no one else could. The authors express their appreciation to Anita Gößner for her many years of excellence in culturing and analyzing acetogens, to Marcus Horn for assistance with the phylogenetic analyses, to Georg Acker for electron microscopy of isolates, to Millie Wood for permission to publish the photo of Harland Wood, to Volker Müller for helpful discussions on bioenergetics, and to John Breznak, Paul Lindahl, Terry Miller, Steve Ragsdale, and Meyer Wolin for providing unpublished information and helpful suggestions. Current support for the authors’ laboratory is derived in part from funds from the German Research Society (DFG) and the German Ministry of Education, Research, and Technology (BMBF), which is gratefully acknowledged.

References

  1. Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161:345–351CrossRefGoogle Scholar
  2. Adamse AD (1980) New isolation of Clostridium aceticum (Wieringa). Ant v Leeuwenhoek 46:523–531CrossRefGoogle Scholar
  3. Adamse AD, Velzeboer CTM (1982) Features of a Clostridium, strain CV-AA1, an obligatory anaerobic bacterium producing acetic acid from methanol. Ant v Leeuwenhoek 48:305–313CrossRefGoogle Scholar
  4. Albers BE, Ferry JG (1994) A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc Natl Acad Sci USA 91:6909–6913CrossRefGoogle Scholar
  5. Anderson RT, Chapelle FH, Lovley DR (1998) Evidence against hydrogen-based microbial ecosystems in basalt aquifers. Science 281:976–977PubMedCrossRefGoogle Scholar
  6. Andreesen JR (1994) Acetate via glycine: a different form of acetogenesis. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 568–629CrossRefGoogle Scholar
  7. Andreesen JR, Gottschalk G, Schlegel HG (1970) Clostridium formicoaceticum nov. spec. isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch Microbiol 72:154–174Google Scholar
  8. Andreesen JR, Schaupp A, Neurauter C, Brown A, Ljungdahl LG (1973) Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: effect of metals on growth yield, enzymes, and the synthesis of acetate from CO2. J Bacteriol 114:743–751PubMedGoogle Scholar
  9. Anonymous (2002) Chem Week 164:33Google Scholar
  10. Arendsen AF, Soliman MQ, Ragsdale SW (1999) Nitrate-dependent regulation of acetate biosynthesis and nitrate respiration by Clostridium thermoaceticum. J Bacteriol 181:1489–1495PubMedGoogle Scholar
  11. Aufurth S, Madkour M, Mayer F, Müller V (1998) Structure of the Na-driven flagellum from the homoacetogenic bacterium Acetobacterium woodii. FEBS Lett 434:325–328PubMedCrossRefGoogle Scholar
  12. Bache R, Pfennig N (1981) Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch Microbiol 130:255–261CrossRefGoogle Scholar
  13. Bak F, Finster K, Rothfuß F (1992) Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria. Arch Microbiol 157:529–534Google Scholar
  14. Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int J Sys Bacteriol 27:355–361CrossRefGoogle Scholar
  15. Balk M, Weijma J, Friedrich MW, Stams AJM (2003) Methanol utilization by a novel thermophilic homoacetogenic bacterium, Moorella mulderi sp. nov., isolated from a bioreactor. Arch Microbiol 179:315–320PubMedGoogle Scholar
  16. Banerjee R, Ragsdale SW (2003) The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Ann Rev Biochem 72:209–247PubMedCrossRefGoogle Scholar
  17. Barik S, Prieto S, Harrison SB, Clausen EC, Gaddy JL (1988) Biological production of alcohols from coal through indirect liquefaction. Appl Biochem Biotechnol 18:363–378CrossRefGoogle Scholar
  18. Barker HA (1944) On the role of carbon dioxide in the metabolism of Clostridium thermoaceticum. Proc Natl Acad Sci USA 30:88–90PubMedCrossRefGoogle Scholar
  19. Barker HA, Kamen MD (1945) Carbon dioxide utilization in the synthesis of acetic acid by Clostridium thermoaceticum. Proc Natl Acad Sci USA 31:219–225PubMedCrossRefGoogle Scholar
  20. Barlaz MA (1997) Microbial studies of landfills and anaerobic refuse decomposition. In: Hurst CJ (ed) Manual of environmental microbiology. ASM Press, Washington, DC, pp 541–557Google Scholar
  21. Baronofsky JJ, Schreurs WJA, Kashket ER (1984) Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermoaceticum. Appl Environ Microbiol 48:1134–1139PubMedGoogle Scholar
  22. Beaty PS, Ljungdahl LG (1990) Thiosulfate reduction by Clostridium thermoaceticum and Clostridium thermoautotrophicum during growth on methanol. Abstr Ann Meet Am Soc Microbiol I-7:199Google Scholar
  23. Beaty PS, Ljungdahl LG (1991) Growth of Clostridium thermoaceticum on methanol, ethanol, propanol, and butanol in medium containing either thiosulfate or dimethylsulfoxide. Abstr Ann Meet Am Soc Microbiol K-131:236Google Scholar
  24. Berman MH, Frazer AC (1992) Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers. Appl Environ Microbiol 58:925–931PubMedGoogle Scholar
  25. Bernalier A, Lelait M, Rochet V, Grivet J-P, Gibson GR, Durand M (1996a) Acetogenesis from H2 and CO2 by methane-and non-methane-producing human colonic bacterial communities. FEMS Microbiol Ecol 19:193–202CrossRefGoogle Scholar
  26. Bernalier A, Rochet V, Leclerc M, Doré J, Pochart P (1996b) Diversity of H2/CO2-utilizing acetogenic bacteria from feces of non-methane-producing humans. Curr Microbiol 33:94–99PubMedCrossRefGoogle Scholar
  27. Bernalier A, Willems A, Leclerc M, Rochet V, Collins MD (1996c) Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces. Arch Microbiol 166:176–183PubMedCrossRefGoogle Scholar
  28. Boga H, Brune A (2003) Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts. Appl Environ Microbiol 69:779–786PubMedCrossRefGoogle Scholar
  29. Boga HI, Ludwig W, Brune A (2003) Sporomusa aerivorans sp. nov., an oxygen-reducing homoacetogenic bacterium from a soil-feeding termite. Int J Syst Evol Microbiol 53:1397–1404PubMedCrossRefGoogle Scholar
  30. Bogdahn M, Andreesen JR, Kleiner D (1983) Pathways and regulation of N2, ammonium and glutamate assimilation by Clostridium formicoaceticum. Arch Microbiol 134:167–169CrossRefGoogle Scholar
  31. Bomar M, Hippe H, Schink B (1991) Lithotrophic growth and hydrogen metabolism by Clostridium magnum. FEMS Microbiol Lett 83:347–350CrossRefGoogle Scholar
  32. Boone DR (1991) Ecology of methanogenesis. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes. American Society for Microbiology, Washington, DC, pp 57–70Google Scholar
  33. Braker G, Zhou J, Lu L, Devol AH, Tiedje JM (2000) Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities. Appl Environ Microbiol 66:2096–2104PubMedCrossRefGoogle Scholar
  34. Bramlett MR, Tan X, Lindahl PA (2003) Inactivation of acetyl-CoA synthase/carbon monoxide dehydrogenase by copper. J Am Chem Soc 125:9316–9317PubMedCrossRefGoogle Scholar
  35. Brauman A, Kane MD, Labat M, Breznak JA (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387PubMedCrossRefGoogle Scholar
  36. Braun K, Gottschalk G (1981) Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum. Arch Microbiol 128:294–298PubMedCrossRefGoogle Scholar
  37. Braun M, Gottschalk G (1982) Acetobacterium wieringae sp. nov., a new species producing acetic acid from molecular hydrogen and carbon dioxide. Zbl Bakt Hyg I Abt Orig C3:368–376Google Scholar
  38. Braun K, Schoberth S, Gottschalk G (1979) Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats. Arch Microbiol 120:201–204PubMedCrossRefGoogle Scholar
  39. Braun M, Mayer F, Gottschalk G (1981) Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch Microbiol 128:288–293PubMedCrossRefGoogle Scholar
  40. Braus-Stromeyer SA, Wagner C, Drake HL (1996) Expression and localization of CO2-fixing enzymes during autotrophic growth by the acetogen Acetogenium kivuii. Abstr Ann Meet Am Soc Microbiol K-162:563Google Scholar
  41. Braus-Stromeyer SA, Schnappauf G, Braus GH, Gößner AS, Drake HL (1997) Carbonic anhydrase in Acetobacterium woodii and other acetogenic bacteria. J Bacteriol 179:7197–7200PubMedGoogle Scholar
  42. Breznak JA (1992) The genus Sporomusa. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 2016–2021Google Scholar
  43. Breznak JA (1994) Acetogenesis from carbon dioxide in termite guts. In: Drake HL (ed) Acetogenesis. Chapmann and Hall, New York, pp 303–330CrossRefGoogle Scholar
  44. Breznak JA, Kane MD (1990) Microbial H2/CO2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol Rev 87:309–314CrossRefGoogle Scholar
  45. Breznak JA, Switzer JM (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52:623–630PubMedGoogle Scholar
  46. Breznak JA, Switzer Blum J (1991) Mixotrophy in the termite gut acetogen, Sporomusa termitida. Arch Microbiol 156:105–110CrossRefGoogle Scholar
  47. Breznak JA, Switzer JM, Seitz H-J (1988) Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch Microbiol 150:282–288CrossRefGoogle Scholar
  48. Brock TD (1989) Evolutionary relationships of the autotrophic bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech, Madison, pp 499–512Google Scholar
  49. Brulla WJ, Bryant MP (1989) Growth of the syntrophic anaerobic acetogen, strain PA-1, with glucose or succinate as energy source. Appl Environ Microbiol 55:1289–1290PubMedGoogle Scholar
  50. Brumm PJ (1988) Fermentation of single and mixed substrates by the parent and an acid-tolerant, mutant strain of Clostridium thermoaceticum. Biotechnol Bioengin 32:444–450CrossRefGoogle Scholar
  51. Brune A, Emerson D, Breznak JA (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61:2681–2687PubMedGoogle Scholar
  52. Brune A, Frenzel P, Cypionka H (2000) Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710PubMedGoogle Scholar
  53. Bryant MP (1979) Microbial methane production—theoretical aspects. J Anim Sci 48:193–201Google Scholar
  54. Budavari S (ed) (1989) The Merck index, 18th edn. Merck, Rahway, p 792Google Scholar
  55. Busche RM (1991) Extractive fermentation of acetic acid: economic tradeoff between yield of Clostridium and concentration of Acetobacter. Appl Biochem Biotechnol 28/29:605–621Google Scholar
  56. Buschhorn H, Dürre P, Gottschalk G (1989) Production and utilization of ethanol by the homoacetogen Acetobacterium woodii. Appl Environ Microbiol 55:1835–1840PubMedGoogle Scholar
  57. Byrer DE, Rainey FA, Wiegel J (2000) Novel strains of Moorella thermoacetica form unusually heat-resistant spores. Arch Microbiol 174:334–339PubMedCrossRefGoogle Scholar
  58. Cato EP, George WL, Finegold SM (1986) Genus Clostridium Prazmowski 1880. In: Sneath PHA (ed) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1141–1200Google Scholar
  59. Causey TB, Zhou S, Shanmugam KT, Ingram LO (2003) Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc Natl Acad Sci USA 100:825–832PubMedCrossRefGoogle Scholar
  60. Chaucheyras F, Fonty G, Bertin G, Gouet P (1995) In vitro H2 utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methanogen is stimulated by a probiotic strain of Saccharomyces cerevisiae. Appl Environ Microbiol 61:3466–3467PubMedGoogle Scholar
  61. Cheryan M, Parekh S (1992) Acetate and calcium magnesium acetate (CMA) production with mutant strains of Clostridium thermoaceticum ATCC 49707. Abstr Ann Meet Am Soc Microbiol Abstr O-39:315Google Scholar
  62. Cheryan M, Parekh S, Shah M, Witjitra K (1997) Production of acetic acid by Clostridium thermoaceticum. Adv Appl Microbiol 43:1–33PubMedCrossRefGoogle Scholar
  63. Chidthaisong A, Rosenstock B, Conrad R (1999) Measurement of monosaccharides and conversion of glucose to acetate in anoxic rice field soil. Appl Environ Microbiol 65:2350–2355PubMedGoogle Scholar
  64. Chin K-J, Conrad R (1995) Intermediary metabolism in methanogenic paddy soil and the influence of temperature. FEMS Microbiol Ecol 18:85–102CrossRefGoogle Scholar
  65. Christiansen N, Ahring BK (1996) Desulfitobacterium hafniense sp. nov., an anaerobic reductively dechloronating bacterium. Int J Syst Bacteriol 46:442–448CrossRefGoogle Scholar
  66. Clark JE, Ljungdahl LG (1984) Purification and properties of 5,10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum. J Biol Chem 259:10845–10849PubMedGoogle Scholar
  67. Cleveland LR (1925) The effect of oxygenation and starvation on the symbiosis between the termite, termopsis, and its intestinal flagellates. Biol Bull 48:309–326CrossRefGoogle Scholar
  68. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JAE (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826PubMedCrossRefGoogle Scholar
  69. Conrad R (1993) Mechanisms controlling methane emission from wetland rice fields. In: Oremalnd RS (ed) The biogeochemistry of global change: radiative trace gases. Chapman and Hall, New York, pp 317–335CrossRefGoogle Scholar
  70. Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640PubMedGoogle Scholar
  71. Conrad R, Bak F, Seitz HJ, Thebrath B, Mayer HP, Schütz H (1989) Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol Ecol 62:285–294CrossRefGoogle Scholar
  72. Cord-Ruwisch R, Ollivier B (1986) Interspecific hydrogen transfer during methanol degradation by Sporomusa acidovorans and hydrogenophilic anaerobes. Arch Microbiol 144:163–165CrossRefGoogle Scholar
  73. Cord-Ruwisch R, Seitz H-J, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol 149:350–357CrossRefGoogle Scholar
  74. Cunningham DP, Lundie LL Jr (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59:7–14PubMedGoogle Scholar
  75. Cypionka H (2000) Oxygen respiration by Desulfovibrio species. Ann Rev Microbiol 54:827–848CrossRefGoogle Scholar
  76. Daniel SL, Drake HL (1993) Oxalate-and glyoxylate-dependent growth and acetogenesis by Clostridium thermoaceticum. Appl Environ Microbiol 59:3062–3069PubMedGoogle Scholar
  77. Daniel SL, Hsu T, Dean SI, Drake HL (1990) Characterization of the H2-and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol 172:4464–4471PubMedGoogle Scholar
  78. Daniel SL, Keith ES, Yang H, Lin Y-S, Drake HL (1991) Utilization of methoxylated aromatic compounds by the acetogen Clostridium thermoaceticum: expression and specificity of the CO-dependent O-demethylating activity. Biochem Biophys Res Commun 180:416–422PubMedCrossRefGoogle Scholar
  79. Daniel SL, Pilsl C, Drake HL (2004) Oxalate metabolism by the acetogenic bacterium Moorella thermoacetica. FEMS Microbiol Lett 231:39–43PubMedCrossRefGoogle Scholar
  80. Darnault C, Volberg A, Kim EJ, Legrand P, Vernède X, Lindahl PA, Fontecilla-Camps JC (2003) Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open α subunits of acetylCoA synthase/carbon monoxide dehydrogenase. Nat Struct Biol 10:271–279PubMedCrossRefGoogle Scholar
  81. Das A, Ljungdahl LG (2000) Acetogenesis and acetogenic bacteria. In: Lederberg J (ed) Encyclopedia of microbiology, vol 1, 2nd edn. Academic, San Diego, pp 18–27Google Scholar
  82. Das A, Ljungdahl LG (2003) Electron transport systems in acetogens. In: Ljungdahl LG, Adams M, Barton L, Ferry JG, Johnson M (eds) Biochemistry and physiology of anaerobic bacteria. Springer, New York, pp 191–204CrossRefGoogle Scholar
  83. Das A, Hugenholtz J, van Halbeek H, Ljungdahl LG (1989) Structure and function of a menaquinone involved in electron transport in membranes of Clostridium thermoautotrophicum and Clostridium thermoaceticum. J Bacteriol 171:5823–5829PubMedGoogle Scholar
  84. Das A, Ivey DM, Ljungdahl LG (1997) Purification and reconstitution into proteoliposomes of the F1F0 ATP synthase from the obligately anaerobic Gram-positive bacterium Clostridium thermoautotrophicum. J Bacteriol 179:1714–1720PubMedGoogle Scholar
  85. Das A, Coulter ED, Kurtz DM Jr, Ljungdahl LG (2001) Five-gene cluster in Clostridium thermoaceticum consisting of two divergent operons encoding rubredoxin oxidoreductase—rubredoxin and rubrerythrin-type flavodoxin—high-molecular-weight rubredoxin. J Bacteriol 183:1560–1567PubMedCrossRefGoogle Scholar
  86. Davidova IA, Stams AJM (1996) Sulfate reduction with methanol by a thermophilic consortium obtained from a methanogenic reactor. Appl Microbiol Biotechnol 46:297–302CrossRefGoogle Scholar
  87. Davydova-Charakhch’yan IA, Mileeva AN, Mityushina LL, Belyaev SS (1992) Acetogenic bacteria from oil fields of Tataria and western Siberia. Mikrobiologiya 61:306–315Google Scholar
  88. Dehning I, Stieb M, Schink B (1989) Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate. Arch Microbiol 151:421–426CrossRefGoogle Scholar
  89. DeWeerd KA, Saxena A, Nagle DP Jr, Suflita JM (1988) Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria. Appl Environ Microbiol 54:1237–1242PubMedGoogle Scholar
  90. Diekert G (1992) The acetogenic bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 517–533Google Scholar
  91. Diekert G, Ritter M (1983) Purification of the nickel protein carbon monoxide dehydrogenase of Clostridium thermoaceticum. FEBS Lett 151:41–44PubMedCrossRefGoogle Scholar
  92. Diekert G, Thauer RK (1978) Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J Bacteriol 136:597–606PubMedGoogle Scholar
  93. Diekert G, Wohlfarth G (1994a) Energetics of acetogenesis from C1 units. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 157–179CrossRefGoogle Scholar
  94. Diekert G, Wohlfarth G (1994b) Metabolism of homoacetogens. Ant v Leeuwenhoek 66:209–221CrossRefGoogle Scholar
  95. Diekert G, Hansch M, Conrad R (1984) Acetate synthesis from 2 CO2 in acetogenic bacteria: is carbon monoxide an intermediate? Arch Microbiol 138:224–228CrossRefGoogle Scholar
  96. Diekert G, Schrader E, Harder W (1986) Energetics of CO formation and CO oxidation in cell suspensions of Acetobacterium woodii. Arch Microbiol 144:386–392CrossRefGoogle Scholar
  97. Dobrindt U, Blaut M (1996) Purification and characterization of a membrane-bound hydrogenase from Sporomusa sphaeroides involved in energy-transducing electron transport. Arch Microbiol 165:141–147PubMedCrossRefGoogle Scholar
  98. Dolfing J (1988) Acetogenesis. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 417–468Google Scholar
  99. Doré J, Bryant MP (1990) Metabolism of one-carbon compounds by the ruminal acetogen Syntrophococcus sucromutans. Appl Environ Microbiol 56:984–989PubMedGoogle Scholar
  100. Doré J, Pochart P, Bernalier A, Goderel I, Morvan B, Rambaud JC (1995) Enumeration of H2-utilizing methanogenic archaea, acetogenic and sulfate-reducing bacteria from human feces. FEMS Microbiol Ecol 17:279–284CrossRefGoogle Scholar
  101. Dorn M, Andreesen JR, Gottschalk G (1978) Fermentation of fumarate and L-malate by Clostridium formicoaceticum. J Bacteriol 133:26–32PubMedGoogle Scholar
  102. Dörner C, Schink B (1991) Fermentation of mandelate to benzoate and acetate by a homoacetogenic bacterium. Arch Microbiol 156:302–306CrossRefGoogle Scholar
  103. Doukov TI, Iverson TM, Sevavalli J, Ragsdale SW, Drennan CL (2002) Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Science 298:567–572PubMedCrossRefGoogle Scholar
  104. Drake HL (1982) Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum. J Bacteriol 150:702–709PubMedGoogle Scholar
  105. Drake HL (1992) Acetogenesis and acetogenic bacteria. In: Lederberg J (ed) Encyclopedia of microbiology, vol 1. Academic, San Diego, pp 1–15Google Scholar
  106. Drake HL (1993) CO2, reductant, and the autrophic acetyl-CoA pathway: alternative origins and destinations. In: Murrell C, Kelly DP (eds) Microbial growth on C1 compounds. Intercept Ltd, Andover, pp 493–507Google Scholar
  107. Drake HL (1994) Acetogenesis, acetogenic bacteria, and the acetyl-CoA “Wood/Ljungdahl” pathway: past and current perspectives. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 3–60CrossRefGoogle Scholar
  108. Drake HL, Daniel SL (2004) Physiology of the thermophilic acetogen Moorella thermoacetica. Res Microbiol 155(6):422–36PubMedCrossRefGoogle Scholar
  109. Drake HL, Küsel K (2003) How the diverse physiological potentials of acetogens determine their in situ realities. In: Ljungdahl LG, Adams M, Barton L, Ferry JG, Johnson M (eds) Biochemistry and physiology of anaerobic bacteria. Springer, New York, pp 171–190CrossRefGoogle Scholar
  110. Drake HL, Küsel K (2005) Acetogenic clostridia. In: Dürre P (ed) Handbook on Clostridia. CRC Press, Boca Raton, p 920Google Scholar
  111. Drake HL, Hu S-I, Wood HG (1980) Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermoaceticum. J Biol Chem 255:7174–7180PubMedGoogle Scholar
  112. Drake HL, Hu S-I, Wood HG (1981a) Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate: properties of phosphotransacetylase. J Biol Chem 255:7174–7180Google Scholar
  113. Drake HL, Hu SI, Wood HG (1981b) The synthesis of acetate from carbon monoxide plus methyltetrahydrofolate and the involvement of the nickel enzyme CO dehydrogenase. Abstr Ann Meet Am Soc Microbiol Abstr 42:144Google Scholar
  114. Drake HL, Daniel SL, Küsel K, Matthies C, Kuhner C, Braus-Stromeyer S (1997) Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities? BioFactors 6:13–24PubMedCrossRefGoogle Scholar
  115. Drake HL, Küsel K, Matthies C (2002) Ecological consequences of the phylogenetic and physiological diversities of acetogens. Ant v Leeuwenhoek 81:203–213CrossRefGoogle Scholar
  116. Drent WJ, Gottschal JC (1991) Fermentation of inulin by a new strain of Clostridium thermoautotrophicum isolated from dahlia tubers. FEMS Microbiol Lett 78:285–292CrossRefGoogle Scholar
  117. Dumitru R, Palencia H, Schroeder SD, DeMontigny BA, Takacs JM, Rasche ME, Miner JL, Ragsdale SW (2003) Targeting methanopterin biosynthesis to inhibit methanogenesis. Appl Environ Microbiol 69:7236–7241PubMedCrossRefGoogle Scholar
  118. Ebert A, Brune A (1997) Hydrogen concentration profiles at the oxic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ Microbiol 63:4039–4046PubMedGoogle Scholar
  119. Eck R, Simon H (1994a) Preparation of both enantiomers of malic and citramalic acid and other hydroxysuccinic acid derivatives by stereospecific hydrations of cis and trans 2-butene-1,4-dioic acids with resting cells of Clostridium formicoaceticum. Tetrahedron 50:13641–13654CrossRefGoogle Scholar
  120. Eck R, Simon H (1994b) Preparation of (S)-2-substituted succinates by stereospecific reductions of fumarate and derivatives with resting cells of Clostridium formicoaceticum. Tetrahedron 50:13631–13640CrossRefGoogle Scholar
  121. Eden G, Fuchs G (1982) Total synthesis of acetyl coenzyme A involved in autotrophic CO2 fixation in Acetobacterium woodii. Arch Microbiol 133:66–74CrossRefGoogle Scholar
  122. Eden G, Fuchs G (1983) Autotrophic CO2 fixation in Acetobacterium woodii II: demonstration of enzymes involved. Arch Microbiol 135:68–73CrossRefGoogle Scholar
  123. Egli C, Tschan T, Scholtz R, Cook AM, Leisinger T (1988) Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii. Appl Environ Microbiol 54:2819–2824PubMedGoogle Scholar
  124. Eichler B, Schink B (1984) Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch Microbiol 140:147–152CrossRefGoogle Scholar
  125. El Ghazzawi E (1967) Neuisolierung von Clostridium formicoaceticum Wieringa und stoffwechselphysiologische Untersuchungen. Arch Mikrobiol 57:1–19CrossRefGoogle Scholar
  126. Emde R, Schink B (1987) Fermentation of triacetin and glycerol by Acetobacterium sp.: no energy is conserved by acetate excretion. Arch Microbiol 149:142–148CrossRefGoogle Scholar
  127. Ezaki T, Li N, Hashimoto Y, Miura H, Yamamoto H (1994) 16S ribosomal DNA sequences of anaerobic cocci and proposal of Ruminococcus hansenii comb. nov. and Ruminococcus productus comb. nov. Int J Syst Bacteriol 44:130–136PubMedCrossRefGoogle Scholar
  128. Gaston LW, Stadtman ER (1963) Fermentation of ethylene glycol by Clostridium glycolicum sp. n. J Bacteriol 85:356–362PubMedGoogle Scholar
  129. Geerligs G, Aldrich HC, Harder W, Diekert G (1987) Isolation and characterization of a carbon monoxide utilizing strain of the acetogen Peptostreptococcus productus. Arch Microbiol 148:305–313CrossRefGoogle Scholar
  130. Geerligs G, Schönheit P, Diekert G (1989) Sodium dependent acetate formation from CO2 in Peptostreptococcus productus (strain Marburg). FEMS Microbiol Lett 57:253–258Google Scholar
  131. Gilbert B, Frenzel P (1995) Methanotrophic bacteria in the rhizosphere of rice microcosms and their effect on porewater methane concentration and methane emission. Biol Fertil Soils 20:93–100CrossRefGoogle Scholar
  132. Gößner A, Drake HL (1997) Characterization of a new thermophilic acetogen (PT-1) isolated from aggregated Kansas prairie soil. Abstr Ann Meet Am Soc Microbiol Abstr N-122:401Google Scholar
  133. Gößner A, Daniel SL, Drake HL (1994) Acetogenesis coupled to the oxidation of aromatic aldehyde groups. Arch Microbiol 161:126–131CrossRefGoogle Scholar
  134. Gößner AS, Kuesel K, Devereux R, Drake HL (1998) Occurrence of thermophilic acetogens in Egyptian soils. Abstr Ann Meet Am Soc Microbiol Abstr N-1:366Google Scholar
  135. Gößner A, Devereux R, Ohnemüller N, Acker G, Stackebrandt E, Drake HL (1999) Thermicanus aegyptius gen. nov., sp. nov., isolated from oxic soil, a facultative microaerophile that grows commensally with the thermophilic acetogen Moorella thermoacetica. Appl Environ Microbiol 65:5124–5133PubMedGoogle Scholar
  136. Gottschalk G, Braun M (1981) Revival of the name Clostridium aceticum. Int J Syst Bacteriol 31:476CrossRefGoogle Scholar
  137. Graber JR, Breznak J (2004) Physiology and nutrition of Treponema primitia, an H2-CO2-acetogenic spirochete from termite hindguts. Appl Environ Microbiol 70:1307–1314PubMedCrossRefGoogle Scholar
  138. Graber JR, Leadbetter JR, Breznak J (2004) Description of Treponema azotonutricium sp. nov., and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl Environ Microbiol 70:1315–1320PubMedCrossRefGoogle Scholar
  139. Grahame DA (2003) Acetate C-C bond formation and decomposition in the anaerobic world: the structure of a central enzyme and its key active-site metal cluster. Trends Biochem Sci 28:221–224PubMedCrossRefGoogle Scholar
  140. Greening RC, Leedle JAZ (1989) Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch Microbiol 151:399–406PubMedCrossRefGoogle Scholar
  141. Grethlein AJ, Jain MK (1992) Bioprocessing of coal-derived synthesis gases by anaerobic bacteria. TIBTECH 10:418–423CrossRefGoogle Scholar
  142. Grethlein AJ, Worden RM, Jain MK, Datta R (1991) Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum. J Ferment Bioengin 72:58–60CrossRefGoogle Scholar
  143. Großkopf R, Stubner S, Liesack W (1998) Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 64:4983–4989Google Scholar
  144. Gunsalus RP, Romesser JA, Wolfe RS (1978) Preparation of coenzyme M analogs and their activity in the methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. Biochemistry 17:2374–2377PubMedCrossRefGoogle Scholar
  145. Günther H, Walter K, Köhler P, Simon H (2000) On a new artificial mediator accepting NADP(H) oxidoreductase from Clostridium thermoaceticum. J Biotechnol 83:253–267PubMedCrossRefGoogle Scholar
  146. Häggblom MM, Berman MH, Frazer AC, Young LY (1993) Anaerobic O-demethylation of chlorinated guaiacols by Acetobacterium woodii and Eubacterium limosum. Biodegradation 4:107–114CrossRefGoogle Scholar
  147. Hall IC, O’Toole E (1935) Intestinal florain newborn infants with a description of a new patogenic anaerobe, Bacillus difficilis. Am J Dis Child 49:390–402Google Scholar
  148. Hansen B, Bokranz M, Schönheit P, Kröger A (1988) ATP formation coupled to caffeate reduction by H2 in Acetobacterium woodii Nzva16. Arch Microbiol 150:447–451CrossRefGoogle Scholar
  149. Harriott OT, Frazer AC (1997) Enumeration of acetogens by a colorimetric most-probable-number assay. Appl Environ Microbiol 63:296–300PubMedGoogle Scholar
  150. Hashsham SA, Freedman DL (1999) Enhanced biotransformation of carbon tetrachloride by Acetobacterium woodii upon addition of hydroxocobalamin and fructose. Appl Environ Microbiol 65:4537–4542PubMedGoogle Scholar
  151. Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermoacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50:1601–1609PubMedCrossRefGoogle Scholar
  152. Haveman SA, Pedersen K (2002) Distribution of culturable microorganisms in Fennoscandian Shield groundwater. FEMS Microbiol Ecol 39:129–137PubMedCrossRefGoogle Scholar
  153. Heijthuijsen JHFG, Hansen TA (1986) Interspecies hydrogen transfer in co-cultures of methanol-utilizing acidogens and sulfate-reducing or methanogenic bacteria. FEMS Microbiol Ecol 38:57–64CrossRefGoogle Scholar
  154. Heijthuijsen JHFG, Hansen TA (1989) Selection of sulphur sources for the growth of Butyribacterium methylotrophicum and Acetobacterium woodii. Appl Microbiol Biotechnol 32:186–192CrossRefGoogle Scholar
  155. Heinonen JK, Drake HL (1988) Comparative assessment of inorganic pyrophosphate and pyrophosphatase levels of Escherichia coli, Clostridium pasteurianum, and Clostridium thermoaceticum. FEMS Microbiol Lett 52:205–208CrossRefGoogle Scholar
  156. Heise R, Müller V, Gottschalk G (1989) Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii. J Bacteriol 171:5473–5478PubMedGoogle Scholar
  157. Heise R, Reidlinger J, Müller V, Gottschalk G (1991) A sodium-stimulated ATP synthase in the acetogenic bacterium Acetobacterium woodii. FEBS Lett 295:119–122PubMedCrossRefGoogle Scholar
  158. Heise R, Müller V, Gottschalk G (1992) Presence of a sodium-translocating ATPase in membrane vesicles of the homoacetogenic bacterium Acetobacterium woodii. Eur J Biochem 206:553–557PubMedCrossRefGoogle Scholar
  159. Heise R, Müller V, Gottschalk G (1993) Acetogenesis and ATP synthesis in Acetobacterium woodii are coupled via a transmembrane primary sodium ion gradient. FEMS Microbiol Lett 112:261–268CrossRefGoogle Scholar
  160. Hermann M, Popoff M-R, Sebald M (1987) Sporomusa paucivorans sp. nov., a methylotrophic bacterium that forms acetic acid from hydrogen and carbon dioxide. Int J Sys Bacteriol 37:93–101CrossRefGoogle Scholar
  161. Hines ME, Evans RS, Sharak Genthner BR, Willis SG, Friedman S, Rooney-Varga JN, Devereux R (1999) Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora. Appl Environ Microbiol 65:2209–2216PubMedGoogle Scholar
  162. Hippe H, Andreesen JR, Gottschalk G (1992) The genus Clostridium–nonmedical. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 1800–1866Google Scholar
  163. Hoehler TM, Albert DB, Alperin MJ, Martens CS (1999) Acetogenesis from CO2 in an anoxic marine sediment. Limnol Oceanogr 44:662–667CrossRefGoogle Scholar
  164. Holdeman LV, Cato EP, Moore WEC (1977) Anaerobe laboratory manual, vol VI, 4th edn. Anaerobe Laboratory, Virginia Polytechnic Institute and State University, Blacksburg, pp 1–156Google Scholar
  165. Holdeman-Moore LV, Johnson JL, Moore WEC (1986) Genus Peptostreptococcus Kluyver and Van Niel 1936. In: Sneath PHA (ed) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1083–1092Google Scholar
  166. Holliger C, Schraa G (1994) Physiological meaning and potential for application of reductive dechlorination by anaerobic bacteria. FEMS Microbiol Rev 15:297–305PubMedCrossRefGoogle Scholar
  167. Hsu T, Daniel SL, Lux MF, Drake HL (1990a) Biotransformations of carboxylated aromatic compounds by the acetogen Clostridium thermoaceticum: generation of growth-supportive CO2 equivalents under CO2-limited conditions. J Bacteriol 172:212–217PubMedGoogle Scholar
  168. Hsu T, Lux MF, Drake HL (1990b) Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum. J Bacteriol 172:5901–5907PubMedGoogle Scholar
  169. Hu S-I, Drake HL, Wood HG (1982) Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes from Clostridium thermoaceticum. J Bacteriol 149:440–448PubMedGoogle Scholar
  170. Hu S-I, Pezacka E, Wood HG (1984) Acetate synthesis from carbon monoxide by Clostridium thermoaceticum: purification of the corrinoid protein. J Biol Chem 259:8892–8897PubMedGoogle Scholar
  171. Huang S, Lindahl PA, Wang C, Bennett GN, Rudolph FB, Hughes JB (2000) 2,4,6-trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum. Appl Environ Microbiol 66:1474–1478PubMedCrossRefGoogle Scholar
  172. Hugenholtz J, Ljungdahl LG (1989) Electron transport and electrochemical proton gradient in membrane vesicles of Clostridium thermoautotrophicum. J Bacteriol 171:2873–2875PubMedGoogle Scholar
  173. Hugenholtz J, Ljungdahl LG (1990) Amino acid transport in membrane vesicles of Clostridium thermoautotrophicum. FEMS Microbiol Lett 69:117–122CrossRefGoogle Scholar
  174. Hugenholtz J, Ivey DM, Ljungdahl LG (1987) Carbon monoxide-driven electron transport in Clostridium thermoautotrophicum membranes. J Bacteriol 169:5845–5847PubMedGoogle Scholar
  175. Hungate RE (1943) Quantitative analyses on the cellulose fermentation by termite protozoa. Ann Entomol Soc Am 36:730–739Google Scholar
  176. Hungate RE (1966) The Rumen and its microbes. Academic Press, New YorkGoogle Scholar
  177. Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3B. Academic, New York, pp 117–132Google Scholar
  178. Hungate RE (1976) The rumen fermentation. In: Schlegel HG, Gottschalk G, Pfennig N (eds) Microbial production and utilization of gases. Goltze, Göttingen, pp 119–124Google Scholar
  179. Ibba M, Fynn GH (1991) Two stage methanogenesis of glucose by Acetogenium kivui and acetoclastic methanogenic sp. Biotechnol Lett 13:671–676CrossRefGoogle Scholar
  180. Imkamp F, Müller V (2002) Chemiosmotic energy conservation with Na+ as the coupling ion during hydrogen-dependent caffeate reduction by Acetobacterium woodii. J Bacteriol 184:1947–1951PubMedCrossRefGoogle Scholar
  181. Inoue K, Kageyama S, Miki K, Morinaga T, Kamagata Y, Nakamura K, Mikami E (1992) Vitamin B12 production by Acetobacterium sp. and its tetrachloromethane-resistant mutants. J Ferment Bioengin 73:76–78CrossRefGoogle Scholar
  182. Ivey DM, Ljungdahl LG (1986) Purification and characterization of the F1-ATPase from Clostridium thermoaceticum. J Bacteriol 165:252–257PubMedGoogle Scholar
  183. Jansen M, Hansen TA (2001) Non-growth-associated demethylation of dimethylsulfoniopropionate by (homo)acetogenic bacteria. Appl Environ Microbiol 67:300–306PubMedCrossRefGoogle Scholar
  184. Johnson MS, Zhulin IB, Gapuzan ME, Taylor BL (1997) Oxygen-dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough. J Bacteriol 179:5598–5601PubMedGoogle Scholar
  185. Kamen MD (1963) The early history of carbon-14. J Chem Ed 40:234–242CrossRefGoogle Scholar
  186. Kamlage B, Blaut M (1993) Isolation of a cytochrome-deficient mutant strain of Sporomusa sphaeroides not capable of oxidizing methyl groups. J Bacteriol 175:3043–3050PubMedGoogle Scholar
  187. Kamlage B, Boelter A, Blaut M (1993) Spectroscopic and potentiometric characterization of cytochromes in two Sporomusa species and their expression during growth on selected substrates. Arch Microbiol 159:189–196CrossRefGoogle Scholar
  188. Kamlage B, Gruhl B, Blaut M (1997) Isolation and characterization of two new homoacetogenic hydrogen-utilizing bacteria from the human intestinal tract that are closely related to Clostridium coccoides. Appl Environ Microbiol 63:1732–1738PubMedGoogle Scholar
  189. Kane MD, Breznak JA (1991) Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch Microbiol 156:91–98PubMedCrossRefGoogle Scholar
  190. Kane MD, Brauman A, Breznak JA (1991) Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus. Arch Microbiol 156:99–104CrossRefGoogle Scholar
  191. Kaneuchi C, Benno Y, Mitsuoka T (1976) Clostridium coccoides, a new species from the feces of mice. Int J Syst Bacteriol 26:482–486CrossRefGoogle Scholar
  192. Kappler O, Janssen PH, Kreft J-U, Schink B (1997) Effects of alternative methyl group acceptors on the growth energetics of the O-demethylating anaerobe Holophaga foetida. Microbiology 143:1105–1114CrossRefGoogle Scholar
  193. Karita S, Nakayama K, Goto M, Sakka K, Kim WJ, Ogawa S (2003) A novel cellulolytic, anaerobic, and thermophilic bacterium, Moorella sp. strain F21. Biosci Biotechnol Biochem 67:183–185PubMedCrossRefGoogle Scholar
  194. Karlsson JL, Volcani BE, Barker HA (1948) The nutritional requirements of Clostridium aceticum. J Bacteriol 56:781–782Google Scholar
  195. Karnholz A, Küsel K, Gößner A, Schramm A, Drake HL (2002) Tolerance and metabolic response of acetogenic bacteria toward oxygen. Appl Environ Microbiol 68:1005–1009PubMedCrossRefGoogle Scholar
  196. Karrasch M, Bott M, Thauer RK (1989) Carbonic anhydrase activity in acetate grown Methanosarcina barkeri. Arch Microbiol 151:137–142CrossRefGoogle Scholar
  197. Kaufmann F, Wohlfarth G, Diekert G (1997) Isolation of O-demethylase, an ether-cleaving enzyme system of the homoacetogenic strain MC. Arch Microbiol 168:136–142PubMedCrossRefGoogle Scholar
  198. Kaufmann F, Wohlfarth G, Diekert G (1998) O-demethylase from Acetobacterium dehalogenans, substrate specificity and function of the participating proteins. Eur J Biochem 253:706–711PubMedCrossRefGoogle Scholar
  199. Kellum R, Drake HL (1984) Effects of cultivation gas phase on hydrogenase of the acetogen Clostridium thermoaceticum. J Bacteriol 160:466–469PubMedGoogle Scholar
  200. Kellum R, Drake HL (1986) Effects of carbon monoxide on one-carbon enzymes and energetics of Clostridium thermoaceticum. FEMS Microbiol Lett 34:41–45CrossRefGoogle Scholar
  201. Kerby R, Zeikus JG (1983) Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source. Curr Microbiol 8:27–30CrossRefGoogle Scholar
  202. Kerby R, Zeikus JG (1987) Anaerobic catabolism of formate to acetate and CO2 by Butyribacterium methylotrophicum. J Bacteriol 169:2063–2068PubMedGoogle Scholar
  203. Kim JS, Kim H, Oh K, Kim YS (2002) Acetic acid production using xylose and corn steep liquor by Clostridium thermoaceticum strain. J Ind Engin Chem 8:519–523Google Scholar
  204. Kisker C, Schindelin H, Alber BE, Ferry JG, Rees DC (1996) A left-handed β-helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila. EMBO J 15:2323–2330PubMedGoogle Scholar
  205. Klemps R, Cypionka H, Widdel F, Pfennig N (1985) Growth with hydrogen, and further physiological characteristics of Desulfotomaculum sp. Arch Microbiol 143:203–208CrossRefGoogle Scholar
  206. Klemps R, Schoberth SM, Sahm H (1987) Production of acetic acid by Acetogenium kivui. Appl Microbiol Biotechnol 27:229–234CrossRefGoogle Scholar
  207. Koesnandar S, Nishio N, Yamamoto A, Nagai S (1991) Enzymatic reduction of cystine into cysteine by cell-free extract of Clostridium thermoaceticum. J Ferment Bioengin 72:11–14CrossRefGoogle Scholar
  208. Kotelnikova S (2002) Microbial production and oxidation of methane in deep subsurface. Earth Sci Rev 58:367–395CrossRefGoogle Scholar
  209. Kotelnikova S, Pedersen K (1997) Evidence for methanogenic Archaea and homoacetogenic bacteria in deep granitic rock aquifers. FEMS Microbiol Rev 20:339–349CrossRefGoogle Scholar
  210. Kotelnikova S, Pedersen K (1998) Distribution and activity of methanogens in deep granitic aquifers at Äspö Hard Rock Laboratory, Sweden. FEMS Microbiol Ecol 26:21–134Google Scholar
  211. Kotsyurbenko OR, Simankova MV, Bolotina NP, Zhilina TN, Nozhevnikova AN (1992) Psychrotrophic homoacetogenic bacteria from several environments. In: Abstract of the 7th International Symposium on C1 Compounds, C136Google Scholar
  212. Kotsyurbenko OR, Simankova MV, Nozhevnikova AN, Zhilina TN, Bolotina NP, Lysenko AM, Osipov GA (1995) New species of psychrophilic acetogens: Acetobacterium bakii sp. nov., A. paludosum sp. nov., A. fimetarium sp. nov. Arch Microbiol 163:29–34CrossRefGoogle Scholar
  213. Kotsyurbenko OR, Nozhevnikova AN, Soloviova TI, Zavarin GA (1996) Methanogenesis at low temperatures by microflora of tundra wetland soil. Ant v Leeuwenhoek 69:75–86CrossRefGoogle Scholar
  214. Kreft J-U, Schink B (1993) Demethylation and degradation of phenylmethylethers by the sulfide-methylating homoacetogenic bacterium strain TMBS 4. Arch Microbiol 159:308–315CrossRefGoogle Scholar
  215. Kreft J-U, Schink B (1997) Specificity of O-demethylation in extracts of the homoacetogenic Holophaga foetida and demethylation kinetics measured by a coupled photometric assay. Arch Microbiol 167:363–368CrossRefGoogle Scholar
  216. Krumböck M, Conrad R (1991) Metabolism of position-labelled glucose in anoxic methanogenic paddy soil and lake sediment. FEMS Microbiol Ecol 85:247–256CrossRefGoogle Scholar
  217. Krumholz LR (2000) Microbial communities in the deep subsurface. Hydrogeol J 8:4–10Google Scholar
  218. Krumholz LR, Bryant MP (1985) Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate. Int J Sys Bacteriol 35:454–456CrossRefGoogle Scholar
  219. Krumholz LR, Bryant MP (1986) Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxymonobenzenoids or Methanobrevibacter as electron acceptor systems. Arch Microbiol 143:313–318CrossRefGoogle Scholar
  220. Krumholz LR, McKinley JP, Ulrich GA, Suflita JM (1997) Confined subsurface microbial communities in Cretaceous rock. Nature 386:64–66CrossRefGoogle Scholar
  221. Krumholz LR, Harris SH, Tay ST, Suflita SM (1999) Characterization of two subsurface H2-utilizing bacteria, Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov., and their ecological roles. Appl Environ Microbiol 65:2300–2306PubMedGoogle Scholar
  222. Kuever J, Kulmer J, Jannsen S, Fischer U, Blotevogel K-H (1993) Isolation and characterization of a new spore-forming sulfate-reducing bacterium growing by complete oxidation of catechol. Arch Microbiol 159:282–288PubMedCrossRefGoogle Scholar
  223. Kuever J, Rainey FA, Hippe H (1999) Description of Desulfotomaculum sp. Groll as Desulfotomaculum gibsoniae sp nov Int J Syst Bacteriol 49:1801–1808CrossRefGoogle Scholar
  224. Kuhner CH, Frank C, Grießhammer A, Schmittroth M, Acker G, Gößner A, Drake HL (1997) Sporomusa silvacetica sp. nov., an actogenic bacterium isolated from aggregated forest soil. Int J Syst Bacteriol 47:352–358PubMedCrossRefGoogle Scholar
  225. Kuhner CH, Matthies C, Acker G, Schmittroth M, Gößner AS, Drake HL (2000) Clostridium akagii sp. nov. and Clostridium acidisoli sp. nov.: acid-tolerant, N2-fixing clostridia isolated from acidic forest soil and litter. Int J Syst Evol Microbiol 50:873–881PubMedCrossRefGoogle Scholar
  226. Kurtz DM Jr (2003) Oxygen and anaerobes. In: Ljungdahl LG, Adams M, Barton L, Ferry JG, Johnson M (eds) Biochemistry and physiology of anaerobic bacteria. Springer, New York, pp 128–142CrossRefGoogle Scholar
  227. Küsel K, Drake HL (1994) Acetate synthesis in soil from a Bavarian beech forest. Appl Environ Microbiol 60:1370–1373PubMedGoogle Scholar
  228. Küsel K, Drake HL (1995) Effects of environmental parameters on the formation and turnover of acetate by forest soils. Appl Environ Microbiol 61:3667–3675PubMedGoogle Scholar
  229. Küsel K, Drake HL (1996) Anaerobic capacities of leaf litter. Appl Environ Microbiol 62:4216–4219PubMedGoogle Scholar
  230. Küsel K, Drake HL (1999) Microbial turnover of low molecular weight organic acids during leaf litter decomposition. Soil Biol Biochem 31:107–118CrossRefGoogle Scholar
  231. Küsel K, Pinkart HC, Drake HL, Devereux R (1999a) Acetogenic and sulfate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the sea grass Halodule wrightii. Appl Environ Microbiol 65:5117–5123PubMedGoogle Scholar
  232. Küsel K, Wagner C, Drake HL (1999b) Enumeration and metabolic product profiles of the anaerobic microflora in the mineral soil and litter of a beech forest. FEMS Microbiol Ecol 29:91–103CrossRefGoogle Scholar
  233. Küsel K, Dorsch T, Acker G, Stackebrandt E, Drake HL (2000) Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments. Int J Syst Evol Microbiol 50:537–546PubMedCrossRefGoogle Scholar
  234. Küsel K, Karnholz A, Trinkwalter T, Devereux R, Acker G, Drake HL (2001) Physiological ecology of Clostridium glycolicum RD-1, an aerotolerant acetogen isolated from sea grass roots. Appl Environ Microbiol 67:4734–4741PubMedCrossRefGoogle Scholar
  235. Küsel K, Wagner C, Trinkwalter T, Gößner AS, Bäumler R, Drake HL (2002) Microbial reduction of Fe(III) and turnover of acetate in Hawaiian soils. FEMS Microbiol Ecol 40:73–81PubMedCrossRefGoogle Scholar
  236. Küsel K, Gößner A, Lovell CR, Drake HL (2003) Ecophysiology of an aerotolerant acetogen, Sporomusa ST-1, isolated from Juncus roots. Abstr Ann Meet Soc Microbiol Abstr Q-375:582Google Scholar
  237. Lajoie SF, Bank S, Miller TL, Wolin MJ (1988) Acetate production from hydrogen and [13C]carbon dioxide by the microflora of human feces. Appl Environ Microbiol 54:2723–2727PubMedGoogle Scholar
  238. Laopaiboon R, Tanner RS (1999) Effect of nitrate on acetogenesis by Clostridium ljungdahlii. Abstr Ann Meet Am Soc Microbiol K-18:404Google Scholar
  239. Le Ruyet P, Dubourguier HC, Albagnac G (1984) Homoacetogenic fermentation of cellulose by a coculture of Clostridium thermocellum and Acetogenium kivui. Appl Environ Microbiol 48:893–894PubMedGoogle Scholar
  240. Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631PubMedGoogle Scholar
  241. Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by sprirochetes from termite guts. Science 283:686–689PubMedCrossRefGoogle Scholar
  242. Leaphart A, Lovell CR (2001) Recovery and analysis of formyltetrahydrofolate synthetase gene sequences from natural populations of acetogenic bacteria. Appl Environ Microbiol 67:1392–1395PubMedCrossRefGoogle Scholar
  243. Leaphart AB, Spencer HT, Lovell CR (2002) Site-directed mutagenesis of a potential catalytic and formyl phosphate binding site and substrate inhibition of N-10-formyltetrahydrofolate synthetase. Arch Biochem Biophys 408:137–143PubMedCrossRefGoogle Scholar
  244. Leaphart AB, Friez MJ, Lovell CR (2003) Formyltetrahydrofolate synthetase sequences from salt marsh plant roots reveal a diversity of acetogenic bacteria and other bacterial functional groups. Appl Environ Microbiol 69:693–696PubMedCrossRefGoogle Scholar
  245. Lebloas P, Loubiere P, Lindley ND (1994) Use of unicarbon substrate mixtures to modify carbon flux improves vitamin B12 production with the acetogenic methylotroph Eubacterium limosum. Biotechnol Lett 16:129–132CrossRefGoogle Scholar
  246. Leclerc M, Bernalier A, Donadille G, Lelait M (1997a) H2/CO2 metabolism in acetogenic bacteria isolted from the human colon. Anaerobe 3:307–315PubMedCrossRefGoogle Scholar
  247. Leclerc M, Bernalier A, Lelait M, Grivet J-P (1997b) 13C-NMR study of glucose and pyruvate catabolism in four acetogenic species isolated from the human colon. FEMS Microbiol Lett 146:199–204PubMedCrossRefGoogle Scholar
  248. Lee MJ, Zinder SH (1988) Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO22. Appl Environ Microbiol 54:124–129PubMedGoogle Scholar
  249. Leedle JAZ, Greening RC (1988) Postprandial changes in methanogenic and acidogenic bacteria in the rumens of steers fed high-or low-forage diets once daily. Appl Environ Microbiol 54:502–506PubMedGoogle Scholar
  250. Leedle JAZ, Lotrario J, Hovermale J, Craig AM (1995) Forestomach anaerobic microflora of the bowhead whale (Balaena mysticetus). Abstr Ann Meet Am Soc Microbiol Abstr N-8:334Google Scholar
  251. Leigh JA, Mayer F, Wolfe RS (1981) Acetogenium kivui, a new thermophilic hydrogen-oxidizing, acetogenic bacterium. Arch Microbiol 129:275–280CrossRefGoogle Scholar
  252. Lentz K, Wood HG (1955) Synthesis of acetate from formate and carbon dioxide by Clostridium thermoaceticum. J Biol Chem 215:645–654PubMedGoogle Scholar
  253. Liesack W, Bak F, Kreft J-U, Stackebrandt E (1994) Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch Microbiol 162:85–90PubMedGoogle Scholar
  254. Lilburn TG, Schmidt TM, Breznak JA (1999) Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1:331–345PubMedCrossRefGoogle Scholar
  255. Lindahl PA (2002) The Ni-containing carbon monoxide dehydrogenase family: light at the end of the tunnel? Biochemistry (Moscow) 41:2097–2105CrossRefGoogle Scholar
  256. Lindahl PA, Chang B (2001) The evolution of acetyl-CoA synthase. Orig Life Evol Biosph 31:403–434PubMedCrossRefGoogle Scholar
  257. Lindskog S, Henderson LE, Kannan KK, Liljas A, Strandberg POB (1971) Carbonic anhydrase. The enzymes 5:587–665CrossRefGoogle Scholar
  258. Liu S, Suflita JM (1993) H2/CO2-dependent anaerobic O-demethylation activity in subsurface sediments and by an isolated bacterium. Appl Environ Microbiol 59:1325–1331PubMedGoogle Scholar
  259. Liu C-L, Hart N, Peck HD Jr (1982) Inorganic pyrophosphate: energy source for sulfate-reducing bacteria of the genus Desulfotomaculum. Science 217:363–364PubMedCrossRefGoogle Scholar
  260. Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann Rev Microbiol 40:415–450CrossRefGoogle Scholar
  261. Ljungdahl LG (1994) The acetyl-CoA pathway and the chemiosmotic generation of ATP during acetogenesis. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 63–87CrossRefGoogle Scholar
  262. Ljungdahl LG, Eriksson K-E (1985) Ecology of microbial cellulose degradation. Adv Microb Ecol 8:237–299CrossRefGoogle Scholar
  263. Ljungdahl L, Wood HG (1965) Incorporation of C14 from carbon dioxide into sugar phosphates, carboxylic acids, and amino acids by Clostridium thermoaceticum. J Bacteriol 89:1055–1064PubMedGoogle Scholar
  264. Ljungdahl LG, Wood HG (1969) Total synthesis of acetate from CO2 by heterotrophic bacteria. Ann Rev Microbiol 23:515–538CrossRefGoogle Scholar
  265. Ljungdahl L, Irion E, Wood HG (1966) Role of corrinoids in the total synthesis of acetate from CO2 by Clostridium thermoaceticum. Fed Proceed 25:1642–1648Google Scholar
  266. Ljungdahl LG, Carreira LH, Garrison RJ, Rabek NE, Wiegel J (1985) Comparison of three thermophilic acetogenic bacteria for production of calcium magnesium acetate. Biotechnol Bioengin Symp 15:207–223Google Scholar
  267. Ljungdahl LG, Hugenholtz J, Wiegel J (1989) Acetogenic and acid-producing clostridia. In: Minton NP, Clarke DK (eds) Clostridia. Plenum Press, New York, pp 145–191Google Scholar
  268. Loke HK, Lindahl PA (2003) Identification and preliminary characterization of AcsF, a putative Ni-insertase used in the biosynthesis of acetyl-CoA synthase from Clostridium thermoaceticum. J Inorg Biochem 93:33–40PubMedCrossRefGoogle Scholar
  269. Lorowitz WH, Bryant MP (1984) Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl Environ Microbiol 47:961–964PubMedGoogle Scholar
  270. Loubiere P, Gros E, Paquet V, Lindley ND (1992) Kinetics and physiological implications of the growth behaviour of Eubacterium limosum on glucose/methanol mixtures. J Gen Microbiol 138:979–985CrossRefGoogle Scholar
  271. Lovell CR (1994) Development of DNA probes for the detection and identification of acetogenic bacteria. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 236–253CrossRefGoogle Scholar
  272. Lovell CR, Hui Y (1991) Design and testing of a functional group-specific DNA probe for the study of natural populations of acetogenic bacteria. Appl Environ Microbiol 57:2602–2609PubMedGoogle Scholar
  273. Lovell CR, Przybyla A, Ljungdahl LG (1990) Primary structure of the thermostable formyltetrahydrofolate synthetase from Clostridium thermoaceticum. Biochemistry 29:5687–5694PubMedCrossRefGoogle Scholar
  274. Lovell CR, Piceno YM, Quattro JM, Bagwell CE (2000) Molecular analysis of diazotroph diversity in the rhizosphere of the smooth cordgrass Spartina alterniflora. Appl Environ Microbiol 66:3814–3822PubMedCrossRefGoogle Scholar
  275. Lowe A, Jain MK, Zeikus JG (1993) Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to envionmental stresses in temperature, pH, salinity, or substrates. Microbiol Rev 57:451–509PubMedGoogle Scholar
  276. Ludwig W, Bauer SH, Bauer M, Held I, Kirchhof G, Schulze R, Huber I, Spring S, Hartmann A, Schleifer K-H (1997) Detection of in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol Lett 153:181–190PubMedCrossRefGoogle Scholar
  277. Lumppio HL, Shenvi NV, Summers AO, Voordrouw G, Kurtz DM Jr (2001) Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system. J Bacteriol 183:101–108PubMedCrossRefGoogle Scholar
  278. Lundie LL Jr, Drake HL (1984) Development of a minimally defined medium for the acetogen Clostridium thermoaceticum. J Bacteriol 159:700–703PubMedGoogle Scholar
  279. Lupas A, Engelhardt H, Peters J, Santarius U, Volker S, Baumeister W (1994) Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J Bacteriol 176:1224–1233PubMedGoogle Scholar
  280. Lux MF, Drake HL (1992) Re-examination of the metabolic potentials of the acetogens Clostridium aceticum and Clostridium formicoaceticum: Chemolithoautotrophic and aromatic-dependent growth. FEMS Microbiol Lett 95:49–56CrossRefGoogle Scholar
  281. Lux MF, Keith E, Hsu T, Drake HL (1990) Biotransformation of aromatic aldehydes by acetogenic bacteria. FEMS Microbiol Lett 67:73–78CrossRefGoogle Scholar
  282. Lynd LH, Zeikus JG (1983) Metabolism of H2-CO2, methanol, and glucose by Butyribacterium methylotrophicum. J Bacteriol 153:1415–1423PubMedGoogle Scholar
  283. Lynd L, Kerby R, Zeikus JG (1982) Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum. J Bacteriol 149:255–263PubMedGoogle Scholar
  284. Mackie RI, Bryant MP (1994) Acetogenesis and the rumen: syntrophic relationships. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 331–364CrossRefGoogle Scholar
  285. Madsen T, Licht D (1992) Isolation and characterization of an anaerobic chlorophenol-transforming bacterium. Appl Environ Microbiol 58:2874–2878PubMedGoogle Scholar
  286. Marschall C, Frenzel P, Cypionka H (1993) Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria. Arch Microbiol 159:168–173CrossRefGoogle Scholar
  287. Martin DR, Lundie LL, Kellum R, Drake HL (1983) Carbon monoxide-dependent evolution of hydrogen by the homoacetate-fermenting bacterium Clostridium thermoaceticum. Curr Microbiol 8:337–340CrossRefGoogle Scholar
  288. Martin DR, Misra A, Drake HL (1985) Dissimilation of carbon monoxide to acetic acid by glucose-limited cultures of Clostridium thermoaceticum. Appl Environ Microbiol 49:1412–1417PubMedGoogle Scholar
  289. Matthies C, Freiberger A, Drake HL (1993) Fumarate dissimilation and differential reductant flow by Clostridium formicoaceticum and Clostridium aceticum. Arch Microbiol 160:273–278CrossRefGoogle Scholar
  290. Matthies C, Kuhner CH, Acker G, Drake HL (2001) Clostridium uliginosum sp. nov., a novel acid-tolerant, anaerobic bacterium with connecting filaments. Int J Syst Evol Microbiol 51:1119–1125PubMedCrossRefGoogle Scholar
  291. Mayer F, Elliott JI, Sherod D, Ljungdahl LG (1982) Formyltetrahydrofolate synthetase from Clostridium thermoaceticum. Eur J Biochem 124:397–404PubMedCrossRefGoogle Scholar
  292. Maynard EL, Lindahl PA (1999) Evidence of a molecular tunnel connecting the active sites for CO2 reduction and acetyl-CoA synthesis in acetyl-CoA synthase from Clostridium thermoaceticum. J Am Chem Soc 121:9221–9222CrossRefGoogle Scholar
  293. Maynard EL, Lindahl PA (2001) Catalytic coupling of the active sites in acetyl-CoA synthase, a bifunctional CO-channeling enzyme. Biochemistry 40:13262–13267PubMedCrossRefGoogle Scholar
  294. McInerney MJ, Bryant MP (1981) Basic principles of bioconversions in anaerobic digestion and methanogenesis. In: Sofer SS, Zaborsky OR (eds) Biomass conversion processes for energy and fuels. Plenum Press, New York, pp 277–296CrossRefGoogle Scholar
  295. Mechichi T, Labat M, Woo THS, Thomas P, Garcia JL, Patel BKC (1998) Eubacterium aggregans sp. nov., a new homoacetogenic bacterium from olive mill wastewater treatment digestor. Anaerobe 4:283–291PubMedCrossRefGoogle Scholar
  296. Mechichi T, Labat M, Patel BKC, Woo THS, Thomas P, Garcia JL (1999) Clostridium methoxybenzovorans sp. nov., a new aromatic O-demethylating homoacetogen from an olive mill wastewater treatment digester. Int J Syst Bacteriol 49:1201–1209PubMedCrossRefGoogle Scholar
  297. Menzel U, Gottschalk G (1985) The internal pH of Acetobacterium wieringae and Acetobacter aceti during growth and production of acetic acid. Arch Microbiol 143:47–51CrossRefGoogle Scholar
  298. Meßmer M, Wohlfarth G, Diekert G (1993) Methyl chloride metabolism of the strictly anaerobic, methyl chloride-utilizing homoacetogen strain MC. Arch Microbiol 160:383–387CrossRefGoogle Scholar
  299. Meßmer M, Reinhardt S, Wohlfarth G, Diekert G (1996) Studies on methyl chloride dehalogenase and O-demethylase in cell extracts of the homoacetogen strain MC based on a newly developed coupled enzyme assay. Arch Microbiol 165:18–25CrossRefGoogle Scholar
  300. Meyer O (1988) Biology and biotechnology of aerobic carbon monoxide-oxidising bacteria. In: Schlingmann M, Crueger W, Esser K, Thauer R, Wagner F (eds) Biotechnology focus, vol 1. Hanser, Munich, pp 3–31CrossRefGoogle Scholar
  301. Meyer O, Frunzke K, Mörsdorf G (1993) Biochemistry of the aerobic utilization of carbon monoxide. In: Murrell JC, Kelly DP (eds) Microbial growth on C1 compounds. Intercept, Andover, pp 433–459Google Scholar
  302. Meyer O, Gremer L, Ferner R, Ferner M, Dobbek H, Gnida M, Meyer-Klaucke W, Huber R (2000) The role of Se, Mo and Fe in the structure and function of carbon monoxide dehydrogenase. Biol Chem 381:865–876PubMedCrossRefGoogle Scholar
  303. Mikx FHM (1997) Environmental effects on the growth and proteolysis of Treponema denticola ATCC 33520. Oral Microbiol Immunol 12:249–253PubMedCrossRefGoogle Scholar
  304. Miller TL, Wolin MJ (1982) Enumeration of Methanobrevibacter smithii in human feces. Arch Microbiol 141:116–122CrossRefGoogle Scholar
  305. Miller TL, Wolin MJ (1995) Bioconversion of cellulose to acetate with pure cultures of Ruminococcus albus and a hydrogen-using acetogen. Appl Environ Microbiol 61:3832–3835PubMedGoogle Scholar
  306. Miller TL, Wolin MJ (1996) Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl Environ Microbiol 62:1589–1592PubMedGoogle Scholar
  307. Min H, Zinder SH (1990) Isolation and characterization of a thermophilic sulfate-reducing bacterium Desulfotomaculum thermoacetoxidans sp. nov. Arch Microbiol 153:399–404CrossRefGoogle Scholar
  308. Misoph M, Drake HL (1996) Effect of CO2 on the fermentation capacities of the acetogen Peptostreptococcus productus U-1. J Bacteriol 178:3140–3145PubMedGoogle Scholar
  309. Misoph M, Daniel SL, Drake HL (1996) Bidirectional usage of ferulate by the acetogen Peptostreptococcus productus U-1: CO2 and aromatic acrylate groups as competing electron acceptors. Microbiology 142:1983–1988CrossRefGoogle Scholar
  310. Moench TT, Zeikus JG (1983) An improved preparation method for a titanium (III) media reductant. J Microbiol Meth 1:199–202CrossRefGoogle Scholar
  311. Möller B, Oßmer R, Howard BH, Gottschalk G, Hippe H (1984) Sporomusa, a new genus of Gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch Microbiol 139:388–396CrossRefGoogle Scholar
  312. Moore W, Cato E (1965) Synonymy of Eubacterium limosum and Butyribacterium rettgeri. Int Bull Bacteriol Nomen Taxon 15:69–80CrossRefGoogle Scholar
  313. Moore WEC, Holdeman LV (1974) Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27:961–979PubMedGoogle Scholar
  314. Morton TA, Chou C-F, Ljungdahl LG (1992) Cloning, sequencing, and expressions of genes encoding enzymes of the autotrophic acetyl-CoA pathway in the acetogen Clostridium thermoaceticum. In: Sebald M (ed) Genetics and molecular biology of anaerobic bacteria. Springer, New York, pp 389–406Google Scholar
  315. Müller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69:6345–6353PubMedCrossRefGoogle Scholar
  316. Müller V, Bowien S (1995) Differential effects of sodium ions on motility in the homoacetogenic bacteria Acetobacterium woodii and Sporomusa sphaeroides. Arch Microbiol 164:363–369CrossRefGoogle Scholar
  317. Müller V, Gottschalk G (1994) The sodium ion cycle in acetogenic and methanogenic bacteria: generation and utilization of a primary electrochemical sodium ion gradient. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 127–156CrossRefGoogle Scholar
  318. Müller V, Aufurth S, Rahlfs S (2001) The Na+-cycle in Acetobacterium woodii: identification and characterization of a Na+-translocating F1F0-ATPase with a mixed oligomer of 8 and 16-kDa proteolipids. Biochim Biophys Acta 1505:108–120PubMedCrossRefGoogle Scholar
  319. Müller V, Inkamp F, Rauwolf A, Küsel K, Drake HL (2004) Molecular and cellular biology of acetogenic bacteria. In: Nakano M, Zuber P (eds) Strict and facultative anaerobes: medical and environmental aspects horizon. Scientific Press, Norfolk, p 392Google Scholar
  320. Nagaranthal KR, Nagle DP Jr (1992) Inhibition of methanogenesis in Methanobacterium thermoautotrophicum by lumazine. Abstr Ann Meet Am Am Soc Microbiol I-23:240Google Scholar
  321. Naidu D, Ragsdale SW (2001) Characterization of a three-component vanillate O-demethylase from Moorella thermoacetica. J Bacteriol 183:3276–3281PubMedCrossRefGoogle Scholar
  322. Nozhevnikova AN, Kotsyurbenko OR, Simankova MV (1994) Acetogenesis at low temperature. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 416–431CrossRefGoogle Scholar
  323. Nozhevnikova AN, Simankova MV, Parshina SN, Kotsyurbenko OR (2001) Temperature characteristics of methanogenic archaea and acetogenic bacteria isolated from cold environments. Water Sci Technol 44:41–48PubMedGoogle Scholar
  324. O’Brien WE, Ljungdahl LG (1972) Fermentation of fructose and synthesis of acetate from carbon dioxide by Clostridium formicoaceticum. J Bacteriol 109:626–632PubMedGoogle Scholar
  325. O’Brien WE, Brewer JM, Ljungdahl LG (1973) Purification and characterization of thermostable 5,10-methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum. J Biol Chem 248:403–408PubMedGoogle Scholar
  326. Ohwaki K, Hungate RE (1977) Hydrogen utilization by clostridia in sewage sludge. Appl Environ Microbiol 33:1270–1274PubMedGoogle Scholar
  327. Ollivier B, Cordruwisch R, Lombardo A, Garcia JL (1985a) Isolation and characterization of Sporomusa acidovorans sp. nov., a methylotrophic homoacetogenic bacterium. Arch Microbiol 142:307–310CrossRefGoogle Scholar
  328. Ollivier BM, Mah RA, Ferguson TJ, Boone DR, Garcia JL, Robinson R (1985b) Emendation of the genus Thermobacteroides: Thermobacteriodes proteolyticus sp. nov., a proteolytic acetogen from a methanogenic enrichment. Int J Sys Bacteriol 35:425–428CrossRefGoogle Scholar
  329. Ollivier B, Caumette P, Garcia J-L, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38PubMedGoogle Scholar
  330. Oren A (1988) Anaerobic degradation of organic compounds at high salt concentrations. Ant v Leeuwenhoek 54:267–277CrossRefGoogle Scholar
  331. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Molec Rev 63:334–348Google Scholar
  332. Pacaud S, Loubiere P, Goma G (1985) Methanol metabolism by Eubacterium limosum B2: effects of pH and carbon dioxide on growth and organic acid production. Curr Microbiol 12:245–250CrossRefGoogle Scholar
  333. Parekh SR, Cheryan M (1991) Production of acetate by mutant strains of Clostridium thermoaceticum. Appl Microbiol Biotechnol 36:384–387CrossRefGoogle Scholar
  334. Parekh M, Keith ES, Daniel SL, Drake HL (1992) Comparative evaluation of the metabolic potentials of different strains of Peptostreptococcus productus: utilization and transformation of aromatic compounds. FEMS Microbiol Lett 94:69–74CrossRefGoogle Scholar
  335. Park EY, Clark JE, DerVartanian DV, Ljungdahl LG (1991) 5,10-methylenetetrahydrofolate reductases: iron-sulfur-zinc flavoproteins of two acetogenic clostridia. In: Müller F (ed) Chemistry and biochemistry of flavoenzymes, vol 1. CRC Press, Boca Raton, pp 389–400Google Scholar
  336. Patel BKC, Monk C, Littleworth H, Morgan HW, Daniel RM (1987) Clostridium fervidus sp. nov., a new chemoorganotrophic acetogenic thermophile. Int J Sys Bacteriol 37:123–126CrossRefGoogle Scholar
  337. Peters V, Conrad R (1995) Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. Appl Environ Microbiol 61:1673–1676PubMedGoogle Scholar
  338. Peters V, Conrad R (1996) Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils. Soil Biol Biochem 28:371–382CrossRefGoogle Scholar
  339. Peters V, Janssen PH, Conrad R (1998) Efficiency of hydrogen utilization during unitrophic and mixotrophic growth of Acetobacterium woodii on hydrogen and lactate in the chemostat. FEMS Microbiol Ecol 26:317–324CrossRefGoogle Scholar
  340. Pezacka E, Wood HG (1984a) Role of carbon monoxide dehydrogenase in the autotrophic pathway used by acetogenic bacteria. Proc Natl Acad Sci USA 81:6261–6265PubMedCrossRefGoogle Scholar
  341. Pezacka E, Wood HG (1984b) The synthesis of acetyl-CoA by Clostridium thermoaceticum from carbon dioxide, hydrogen, coenzyme A and methyltetrahydrofolate. Arch Microbiol 137:63–69PubMedCrossRefGoogle Scholar
  342. Pezacka E, Wood HG (1986) The autotrophic pathway of acetogenic bacteria: role of CO dehydrogenase disulfide reductase. J Biol Chem 261:1609–1615PubMedGoogle Scholar
  343. Pfennig N (1978) Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28:283–288CrossRefGoogle Scholar
  344. Phelps TJ, Zeikus JG (1984) Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake. Appl Environ Microbiol 48:1088–1095PubMedGoogle Scholar
  345. Phillips JR, Clausen EC, Gaddy JL (1994) Synthesis gas as substrate for the biological production of fuels and chemicals. Appl Biochem Biotechnol 45/46:145–157Google Scholar
  346. Plugge CM, Grotenhuis JTC, Stams AJM (1990) Isolation and characterization of an ethanol-degrading anaerobe from methanogenic granular sludge. In: Belaich J-P, Bruschiand M, Garcia JL (eds) Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer. Plenum Press, New York, NY FEMS Symposium No. 54, pp 439–442Google Scholar
  347. Pochart P, Dore J, Lemann F, Goderel I, Rambaud JC (1992) Interrelations between populations of methanogenic archaea and sulphate-reducing bacteria in the human colon. FEMS Microbiol Lett 98:225–228Google Scholar
  348. Poston JM, Kuratomi K, Stadtman ER (1964) Methyl-vitamin B12 as a source of methyl groups for the synthesis of acetate by cell-free extracts of Clostridium thermoaceticum. Ann NY Acad Sci 112:804–806PubMedCrossRefGoogle Scholar
  349. Preuss A, Fimpel J, Diekert G (1993) Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch Microbiol 159:345–353PubMedCrossRefGoogle Scholar
  350. Prins RA, Lankhorst A (1977) Synthesis of acetate from CO2 in the cecum of some rodents. FEMS Microbiol Lett 1:255–258CrossRefGoogle Scholar
  351. Radfar R, Shin R, Sheldrick GM, Minor W, Lovell CR, Odom JD, Dunlap RB, Lebioda L (2000) The crystal structure of N10-formyltetrahydrofolate synthetase from Moorella thermoacetica. Biochemistry (Moscow) 39:3920–3926CrossRefGoogle Scholar
  352. Ragsdale SW (1991) Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit Rev Biochem Molec Biol 26:261–300CrossRefGoogle Scholar
  353. Ragsdale SW (1994) CO dehydrogenase and the central role of this enzyme in the fixation of carbon dioxide by anaerobic bacteria. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 88–126CrossRefGoogle Scholar
  354. Ragsdale SW (1997) The Eastern and Western branches of the Wood/Ljungdahl pathway: how the East and West were won. BioFactors 6:3–11PubMedCrossRefGoogle Scholar
  355. Ragsdale SW (2000) Nickel containing CO dehydrogenases and hydrogenases. In: Holzenburg A, Scrutton N (eds) Enzyme-catalyzed electron and radical transfer, vol 35. Plenum Press, New York, pp 487–518CrossRefGoogle Scholar
  356. Ragsdale SW (2003a) Anaerobic one-carbon catalysis. In: Horvath IT, Iglesia E, Klein MT, Lercher JA, Russell AJ, Stiefel EI (eds) Encyclopedia of catalysis. Wiley, New York, pp 665–695Google Scholar
  357. Ragsdale SW (2003b) Pyruvate ferredoxin oxidoreductase and its radical intermediate. Chem Rev 103:2333–2346PubMedCrossRefGoogle Scholar
  358. Ragsdale SW (2004) Life with carbon monoxide. CRC Crit Rev Biochem Molec Biol 39(3):165–95CrossRefGoogle Scholar
  359. Ragsdale SW, Kumar M (1996) Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase. Chem Rev 96:2515–2539PubMedCrossRefGoogle Scholar
  360. Ragsdale SW, Ljungdahl LG (1984) Hydrogenase from Acetobacterium woodii. Arch Microbiol 139:361–365PubMedCrossRefGoogle Scholar
  361. Ragsdale SW, Clark JE, Ljungdahl LG, Lundie LL, Drake HL (1983) Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfide protein. J Biol Chem 258:2364–2369PubMedGoogle Scholar
  362. Ragsdale SW, Wood HG, Antholine WE (1985) Evidence that an iron-nickel-carbon complex is formed by reaction of CO with the CO dehydrogenase from Clostridium thermoaceticum. Proc Natl Acad Sci USA 82:6811–6814PubMedCrossRefGoogle Scholar
  363. Rainey FA, Ward NL, Morgan HW, Toalster R, Stackebrandt E (1993) Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. J Bacteriol 175:4772–4779PubMedGoogle Scholar
  364. Rasch M, Saxton WO, Baumeister W (1984) The regular surface layer of Acetogenium kivui: some structural, developmental and evolutionary aspects. FEMS Microbiol Lett 24:285–290CrossRefGoogle Scholar
  365. Ravinder T, Swamy MV, Seenaya G, Reddy G (2001) Clostridium lentocellum SG6—a potential organism for fermentation of cellulose to acetic acid. Biores Technol 80:171–177CrossRefGoogle Scholar
  366. Reidlinger J, Müller V (1994) Purification of ATP synthase from Acetobacterium woodii and identification as a Na+-translocating F1F0-type enzyme. Eur J Biochem 223:275–283PubMedCrossRefGoogle Scholar
  367. Reidlinger J, Mayer F, Müller V (1994) The molecular structure of the Na+-translocating F1F0-ATPase of Acetobacterium woodii, as revealed by electron microscopy, resembles that of H+-translocating ATPases. FEBS Lett 356:17–20PubMedCrossRefGoogle Scholar
  368. Reith F, Drake HL, Küsel K (2002) Anaerobic activities of bacteria and fungi in moderately acidic conifer and leaf litter. FEMS Microbiol Ecol 41:27–35PubMedCrossRefGoogle Scholar
  369. Revsbech NP, Pedersen O, Reichardt W, Briones A (1999) Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biol Fertil Soils 29:379–385CrossRefGoogle Scholar
  370. Rieu-Lesme F, Fonty G, Doré J (1995) Isolation and characterization of a new hydrogen-utilizing bacterium from the rumen. FEMS Microbiol Lett 125:77–82PubMedCrossRefGoogle Scholar
  371. Rieu-Lesme F, Dauga C, Morvan B, Bouvet OMM, Grimont PAD, Doré J (1996a) Acetogenic coccoid spore-forming bacteria isolated from the rumen. Res Microbiol 147:753–764PubMedCrossRefGoogle Scholar
  372. Rieu-Lesme F, Morvan B, Collins MD, Fontyand G, Willems A (1996b) A new H2/CO2-using acetogenic bacterium from the rumen: description of Ruminococcus schinkii sp. nov. FEMS Microbiol Lett 140:281–286PubMedGoogle Scholar
  373. Rieu-Lesme F, Dauga C, Fonty G, Doré J (1998) Isolation from the rumen of a new acetogenic bacterium phylogenetically closely related to Clostridium difficile. Anaerobe 4:89–94PubMedCrossRefGoogle Scholar
  374. Rosencrantz D, Rainey FA, Janssen PH (1999) Culturable populations of Sporomusa spp. and Desulfovibrio spp. in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 65:3526–3533PubMedGoogle Scholar
  375. Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidising populations. Appl Environ Microbiol 63:4704–4712PubMedGoogle Scholar
  376. Royall D, Wolever TMS, Jeejeebhoy KN (1990) Clinical significance of colonic fermentation. Am J Gastroenetrol 85:1307–1312Google Scholar
  377. Salmassi TM, Leadbetter JR (2003) Analysis of genes of tetrahydrofolate-dependent metabolism from cultivated spirochaetes and the gut community of the termite Zootermopsis angusticollis. Microbiology 149:2529–2537PubMedCrossRefGoogle Scholar
  378. Samain E, Albangnac G, Dubourguier HC, Touzel J-P (1982) Characterization of a new propionic acid bacterium that ferments ethanol and displays a growth factor-dependent association with a gram-negative homoacetogen. FEMS Microbiol Lett 15:69–74CrossRefGoogle Scholar
  379. Sanford RA, Cole JR, Löffler FE, Tiedje JM (1996) Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl Environ Microbiol 62:3800–3808PubMedGoogle Scholar
  380. Sansone FJ, Martens CS (1982) Volatile fatty acid cycling in organic-rich marine sediments. Geochim Cosmochim Acta 46:1575–1589CrossRefGoogle Scholar
  381. Savage MD, Drake HL (1986) Adaptation of the acetogen Clostridium thermoautotrophicum to minimal medium. J Bacteriol 165:315–318PubMedGoogle Scholar
  382. Savage MD, Wu Z, Daniel SL, Lundie LL Jr, Drake HL (1987) Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum. Appl Environ Microbiol 53:1902–1906PubMedGoogle Scholar
  383. Schauder R, Eikmanns B, Thauer RK, Widdel F, Fuchs G (1986) Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the critic acid cycle. Arch Microbiol 145:162–172CrossRefGoogle Scholar
  384. Schaupp A, Ljungdahl LG (1974) Purification and properties of acetate kinase from Clostridium thermoaceticum. Arch Microbiol 100:121–129PubMedCrossRefGoogle Scholar
  385. Schink B (1984) Clostridium magnum sp. nov., a non-autotrophic homoacetogenic bacterium. Arch Microbiol 137:250–255CrossRefGoogle Scholar
  386. Schink B (1994) Diversity, ecology, and isolation of acetogenic bacteria. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 197–235CrossRefGoogle Scholar
  387. Schink B, Bomar M (1992) The genera Acetobacterium, Acetogenium, Acetoanaerobium, and Acetitomaculum. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 1925–1936Google Scholar
  388. Schmitt-Wagner D, Brune A (1999) Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4490–4496PubMedGoogle Scholar
  389. Schnürer A, Houwen FP, Svensson BH (1994) Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonium concentration. Arch Microbiol 162:70–74CrossRefGoogle Scholar
  390. Schnürer A, Schink B, Svensson BH (1996) Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Bacteriol 46:1145–1152PubMedCrossRefGoogle Scholar
  391. Schnürer A, Svensson BH, Schink B (1997) Enzyme activities in and energetics of acetate metabolism by the mesophilic syntrophically acetate-oxidizing anaerobe Clostridium ultunense. FEMS Microbiol Lett 154:331–336CrossRefGoogle Scholar
  392. Schopf JW, Hayes JM, Walter MR (1983) Evolution of the earth’s earliest ecosystems: recent progress and unsolved problems. In: Schopf JW (ed) Earth’s earliest biosphere. Princeton University Press, Princeton, pp 361–384Google Scholar
  393. Schramm E, Schink B (1991) Ether-cleaving enzyme and diol dehydratase involved in anaerobic polyethylene glycol degradation by a new Acetobacterium sp. Biodegradation 2:71–79PubMedCrossRefGoogle Scholar
  394. Schulman M, Ghambeer RK, Ljungdahl LG, Wood HG (1973) Total synthesis of acetate from CO2. VII: evidence with Clostridium thermoaceticum that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2. J Biol Chem 248:6255–6261PubMedGoogle Scholar
  395. Schulz S, Conrad R (1996) Influence of temperature on pathways to methane production in the permanently cold profundal sediment of Lake constance. FEMS Microbiol Ecol 20:1–14CrossRefGoogle Scholar
  396. Schulz M, Leichmann H, Günther H, Simon H (1995) Electromicrobial regeneration of pyridine nucleotides and other preparative redox transformations with Clostridium thermoaceticum. Appl Microbiol Biotechnol 42:916–922CrossRefGoogle Scholar
  397. Schuppert B, Schink B (1990) Fermentation of methoxyacetate to glycolate and acetate by newly isolated strains of Acetobacterium sp. Arch Microbiol 153:200–204CrossRefGoogle Scholar
  398. Schwartz RD, Keller FA Jr (1982) Isolation of a strain of Clostridium thermoaceticum capable of growth and acetic acid production at pH 4.5. Appl Environ Microbiol 43:117–123PubMedGoogle Scholar
  399. Seifritz C, Daniel SL, Gößner A, Drake HL (1993) Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. J Bacteriol 175:8008–8013PubMedGoogle Scholar
  400. Seifritz C, Fröstl JM, Drake HL, Daniel SL (1999) Glycolate as a metabolic substrate for the acetogen Moorella thermoacetica. FEMS Microbiol Lett 170:399–405CrossRefGoogle Scholar
  401. Seifritz C, Fröstl JM, Drake HL, Daniel SL (2002) Influence of nitrate on oxalate-and glyoxylate-dependent growth and acetogenesis by Moorella thermoacetica. Arch Microbiol 178:457–464PubMedCrossRefGoogle Scholar
  402. Seifritz C, Drake HL, Daniel SL (2003) Nitrite as an energy-conserving electron sink for the acetogenic bacterium Moorella thermoacetica. Curr Microbiol 46:329–333PubMedCrossRefGoogle Scholar
  403. Sembiring T, Winter J (1989) Anaerobic degradation of O-phenylphenol by mixed and pure cultures. Appl Microbiol Biotechnology 31:89–92Google Scholar
  404. Sembiring T, Winter J (1990) Demethylation of aromatic compounds by strain B10 and complete degradation of 3-methoxybenzoate in co-culture with Desulfosarcina strains. Appl Microbiol Biotechnol 33:233–238CrossRefGoogle Scholar
  405. Sexstone AJ, Revsbech NP, Parkin TB, Tiedje JM (1985) Direct measurement of oxygen profiles and denitrification rates in soil aggregates. Soil Sci Soc Am J 49:645–651CrossRefGoogle Scholar
  406. Sharak Genthner BR, Bryant MP (1982) Growth of Eubacterium limosum with carbon monoxide as the energy source. Appl Environ Microbiol 43:70–74Google Scholar
  407. Sharak Genthner BR, Bryant MP (1987) Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii. Appl Environ Microbiol 53:471–476PubMedGoogle Scholar
  408. Sharak Genthner BR, Davies CL, Bryant MP (1981) Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol-and H CO2-CO CO2-utilizing species. Appl Environ Microbiol 42:12–19Google Scholar
  409. Shin WS, Kim JS, Lee SP, Kim YS, Shin JW, Lee SH (2001) Electrochemical conversion of CO CO2 to CO or acetate by enzymes of Clostridium thermoaceticum. Abstr Am Chem Soc 221:U504Google Scholar
  410. Silaghi-Dumitrescu R, Coulter ED, Das A, Ljungdahl LG, Jameson GNL, Huynh BH, Kurtz DM Jr (2003) A flavodiiron protein and high molecular weight rubredoxin from Moorella thermoacetica with nitric oxide reductase activity. Biochemistry 42:2806–2815PubMedCrossRefGoogle Scholar
  411. Simankova MV, Kotsyurbenko OR, Stackebrandt E, Kostrikina NA, Lysenko AM, Osipov GA, Nozhevnikova AN (2000) Acetobacterium tundrae sp. nov., a new psychrophilic acetogenic bacterium from tundra soil. Arch Microbiol 174:440–447PubMedCrossRefGoogle Scholar
  412. Singleton R Jr (1997a) Harland Goff Wood: an American biochemist. In: Semenza G, Jaenicke R (eds) Comprehensive biochemistry: history of biochemistry, vol 40. Elsevier Science, Amsterdam, pp 333–382Google Scholar
  413. Singleton R Jr (1997b) Heterotrophic CO2-fixation, mentors, and students: the Wood-Werkman reactions. J Hist Biol 30:91–120PubMedCrossRefGoogle Scholar
  414. Singleton R Jr (2000) From bacteriology to biochemistry: Albert Jan Kluyver and Chester Werkman at Iowa State. J Hist Biol 33:141–180PubMedCrossRefGoogle Scholar
  415. Sleat R, Mah RA, Robinson R (1985) Acetoanaerobium noterae gen. nov., sp. nov.: an anaerobic bacterium that forms acetate from H2 and CO2. Int J Sys Bacteriol 35:10–15CrossRefGoogle Scholar
  416. Slobodkin A, Reysenbach A-L, Mayer F, Wiegel J (1997) Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov. Int J Syst Bacteriol 47:969–974PubMedCrossRefGoogle Scholar
  417. Smith KA, Arah JRM (1986) Anaerobic micro-environments in soil and the occurrence of anaerobic bacteria. In: Jensen V, Kjöller A, Sørensen LH (eds) Microbial communities in soil. Elsevier Applied Science, London, UK FEMS Symposium, No. 33, pp 247–261Google Scholar
  418. Smith MR, Mah RA (1981) 2-Bromoethanesulfonate: a selective agent for isolating resistant Methanosarcina mutants. Curr Microbiol 6:321–326CrossRefGoogle Scholar
  419. Spruth M, Reidlinger J, Müller V (1995) Sodium ion dependence of inhibition of the Na+-translocating F1F0-ATPase from Acetobacterium woodii: probing the site(s) involved in ion transport. Biochim Biophys Acta 1229:96–102CrossRefGoogle Scholar
  420. Stackebrandt E, Kramer I, Swiderski J, Hippe H (1999) Phylogenetic basis for a taxonomic dissection of the genus Clostridium. FEMS Immun Med Microbiol 24:253–258CrossRefGoogle Scholar
  421. Stams AJM, Dong X (1995) Role of formate and hydrogen in the degradation of propionate and butyrate by defined suspended cocultures of acetogenic and methanogenic bacteria. Ant v Leeuwenhoek 68:281–284CrossRefGoogle Scholar
  422. Stevens T, McKinley JP (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–454CrossRefGoogle Scholar
  423. Stromeyer SA, Stumpf K, Cook AM, Leisinger T (1992) Anaerobic degradation of tetrachloromethane by Acetobacterium woodii: separation of dechlorinative activities in cell extracts and roles of vitamin B12 and other factors. Biodegradation 3:113–123CrossRefGoogle Scholar
  424. Sugaya K, Tusé D, Jones JL (1986) Production of acetic acid by Clostridium thermoaceticum in batch and continuous fermentations. Biotechnol Bioengin 28:678–683CrossRefGoogle Scholar
  425. Talabardon M, Schwitzguébel J-P, Péringer P, Yang S-T (2000) Acetic acid production from lactose by an anaerobic thermoophilic coculture immobilized in a fibrous-bed bioreactor. Biotechnol Progr 16:1008–1017CrossRefGoogle Scholar
  426. Tanaka K, Pfennig N (1988) Fermentation of 2-methoxyethanol by Acetobacterium malicum sp. nov. and Pelobacter venetianus. Arch Microbiol 149:181–187CrossRefGoogle Scholar
  427. Tani M, Higashi T, Nagatsuka S (1993) Dynamics of low-molecular weight aliphatic carboxylic acids (LACAs) in forest soils. I: amount and composition of LACAs in different types of forest soils. Soil Sci Plant Nutr 39:485–495CrossRefGoogle Scholar
  428. Tanner RS, Woese CR (1994) A phylogenetic assessment of the acetogens. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 254–269CrossRefGoogle Scholar
  429. Tanner RS, Stackebrandt E, Fox GE, Woese CR (1981) A phylogenetic analysis of Acetobacterium woodii, Clostridium barkeri, Clostridium butyricum, Clostridium lituseburense, Eubacterium limosum, and Eubacterium tenue. Curr Microbiol 5:35–38CrossRefGoogle Scholar
  430. Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., and acetogenic species in clostridial rRNA homology group I. Int J Sys Bacteriol 43:232–236CrossRefGoogle Scholar
  431. Tasaki M, Kamagata Y, Nakamura K, Mikami E (1992) Utilization of methoxylated benzoates and formation of intermediates by Desulfotomaculum thermobenzoicum in the presence or absence of sulfate. Arch Microbiol 157:209–212PubMedCrossRefGoogle Scholar
  432. Tasaki M, Kamagata Y, Nakamura K, Okamura K, Mikami E (1993) Acetogenesis from pyruvate by Desulfotomaculum thermobenzoicum and differences in pyruvate metabolism among three sulfate-reducing bacteria in the absence of sulfate. FEMS Microbiol Lett 106:259–264CrossRefGoogle Scholar
  433. Terracciano JS, Schreurs WJA, Kashket ER (1987) Membrane H+ conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: evidence for electrogenic Na+/H+ antiport in Clostridium thermoaceticum. Appl Environ Microbiol 53:782–786PubMedGoogle Scholar
  434. Terzenbach DP, Blaut M (1994) Transformation of tetrachloroethylene by homoacetogenic bacteria. FEMS Microbiol Lett 123:213–218PubMedCrossRefGoogle Scholar
  435. Teske A, Ramsing NB, Habicht K, Fukui M, Küver J, Jørgensen BB, Cohen Y (1998) Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt). Appl Environ Microbiol 64:2943–2951PubMedGoogle Scholar
  436. Thauer RK (1988) Citric acid cycle, 50 years on: modification and an alternative pathway in anaerobic bacteria. Eur J Biochem 176:497–508PubMedCrossRefGoogle Scholar
  437. Thauer RK, Fuchs G, Käufer B, Schnitker U (1974) Carbon-monoxide oxidation in cell-free extracts of Clostridium pasteurianum. Eur J Biochem 45:343–349PubMedCrossRefGoogle Scholar
  438. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180PubMedGoogle Scholar
  439. Thauer RK, Möller-Zinkhan D, Spormann AM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Ann Rev Microbiol 43:43–67CrossRefGoogle Scholar
  440. Tholen A, Brune A (1999) Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4497–4505PubMedGoogle Scholar
  441. Tholen A, Brune A (2000) Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ Microbiol 2:436–449PubMedCrossRefGoogle Scholar
  442. Tholen A, Schink B, Brune A (1997) The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp. FEMS Microbiol Ecol 24:137–149CrossRefGoogle Scholar
  443. Tiedje JM, Sexstone AJ, Parkin TB, Revsbech NP, Shelton DR (1984) Anaerobic processes in soil. Plant Soil 76:197–212CrossRefGoogle Scholar
  444. Traunecker J, Preuß A, Diekert G (1991) Isolation and characterization of a methyl cloride utilizing, strictly anaerobic bacterium. Arch Microbiol 156:416–421CrossRefGoogle Scholar
  445. Tschech A, Pfennig N (1984) Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137:163–167CrossRefGoogle Scholar
  446. Tyler SC (1991) The global methane budget. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes. American Society for Microbiology, Washington, DC, pp 7–38Google Scholar
  447. Vandenberg JI, Carter ND, Bethell HWL, Nogradi A, Ridderstrale Y, Metcalfe JC, Grace AA (1996) Carbonic anhydrase and cardiac pH regulation. Am J Physiol 40:1838–1846Google Scholar
  448. Van der Lee GEM, de Winder B, Bouten W, Tietema A (1999) Anoxic microsites in douglas fir litter. Soil Biol Biochem 31:1295–1301CrossRefGoogle Scholar
  449. Varel VH, Bryant MP, Holdeman LV, Moore WEC (1974) Isolation of ureolytic Peptostreptococcus productus from feces using defined medium; failure of common urease tests. Appl Microbiol 28:594–599PubMedGoogle Scholar
  450. Varma AK, Peck HD Jr (1983) Utilization of short and long-chain polyphosphates as energy sources for the anaerobic growth of bacteria. FEMS Microbiol Lett 16:281–285CrossRefGoogle Scholar
  451. Varma A, Kolli BK, Paul J, Saxena S, König H (1994) Lignocellulose degradation by microorganisms from termite hills and termite guts: a survey on the present state of art. FEMS Microbiol Rev 15:9–28CrossRefGoogle Scholar
  452. Von Eysmondt J, Vasic-Racki D, Wandrey C (1990) Acetic acid production by Acetogenium kivui in continuous culture—kinetic studies and computer simulations. Appl Microbiol Biotechnol 34:344–349CrossRefGoogle Scholar
  453. Wagener S, Schink B (1988) Fermentative degradation of nonionic surfactants and polyethylene glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria. Appl Environ Microbiol 54:561–565PubMedGoogle Scholar
  454. Wagner C, Grießhammer A, Drake HL (1996) Acetogenic capacities and the anaerobic turnover of carbon in a Kansas prairie soil. Appl Environ Microbiol 62:494–500PubMedGoogle Scholar
  455. Waisel Y, Agami M (1996) Ecophysiology of roots of submerged aquatic plants. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker, New York, pp 895–909Google Scholar
  456. Wang G, Wang DIC (1983) Production of acetic acid by immobilized whole cells of Clostridium thermoaceticum. Appl Biochem Biotechnol 8:491–503PubMedCrossRefGoogle Scholar
  457. Wang G, Wang DIC (1984) Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum. Appl Environ Microbiol 47:294–298PubMedGoogle Scholar
  458. Weinberg M, Ginsbourg B (1927) Données récéntes sur les microbes anaérobies et leur role en pathologie. Masson Paris, France, pp 1–291Google Scholar
  459. Wellsbury P, Goodman K, Barth T, Cragg BA, Barnes SP, Parkes RJ (1997) Deep marine biosphere fuelled by increasing organic matter availability during burial and heating. Nature 388:573–576CrossRefGoogle Scholar
  460. Wellsbury P, Goodman K, Cragg BA, Parkes J (2000) The geomicrobiology of deep marine sediments from Blake Ridge containing methane hydrate (sites 994, 995, and 997). In: Proceedings of the Ocean drilling program, Scientific results, vol 164, pp 379–391Google Scholar
  461. Wellsbury P, Mather I, Parkes RJ (2002) Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean. FEMS Microbiol Ecol 42:59–70PubMedCrossRefGoogle Scholar
  462. Whitman WB (1994) Autotrophic acetyl coenzyme a biosynthesis in methanogens acetogenesis. Chapman and Hall, New York, pp 521–538Google Scholar
  463. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583PubMedCrossRefGoogle Scholar
  464. Widdel F (1988) Microbiology and ecology of sulfate and sulfur-reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 469–587Google Scholar
  465. Wiegel J, Braun M, Gottschalk G (1981) Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr Microbiol 5:255–260CrossRefGoogle Scholar
  466. Wiegel J, Carreira LH, Garrison RJ, Robek NE, Ljungdahl LG (1990) Calcium magnesium acetate (CMA) manufacture from glucose by fermentation with thermophilic homoacetogenic bacteria. In: Wise DL, Levendis Y, Metghalchi M (eds) Calcium magnesium acetate. Elsevier, Amsterdam, pp 359–416Google Scholar
  467. Wiegel J (1994) Acetate and the potential of homoacetogenic bacteria for industrial applications. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 484–504CrossRefGoogle Scholar
  468. Wieringa KT (1936) Over het verdwijnen van waterstof en koolzuur onder anaerobe voorwaarden. Ant v Leeuwenhoek 3:263–273CrossRefGoogle Scholar
  469. Wieringa KT (1939–1940) The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Ant v Leeuwenhoek 6:251–262CrossRefGoogle Scholar
  470. Wieringa KT (1941) Über die Bildung von Essigsäure aus Kohlensäure und Wasserstoff durch anaerobe. Bazillen Brennstoff-Chemie 22:161–164Google Scholar
  471. Winter JU, Wolfe RS (1980) Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens. Arch Microbiol 124:73–39PubMedCrossRefGoogle Scholar
  472. Wofford NQ, Beaty PS, McInerney MJ (1986) Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei. J Bacteriol 167:179–185PubMedGoogle Scholar
  473. Wohlfarth G, Diekert G (1991) Thermodynamics of methylenetetrahydrofolate reduction to methyltetrahydrofolate and its implications for the energy metabolism of homoacetogenic bacteria. Arch Microbiol 155:378–381CrossRefGoogle Scholar
  474. Wolin MJ, Miller TL (1983) Carbohydrate fermentation. In: Hentges DA (ed) Human intestinal flora in health and disease. Academic Press, New York, pp 147–165CrossRefGoogle Scholar
  475. Wolin MJ, Miller TL (1993) Bacterial strains from human feces that reduce CO2 to acetic acid. Appl Environ Microbiol 59:3551–3556PubMedGoogle Scholar
  476. Wolin MJ, Miller TL (1994) Acetogenesis from CO2 in the human colonic ecosystem. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 365–385CrossRefGoogle Scholar
  477. Wolin MJ, Miller TL, Yerry S, Zhang Y, Bank S, Weaver GA (1999) Changes of fermentation pathways of fecal microbial communities associated with a drug treatment that increases dietary starch in the human colon. Appl Environ Microbiol 65:2807–2812PubMedGoogle Scholar
  478. Wolin MJ, Miller TL, Collins MD, Lawson PA (2003) Formate-dependent growth and homoacetogenic fermentation by a bacterium from human feces: description of Bryantella formatexigens gen. nov., sp. nov. Appl Environ Microbiol 69:6321–6326PubMedCrossRefGoogle Scholar
  479. Wood HG, Werkman CH (1936) Mechanism of glucose dissimilation by the propionic acid bacteria. Biochem J 30:618–623PubMedGoogle Scholar
  480. Wood HG, Werkman CH (1938) The utilization of CO2 by the propionic acid bacteria. Biochem J 32:1262–1271PubMedGoogle Scholar
  481. Wood HG, Werkman CH, Hemingway A, Nier AO (1941a) Heavy carbon as a tracer in heterotrophic carbon dioxide assimilation. J Biol Chem 139:365–376Google Scholar
  482. Wood HG, Werkman CH, Hemingway A, Nier AO (1941b) The position of carbon dioxide carbon in succinic acid synthesized by heterotrophic bacteria. J Biol Chem 139:377–381Google Scholar
  483. Wood HG (1952a) A study of carbon dioxide fixation by mass determination on the types of C13-acetate. J Biol Chem 194:905–931PubMedGoogle Scholar
  484. Wood HG (1952b) Fermentation of 3,4-C14-and 1-C14-labeled glucose by Clostridium thermoaceticum. J Biol Chem 199:579–583PubMedGoogle Scholar
  485. Wood HG (1972) My life and carbon dioxide fixation. In: Woessner Jr JF, Huijing F (eds) The molecular basis of biological transport. Academic Press, New York, NY. Miami winter symposium, vol 3, pp 1–54Google Scholar
  486. Wood HG (1976) Trailing the propionic acid bacteria. In: Kornberg A, Horecker BL, Cornudella L, Oro J (eds) Reflections on biochemistry. Pergamon, Oxford, UK, pp 105–115Google Scholar
  487. Wood HG (1982) The discovery of the fixation of CO2 by heterotrophic organisms and metabolism of the propionic bacteria. In: Semenza G (ed) Of oxygen, fuels, and living matter, vol 2. Wiley, New York, pp 173–250Google Scholar
  488. Wood HG (1985) Then and now. Ann Rev Biochem 54:1–41PubMedCrossRefGoogle Scholar
  489. Wood HG (1989) Past and present of CO2 utilization. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech, Madison, pp 33–52Google Scholar
  490. Wood HG (1991) Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J 5:156–163PubMedGoogle Scholar
  491. Wood HG, Ljungdahl LG (1991) Autotrophic character of the acetogenic bacteria. In: Shively JM, Barton LL (eds) Variations in autotrophic life. Academic, San Diego, pp 201–250Google Scholar
  492. Worden RM, Grethlein AJ, Zeikus JG, Datta R (1989) Butyrate production from carbon monoxide by Butyribacterium methylotrophicum. Appl Biochem Biotechnol 20/21:687–698Google Scholar
  493. Wu Z, Daniel SL, Drake HL (1988) Characterization of a CO-dependent O-demethylating enzyme system from the acetogen Clostridium thermoaceticum. J Bacteriol 170:5747–5750PubMedGoogle Scholar
  494. Yamamoto I, Saiki T, Liu S-M, Ljungdahl LG (1983) Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J Biol Chem 258:1826–1832PubMedGoogle Scholar
  495. Yang H, Drake HL (1990) Differential effects of sodium on hydrogen-and glucose-dependent growth of the acetogenic bacterium Acetogenium kivui. Appl Environ Microbiol 56:81–86PubMedGoogle Scholar
  496. Zavarzin GA, Zhilina TN, Pusheva MA (1994) Halophilic acetogenic bacteria. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 432–444CrossRefGoogle Scholar
  497. Zehnder AJB, Wuhrmann K (1976) Titanium III citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 194:1165–1166PubMedCrossRefGoogle Scholar
  498. Zehnder AJB, Huser BA, Brock TD, Wuhrmann K (1980) Characterization of an acetate-decarboxylating non-hydrogen oxidizing methane bacterium. Arch Microbiol 124:1–11PubMedCrossRefGoogle Scholar
  499. Zeikus JG, Lynd LH, Thompson TE, Krzycki JA, Weimer PJ, Hegge PW (1980) Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the Marburg strain. Curr Microbiol 3:381–386CrossRefGoogle Scholar
  500. Zeikus JG (1983) Metabolism of one-carbon compounds by chemotrophic anaerobes. Adv Microb Physiol 24:215–299PubMedCrossRefGoogle Scholar
  501. Zeikus JG, Kerby R, Krzycki JA (1985) Single-carbon chemistry of acetogenic and methanogenic bacteria. Science 227:1167–1173PubMedCrossRefGoogle Scholar
  502. Zhilina TN, Zavarzin GA (1990) Extremely halophilic, methylotrophic, anaerobic bacteria. FEMS Microbol Rev 87:315–322CrossRefGoogle Scholar
  503. Zhilina TN, Zavarzin GA, Detkova EN, Rainey FA (1996) Natroniella acetigena gen. nov. sp. nov., an extremely halophilic, homoacetogenic bacterium: a new member of Haloanaerobiales. Curr Microbiol 32:320–326PubMedCrossRefGoogle Scholar
  504. Zhilina TN, Detkova EN, Rainey FA, Osipov GA, Lysenko AM, Kostrikina NA, Zavarzin GA (1998) Natronoincola histidinovorans gen. nov., sp. nov., a new alkaliphilic acetogenic anaerobe. Curr Microbiol 37:177–185PubMedCrossRefGoogle Scholar
  505. Zinder SH, Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch Microbiol 138:263–272CrossRefGoogle Scholar
  506. Zinder SH (1994) Syntrophic acetate oxidation and “reversible acetogenesis”. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 386–415CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Harold L. Drake
    • 1
  • Kirsten Küsel
    • 2
  • Carola Matthies
    • 1
  1. 1.Department of Ecological Microbiology, BITOEKUniversity of BayreuthBayreuthGermany
  2. 2.Friedrich Schiller University Jena, Institute of EcologyLimnology/Aquatic GeomicrobiologyJenaGermany

Personalised recommendations