Skip to main content

The Family Cellulomonadaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

Cellulomonadaceae, a family within the order Actinomycetales, embraces the genera Cellulomonas, Oerskovia, Paraoerskovia (including Koreibacter), Actinotalea, and Tropheryma. Irrespective of algorithms applied to the set of 16S rRNA gene sequences of type strains, Tropheryma whipplei and Actinotalea fermentans branch deeply and have Cellulomonas bogoriensis as their phylogenetic neighbor. Based upon the fragmentary phenotypic data on Tropheryma whipplei and comparative analysis of full genome sequences of some members of the suborder Micrococcineae, the position of the genus Tropheryma must be considered tentative. Members of the family are defined by a wide range of morphological and chemotaxonomic properties, such as polar lipids, fatty acids, amino acids of peptidoglycan, and whole cell sugars which are used for the delination of genera and species. Members of the family are mainly found in soil, but they have been isolated from patient material and the marine environment as well. Many species are described for their ability to decompose not only plant-derived macromolecules such as cellulose, starch, and xanthan but also chitin, DNA, and gelatine. Some strains of the genera Cellulomonas and Oerskovia are opportunistic pathogens. This contribution is a modified and updated version of previous family descriptions (Stackebrandt E, Schumann P, Prauser H (2006) The family Cellulomonadaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, 3rd edn. Springer, New York, pp 983–1001; Stackebrandt E, Schumann P (2012) Cellulomonadaceae. In: Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Garrity G, Ludwig W, Suzuki K-I (eds) Bergey’s manual of systematic bacteriology, vol 6, 2nd edn. Springer, New York, p 699).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abt B, Foster B, Lapidus A, Clum A, Sun H, Pukall R, Lucas S, Glavina Del Rio T, Nolan M, Tice H, Cheng J-F, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Ovchinnikova G, Pati A, Goodwin L, Chen A, Palaniappan K, Land M, Hauser L, Chang Y-J, Jeffries CD, Rohde M, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk H-P (2010) Complete genome sequence of Cellulomonas flavigena type strain (134T). Stand Genomic Sci 3:15–25

    Article  PubMed Central  PubMed  Google Scholar 

  • Agamuthu P, Tan EL (1985) Digestion of dried palm oil mill effluent by Cellulomonas species. Microbiol Lett 30:109–113

    CAS  Google Scholar 

  • Al-Awadhi H, Sulaiman RH, Mahmoud HM, Radwan SS (2007) Alkaliphilic and halophilic hydrocarbon-utilizing bacteria from Kuwaiti coasts of the Arabian Gulf. Appl Microbiol Biotechnol 77:183–186

    Article  CAS  PubMed  Google Scholar 

  • An DS, Im WT, Yang HC, Kang MS, Kim KK, Jin L, Kim MK, Lee ST (2005) Cellulomonas terrae sp. nov., a cellulolytic and xylanolytic bacterium isolated from soil. Int J Syst Evol Microbiol 55:1705–1709

    Article  CAS  PubMed  Google Scholar 

  • Bagnara C, Toci R, Gaudin C, Belaich JP (1985) Isolation and characterization of a cellulolytic microorganism, Cellulomonas fermentans sp. nov. Int J Syst Bacteriol 35:502–507

    Article  CAS  Google Scholar 

  • Balci I, Eksi F, Bayram A (2002) Coryneform bacteria isolated from blood cultures and their antibiotic susceptibilities. J Int Med Res 30:422–427

    Article  CAS  PubMed  Google Scholar 

  • Bayer EA, Shoham Y, Lamed R (2000) Cellulose decomposing bacteria and their enzyme systems. Prokaryotes 2:578–617

    Google Scholar 

  • Bayer TS, Widmaier DM, Temme K, Mirsky EA, Santi DV, Voigt CA (2009) Synthesis of methyl halides from biomass using engineered microbes. J Am Chem Soc 13:6508–6515

    Article  CAS  Google Scholar 

  • Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (eds) (1923) Bergey’s manual of determinative bacteriology. Williams & Wilkins, Baltimore

    Google Scholar 

  • Betancourt Castellanos L, Ponz Clemente E, Fontanals Aymerich D, Blasco Cabañas C, Marquina Parra D, Grau Pueyo C, García García M (2011) First case of peritoneal infection due to Oerskovia turbata (Cellulosimicrobium funkei). Nefrologia 31:2223–2225 [in Spanish]

    Google Scholar 

  • Bichet-Hébé I, Pourcher A-M, Sutra L, Comel C, Moguedet G (1999) Detection of a whitening fluorescent agent as an indicator of white paper biodegradation: a new approach to study the kinetics of cellulose hydrolysis by mixed cultures. J Microbiol Methods 37:101–109

    Article  PubMed  Google Scholar 

  • Bodnar G, Szabó IM, Zicsi A (1989) Untersuchungen über die intestinalen actinomyceten-gemeinschaften von Mesoniscus graniger friv/isopoda. Memoires de Biospeologie 17:131–136

    Google Scholar 

  • Boraston AB, Warren RA, Kilburn DG (2001) Glycosylation by pichia pastoris decreases the affinity of a family 2a carbohydrate-binding module from Cellulomonas fimi: a functional and mutational analysis. Biochem J 358:423–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boraston AB, Sandercock LE, Warren RA, Kilburn DG (2003) O-glycosylation of a recombinant carbohydrate-binding module mutant secreted by Pichia pastoris. J Mol Microbiol Biotechnol 5:29–36

    Article  CAS  PubMed  Google Scholar 

  • Borneman J, Triplett EW (1997) Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brito EM, Guyoneaud R, Goñi-Urriza M, Ranchou-Peyruse A, Verbaere A, Crapez MA, Wasserman JC, Duran R (2006) Characterization of bacterial communities from mangrove sediments in Guanabara Bay. Brazil Res Microbiol 157:752–762

    Article  CAS  Google Scholar 

  • Brown JM, Frazier RP, Morey RE, Steigerwalt AG, Pellegrini GJ, Daneshvar MI, Hollis DG, McNeil MM (2005) Phenotypic and genetic characterization of clinical isolates of CDC coryneform group a-3: proposal of a new species of Cellulomonas. Cellulomonas denverensis sp. nov. J Clin Microbiol 43:1732–1737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown JM, Steigerwalt AG, Money RE, Daneshva MI, Romero LJ, McNeil MM (2006) Characterization of clinical isolates previously identified as Oerskovia turbata: proposal of Cellulosimicrobium funkei sp. nov. And emended description of the genus Cellulosimicrobium. Int J Syst Evol Microbiol 56:801–804

    Article  CAS  PubMed  Google Scholar 

  • Bryant MP (1972) Commentary on the hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25:1324–1328

    CAS  PubMed  Google Scholar 

  • Busse H-J (2012) Order Micrococcales. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo M, Suzuki K, Ludwig W, Whitman W (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. Springer, New York, pp 569–570

    Google Scholar 

  • Chen HC, Hsu MF, Jiang ST (1997) Purification and characterization of an exo-N, N’-diacetylchitobiohydrolase-like enzyme from Cellulomonas flavigena NTOU 1. Enzyme Microb Technol 20:191–197

    Article  CAS  Google Scholar 

  • Choi WY, Haggett KD, Dunn NW (1978) Isolation of a cotton wool degrading strain of Cellulomonas mutants with altered ability to degrade cotton wool. Aus J Biol Sci 31:553–564

    CAS  Google Scholar 

  • Clark FE (1952) In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) (1986) Bergey’s manual of systematic bacteriology, 1st edn, vol 2. Williams & Wilkins, Baltimore, pp 1325–1329

    Google Scholar 

  • Clark FE (1953) Criteria suitable for species differentiation in Cellulomonas and a revision of the genus. Int Bull Bacteriol Nom Tax 3:179–199

    Article  Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collins MD, Pascual C (2000) Reclassification of Actinomyces humiferus (Gledhill and casida) as Cellulomonas humilata nom corrig, comb. Int J Syst Evol Microbiol 50:661–663

    Article  PubMed  Google Scholar 

  • Cottyn B, Regalado E, Lanoot B, De Cleene M, Mewand TW, Swings J (2001) Bacterial populations associated with rice seed in the tropical environment. Phytopath 91:282–292

    Article  CAS  Google Scholar 

  • Cruickshank JG, Gawler AH, Shaldon C (1979) Oerskovia species rare opportunistic pathogens. J Med Microbiol 12:513–515

    Article  CAS  PubMed  Google Scholar 

  • Cure GL, Keddie RM (1973) Methods for the morphological examination of aerobic coryneform bacteria. In: Board RG, Lovelock DW (eds) Sampling and microbiological monitoring of environments. Society for applied bacteriology technical series, vol 7. Academic, London, pp 123–135

    Google Scholar 

  • De Leon CA, Joson LM (1980) Conversion of celluloses to protein. Acta Manilana Ser Natl Appl Sci 19:75–77

    Google Scholar 

  • Dermoun Z, Belaich JP (1985) Microcalorimetric study of cellulose degradation by Cellulomonas uda ATCC 21399. Biotech Bioeng 27:1005–1011

    Article  CAS  Google Scholar 

  • Dermoun Z, Belaich JP (1988) Crystalline index change in cellulose during aerobic and anaerobic Cellulomonas uda growth. Appl Microbiol Biotechnol 27:399–404

    Article  CAS  Google Scholar 

  • Dermoun Z, Gaudin C, Belaich JP (1988) Effects of end-product inhibition of Cellulomonas uda anaerobic growth on cellobiose chemostat culture. J Bacteriol 170:2827–2831

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deschamps AM (1982) Nutritional capacities of bark and wood decaying bacteria with particular emphasis on condensed tannin degrading strains. Eur J Pathol 12:252–257

    Article  Google Scholar 

  • Dey BP (1976) Production, nutritional and toxicological evaluation of Cellulomonas for protein source. PhD dissertation, University of Missouri-Columbia

    Google Scholar 

  • Dey BP, Fields ML (1995) Toxiticity evaluation of strains of Cellulomonas. J Food Safety 15:265–273

    Article  Google Scholar 

  • Diaz PL, Guirola HA (1983) Fermentation study of cellulosic materials of sugarcane by species of the genus Cellulomonas. Rev Cienc Biol 14:283–298

    Google Scholar 

  • Duckworth AW, Grant WD, Jones BE, van Steenbergen R (1996) Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19:181–191

    Article  CAS  Google Scholar 

  • Dunlap CE, Callihan CD (1974) Single cell protein production from cellulosic waste. In: Yen H (ed) Recycling and disposal of solidwastes: industrial, agricultural, domestic. Ann Harbor Scientific Publishers, Ann Arbor, pp 335–347

    Google Scholar 

  • Dzingov A, Márialigeti K, Jáger K, Contreras E, Kondics L, Szabó IM (1982) Studies on the microflora of millipedes (Diplopoda) I a comparison of actinomycetes isolated from surface structures of the exoskeleton and the digestive tract. Pedobiologia 24:1–7

    Google Scholar 

  • Elberson MA, Malekzadeh F, Yazdi MT, Kameranpour N, Noori-Daloii MR, Matte MH, Shahamat M, Colwell RR, Sowers KR (2000) Cellulomonas persica sp. nov. And Cellulomonas iranensis sp. nov., mesophilic cellulose-degrading bacteria isolated from forest soils. Int J Syst Evol Microbiol 50:993–996

    Article  CAS  PubMed  Google Scholar 

  • Evtushenko LI, Janushkene NA, Streshinskaya GM, Naumova IBA, Agre NS (1984) Occurrence of teichoic acids in representatives of the order Actinomycetales. Dokl Akad Nauk SSSR 278:237–239

    CAS  PubMed  Google Scholar 

  • Felske A, Wolterink A, van Lis R, Akkermans ADL (1998) Phylogeny of the main bacterial 16S rRNA sequences in drentse a grassland soils (the Netherlands). Appl Environ Microbiol 64:871–879

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fields ML, Tantratian S, Baldwin RE (1991) Production of bacterial and yeast biomass in ground corn cob and ground corn stalk media. J Food Prot 54:117–120

    Google Scholar 

  • Funke G, Ramos CP, Collins MD (1995) Identification of some clinical strains of CDC coryneform group a-3 and a-4 bacteria as Cellulomonas species and proposal of Cellulomonas hominis sp. nov. For some group a-3 strains. J Clin Microbiol 33:2091–2097

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao B, Gupta RS (2005) Conserved indels in protein sequences that are characteristic of the phylum Actinobacteria. Int J Syst Evol Microbiol 55:2401–2412

    Article  CAS  PubMed  Google Scholar 

  • Gledhill WE, Casida LE Jr (1969) Predominant catalase negative soil bacteria 11 occurrence and characterization of Actinomyces humiferus, sp. Appl Microbiol 18:114–121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Groth I, Schumann P, Rainey FA, Martin K, Schütze B, Augsten K (1997a) Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 47:1129–1133

    Article  CAS  PubMed  Google Scholar 

  • Groth I, Schumann P, Rainey FA, Martin K, Schütze B, Augsten K (1997b) Bogoriella caseilytica gen. nov., sp. nov., a new alkaliphilic actinomycete from a soda lake in Africa. Int J Syst Bacteriol 47:788–794

    Article  CAS  PubMed  Google Scholar 

  • Groth I, Schumann P, Schuetze B, Augsten K, Kramer I, Stackebrandt E (1999) Beutenbergia cavernae gen. nov., sp. nov., an L-lysine-containing actinomycete isolated from a cave. Int J Syst Bacteriol 49:1733–1740

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Nava A, Herrera-Herrera A, Mayorga-Reyes L, Salgado LM, Ponce-Noyola T (2003) Expression and characterization of the celcflB gene from Cellulomonas flavigena encoding an endo-ß-1,4-glucanase. Curr Microbiol 47:359–363

    Article  PubMed  CAS  Google Scholar 

  • Guyot JP (1986) Role of formate in methanogenesis from xylane by Cellulomonas sp associated with methanogens and Desulfovibrio vulgaris: inhibition of the aceticlastic reaction. FEMS Microbiol Lett 34:149–153

    Article  CAS  Google Scholar 

  • Haggatt KD, Choi WY, Dunn NW (1978) Mutants of Cellulomonas which produce increased levels of β-glucosidase. Eur J Appl Microbiol Biotechnol 6:189–191

    Article  Google Scholar 

  • Halsall DM, Gibson AH (1985) Cellulose decomposition and associated nitrogen fixation by mixed cultures of Cellulomonas gelida and Azospirillum species or bacillus macerans. Appl Environ Microbiol 50:1021–1026

    CAS  PubMed Central  PubMed  Google Scholar 

  • Halsall DM, Gibson AH (1986) Comparison of two Cellulomonas strains and their interaction with Azospirillum brasilense in degradation of wheat straw and associated nitrogen fixation. Appl Environ Microbiol 51:855–861

    CAS  PubMed Central  PubMed  Google Scholar 

  • Halsall DM, Goodchild DJ (1986) Nitrogen fixation associated with development and localizationof mixed populations of Cellulomonas sp. and Azospirillum brasiliense grown on cellulose or wheat straw. Appl Environ Microbiol 51:849–854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han YW, Srinivasan VR (1968) Isolation and characterization of a cellulose-utilizing bacterium. Appl Microbiol 16:1140–1145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han YW, Dunlap CE, Callahan CD (1971) Single cell protein from cellulosic waste. Food Technol 25:32–34

    Google Scholar 

  • Hansen AA, Herbert RA, Mikkelsen K, Jensen LL, Kristoffersen T, Tiedje JM, Lomstein BA, Finster KW (2007) Viability, diversity and composition of the bacterial community in a high arctic permafrost soil from Spitsbergen, Northern Norway. Environ Microbiol 9:2870–2884

    Article  CAS  PubMed  Google Scholar 

  • Hatayama K, Esaki K, Ide T (2012) Cellulomonas soli sp. nov., and Cellulomonas oligotrophica sp. nov., isolated from soil. Int J Syst Evol Microbiol 63:60–65

    Google Scholar 

  • Hekmat O, Lo Leggio L, Rosengren A, Kamarauskaite J, Kolenova K, Stalbrand H (2010) Rational engineering of mannosyl binding in the distal glycone subsites of Cellulomonas fimi endo-beta-1,4-mannanase: mannosyl binding promoted at subsite −2 and demoted at subsite −3. Biochem 49:4884–4896

    Article  CAS  Google Scholar 

  • Higgins ML, Lechevalier MP, Lechevalier HA (1967) Flagellated actinomycetes. J Bacteriol 93:1446–1451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horcasitas CM, López JO, Plaza IM (1998) Xylanases from Cellulomonas flavigena: purification and characterization. Biotechnol Tech 12:663–666

    Article  CAS  Google Scholar 

  • Hsing W, Canale-Parola E (1992) Cellobiose chemotaxis by the cellulolytic bacterium Cellulomonas gelida. J Bacteriol 74:7996–8002

    Google Scholar 

  • Hsing W, Canale-Parola E (1996) A methyl-accepting protein involved in multiple-sugar chemotaxis by Cellulomonas gelida. J Bacteriol 178:5153–5158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hungate RE (1950) The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14:1–49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hungate RE (1969) A roll tube method for cuitivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3B. Academic New York, pp 117–132

    Google Scholar 

  • Jáger K, Márialigeti K, Hauck M, Barabás G (1983) Promicromonospora enterophila sp. nov., a new species of monospore actinomycetes. Int J Syst Bacteriol 33:525–531

    Article  Google Scholar 

  • Jedar H, Deschamps AM, Lederbelt JM (1987) Production of single cell protein with Cellulomonas sp. on hemstalk wastes. Acta Biotech 7:103–109

    Article  Google Scholar 

  • Jones BE, Grant WD, Duckworth AW, Schumann P, Weiss N, Stackebrandt E (2005) Cellulomonas bogoriensis sp. nov., an alkaliphilic cellulomonads. Int J Syst Evol Microbiol 55:1711–1714

    Article  CAS  PubMed  Google Scholar 

  • Kang MS, Im WT, Jung HM, Kim MK, Goddfellow M, Kim KK, Yang HC, An DS, Lee ST (2007) Cellulomonas composti sp. nov., a cellulolytic bacterium isolated from cattle farm compost. Int J Syst Evol Microbiol 57:1256–1260

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann A, Fegan J, Doleac P, Gainer C, Wittech D, Glann A (1976) Identification and characterization of a cellulolytic isolate. J Gen Microbiol 94:405–408

    Article  CAS  PubMed  Google Scholar 

  • Kauri T, Kushner DJ (1985) Role of contact in bacterial degradation of cellulose. FEMS Microbiol Ecol 31:301–306

    Article  Google Scholar 

  • Keddie RM (1974) Genus III. Cellulomonas. In: Buchanan RE. Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore, pp 629–631

    Google Scholar 

  • Keddie RM, Cure GL (1977) The cell wall composition and distribution of free mycolic acids in named strains of coryneforms bacteria and in isolates from various natural sources. J Appl Bacteriol 42:229–253

    Article  CAS  PubMed  Google Scholar 

  • Keddie RM, Jones D (1981) Aerobic saprophytic coryneform bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes a handbook on habitats. Isolation and identification of bacteria. Springer Verlag, New York, pp 1838–1878

    Google Scholar 

  • Keddie RM, Leask BGS, Grainger JM (1966) A comparison of coryneforms bacteria from soil and herbage: cell wall composition and nutrition. J Appl Bacteriol 29:17–43

    Article  Google Scholar 

  • Kellerman KF, Scales FM, Smith NR (1913) Identification and classification of cellulose dissolving bacteria. Zentrabl Bakteriol Parasitenk Infektionskr Hyg Abt II 39:502–522

    Google Scholar 

  • Khan ST, Harayama S, Tamura T, Ando K, Takagi M, Kazuo S (2009) Paraoerskovia marina gen. nov., sp. nov., an actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol 59:2094–2098

    Article  PubMed  Google Scholar 

  • Khanna S (1993) Glucose uptake by Cellulomonas fimi. World J Microbiol Biotech 9:559–561

    Article  CAS  Google Scholar 

  • Kim BH (1987) Carbohydrate catabolism in cellulolytic strains of Cellulomonas, Pseudomonas, and Nocardia. Kor J Microbiol 25:28–33

    CAS  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuske CR, Barns SM, Busch JD (1997) Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Appl Environ Microbiol 63:3614–3621

    CAS  PubMed Central  PubMed  Google Scholar 

  • La Scola B, Fenollar F, Fournier PE, Altwegg M, Mallet MN, Raoult D (2001) Description of Tropheryma whipplei gen. nov., sp. nov., the Whipple’s disease bacillus. Int J Syst Evol Microbiol 51:1471–1479

    PubMed  Google Scholar 

  • Lai PC, Chen YS, Lee SS (2009) Infective endocarditis and osteomyelitis caused by Cellulomonas: a case report and review of the literature. Diagn Microbiol Infect Dis 65:184–187

    Article  PubMed  Google Scholar 

  • Lechevalier MP (1972) Description of a new species, Oerskovia xanthineolytica, and emendation of Oerskovia Prauser et al. Int J Syst Bacteriol 22:260–264

    Article  Google Scholar 

  • Lechevalier HA, Lechevalier MP (1989) Genus Oerskovia. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 2379–2382

    Google Scholar 

  • Lechevalier MP, Stern AE, Lechevalier HA (1981) Phospholipids in the taxonomy of actinomycetes. In: Schaal KP, Pulverer G (eds) Actinomycetes proceedings of the fourth international symposium on actinomycete biology. Gustav Fischer, Stuttgart, pp 111–116

    Google Scholar 

  • Lednicka D, Mergaert J, Cnockaert MC, Swings J (2000) Isolation and identification of cellulolytic bacteria involved in the degradation of natural cellulosic fibres. Syst Appl Microbiol 23:292–299

    Article  CAS  PubMed  Google Scholar 

  • Lee CM, Weon HY, Hong SB, Jeon YA, Schumann P, Kroppenstedt RM, Kwon SW, Stackebrandt E (2008) Cellulomonas aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 58:2925–2929

    Article  CAS  PubMed  Google Scholar 

  • Lee DW, Lee SD (2010) Koreibacter algae gen. nov., sp. nov., isolated from seaweed. Int J Syst Evol Microbiol 60:1510–1515

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Greening RC, Ferry JG (1984) Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate. Appl Environ Microbiol 48:81–87

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malekzadeh F, Azin M, Shahamat M, Colwell RR (1993) Isolation and identification of three Cellulomonas spp. from forest soils. World J Microbiol Biotechnol 9:53–55

    Article  CAS  PubMed  Google Scholar 

  • Márialigeti K, Contreras E, Barabás G, Heydrich M, Szabó IM (1985) True intestinal actinomycetes of millipedes (Diplopoda). J Invert Pathol 45:120–121

    Article  Google Scholar 

  • Marschoun S, Rapp P, Wagner F (1987) Metabolism of hexoses and pentoses by Cellulomonas uda under aerobic conditions and during fermentation. Can J Microbiol 33:1024–1031

    Article  CAS  Google Scholar 

  • Martin K, Schumann P, Rainey FA, Schuetze B, Groth I (1997) Janibacter limosus gen. nov., sp. nov., a new actinomycete with meso-diaminopimelic acid in the cell wall. Int J Syst Bacteriol 47:529–534

    Article  CAS  PubMed  Google Scholar 

  • Mayorga-Reyes L, Ponce-Noyola T (1998) Isolation of a hyperxylanolytic Cellulomonas flavigena mutant growing on continuous culture on sugar cane bagasse. Biotech Lett 20:443–446

    Article  CAS  Google Scholar 

  • Mayorga-Reyes L, Morales Y, Salgado LM, Ortega A, Ponce-Noyola T (2002) Cellulomonas flavigena: characterization of an endo-1,4-xylanase tightly induced by sugarcane bagasse. FEMS Microbiol Lett 214:205–209

    Article  CAS  PubMed  Google Scholar 

  • McCaig AE, Glover LA, Prosser JI (1999) Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol 65:1721–1730

    CAS  PubMed Central  PubMed  Google Scholar 

  • McNeil MM, Brown JM, Carvalho ME, Hollis DG, Morey RE, Reller LB (2004) Molecular epidemiologic evaluation of endocarditis due to Oerskovia turbata and CDC group A-3 associated with contaminated homograft valves. J Clin Microbiol 42:2495–2500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95

    Article  CAS  Google Scholar 

  • Morales-Jiménez J, Zúñiga G, Villa-Tanaca L, Hernández-Rodríguez C (2009) Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microb Ecol 58:879–891

    Article  PubMed  CAS  Google Scholar 

  • Müller HE (1995) Detection of sialidase activity in Oerskovia (Cellulomonas). Zbl Bakt 282:13–17

    Article  Google Scholar 

  • Odom J, Wall JD (1983) Photoproduction of H2 from cellulose by an anaerobic bacterial coculture. Appl Environ Microbiol 45:1300–1305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohtaki H, Ohkusu K, Sawamura H, Ohta H, Inoue R, Iwasa J, Ito H, Murakami N, Ezaki T, Moriwaki H, Seishima M (2009) First report of acute cholecystitis with sepsis caused by Cellulomonas denverensis. J Clin Microbiol 47:3391–3393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Owens JD, Keddie RM (1969) The nitrogen nutrition of soil and herbage coryneforms bacteria. J Appl Bacteriol 32:338–347

    Article  CAS  PubMed  Google Scholar 

  • Park Y-H, Hori H, Suzuki K-I, Osaa S, Komagata K (1987) Phylogenetic analysis of the coryneform bacteria by 5S rRNA sequences. J Bacteriol 169:1801–1806

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ponce-Noyola T, de la Torre M (1995) Isolation of a high-specific-growth-rate mutant of Cellulomonas flavigena on sugar cane bagasse. Appl Microbiol Biotechnol 42:709–712

    Article  CAS  Google Scholar 

  • Poulsen OM, Petersen LW (1988) Growth of Cellulomonas sp. ATCC 21399 on different polysaccharides as sole carbon source Induction of extracellular enzymes. Appl Microbiol Biotechnol 19:480–484

    Article  Google Scholar 

  • Pourcher A-M, Sutra L, Hébé I, Moguedet G, Bollet C, Simoneau P, Gardan L (2001) Enumeration and characterization of cellulolytic bacteria from refuse of a landfill. FEMS Microb Ecol 34:229–241

    Article  CAS  Google Scholar 

  • Power EGM, Abdulla YH, Talsania HG, W, Aathithan S, French G-L (1995) VanA genes in vancomycin-resistant clinical isolates of Oerskovia turbata and Arcanobacterium (Corynebacterium) Haemolyticum. J Antimicr Chemother 36:595–606

    Google Scholar 

  • Prauser H (1984) Phage host ranges in the classification and identification of gram-positive branched and related bacteria. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical, and biomedical aspects of actinomycetes. Academic, Orlando, pp 617–633

    Chapter  Google Scholar 

  • Prauser H (1986) The Cellulomonas, Oersovia, Promicromonospora complex. In: Szabó G, Biro S, Goodfellow M (eds) Biological, biochemical, and biomedical aspects of actinomycetes, part B. Akademiai Kiado, Budapest, pp 527–539

    Google Scholar 

  • Prauser H, Falta R (1968) Phagensensibilität, Zellwand-Zusammensetzung und Taxonomy von Aktinomyzeten. Zeitschr Allg Mikrobiol 8:39–46

    Article  CAS  Google Scholar 

  • Prauser H, Lechevalier MP, Lechevalier H (1970) Description of Oerskovia gen. nov. to, harbor ørskov’s motile nocardia. Appl Microbiol 19:534

    CAS  PubMed Central  PubMed  Google Scholar 

  • Przybyl K (1979) Bacterial microflora isolated from the bark surface of poplars growing in areas where air pollution is very high. Acta Soc Bot Pol 48:489–496

    CAS  Google Scholar 

  • Rainey FA, Weiss N, Stackebrandt E (1995) Phylogenetic analysis of the genera Cellulomonas, Promicromonospora, and Jonesia and proposal to exclude the genus Jonesia from the family Cellulomonadaceae. Int J Syst Bacteriol 45:649–652

    Article  CAS  PubMed  Google Scholar 

  • Rajoka MI, Malik KA (1986) Comparison of different strains of Cellulomonas for production of cellulolytic and xylanolytic enzymes from biomass produced on saline lands. Biotechnol Lett 8:753–756

    Article  CAS  Google Scholar 

  • Rajoka MI, Malik KA (1997) Enhanced production of cellulases by Cellulomonas strains grown on different cellulosic residues. Folia Microbiol (Praha) 142:59–64

    Article  Google Scholar 

  • Ramasamy K, Meyers M, Bevers J, Verachtert H (1981) Isolation and characterization of cellulolytic bacteria from activated sludge. J Appl Microbiol 51:475–482

    Google Scholar 

  • Rapp P, Reng H, Hempel DC, Wagner F (1984) Cellulose degradation and monitoring of viscosity decrease incultures of Cellulomonas uda grown on printed newspaper. Biotechnol Bioeng 26:1167–1175

    Article  CAS  PubMed  Google Scholar 

  • Ravasz K, Zicsi A, Contreras E, Szabó IM (1987) Comparative bacteriological analyses of the fecal matter of different earthworm species. In: Pagliai AMP, Omodeo P (eds) On earthworms. Selected symposia and monographs C Z I, 2nd edn. Mucchi, Modena, Italy, pp 389–399

    Google Scholar 

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reller LB, Maddoux GL, Eckman MR, Pappas G (1975) Bacterial endocarditis caused by Oerskovia turbata. Ann Intern Med 83:664–666

    Article  CAS  PubMed  Google Scholar 

  • Richard PAD, Peiris SP (1981) The hydrolysis of bagasse hemicellulose by selected strains of Cellulomonas. Biotechnol Lett 3:3944

    Google Scholar 

  • Rivas R, Trujillo ME, Mateos PF, Martínez-Molina E, Velázquez E (2004) Cellulomonas xylanilytica sp. nov., a cellulolytic and xylanolytic bacterium isolated from a decayed elm tree. Int J Syst Evol Microbiol 54:533–536

    Article  CAS  PubMed  Google Scholar 

  • Roden EE, Lovley DR (1993) Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol 59:734–742

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodríguez H, Alvarez R, Enríques A (1993) Evaluation of different alkali treatments of bagasse pith for cultivation of Cellulomonas sp. World J Microbiol Biotechnol 9:213–215

    Article  PubMed  Google Scholar 

  • Rowlinson MC, Bruckner DA, Hinnebusch C, Nielsen K, Deville JG (2006) Clearance of Cellulosimicrobium cellulans bacteriemia in a child without central venous catheter removal. J Clin Microbiol 44:2650–2654

    Article  PubMed Central  PubMed  Google Scholar 

  • Rusznyák AM, Tóth E, Schumann P, Spröer C, Makk J, Szabó G, Vladár P, Márialigeti K, Borsodi AK (2011) Cellulomonas phragmiteti sp. nov., a cellulolytic bacterium isolated from reed (Phragmites australis) periphyton in a shallow soda pond. Int J Syst Evol Microbiol 61:1662–1666

    Article  CAS  Google Scholar 

  • Schaal KP (1986) Genus Actinomyces Harz 1877, 133AL. In: Sneath PH, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 1383–1418

    Google Scholar 

  • Schumann P, Weiss N, Stackebrandt E (2001) Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int J Syst Evol Microbiol 51:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Schumann P, Busse J, Toth E, Pukall R (2009) Subcommittee on the taxonomy of the suborder Micrococcineae. Int J Syst Evol Microbiol 59:643–644

    Article  Google Scholar 

  • Schumann P, Pukall R, Spröer C, Stackebrandt E (2013) Reclassification of koreibacter algae as a later heterotypic synonym of Paraoerskovia marina and emended descriptions of the genus Paraoerskovia Khan et al. 2009 And of Paraoerskovia marina Khan et al. 2009. Int J Syst Evol Microbiol 63:219–223

    Article  CAS  PubMed  Google Scholar 

  • Seidl PH, Faller AH, Loider R, Schleifer KH (1980) Peptidoglycan types and cytochrome patterns of strains of Oerskovia turbata and O. xanthineolytica. Arch Microbiol 127:173–178

    Article  CAS  Google Scholar 

  • Shi Z, Luo G, Wang G (2012) Cellulomonas carbonis sp. nov., isolated from coal mine soil. Int J Syst Evol Microbiol 62:2004–2010

    Article  CAS  PubMed  Google Scholar 

  • Silva CF, Schwan RFS, Dias ES, Wheals AE (2000) Microbial diversity during maturation and natural processing of coffee cherries of Coffea Arabica in Brazil. Int J Food Microbiol 60:251–260

    Article  Google Scholar 

  • Sottnek FO, Brown JM, Weaver RE, Carroll GF (1977) Recognition of Oerskovia species on the clinical laboratory: characterization of 35 isolates. Int J Syst Bacteriol 27:263–270

    Article  Google Scholar 

  • Stackebrandt E, Kandler O (1974) Biochemisch-taxonomische Untersuchungen an der Gattung Cellulomonas. Zbl Bakt Hyg I Abt Orig A228:128–135

    Google Scholar 

  • Stackebrandt E, Kandler O (1979) Taxonomy of the genus Cellulomonas, based on phenotypic characters and deoxyribonucleic acid-deoxyribonucleic acid homology, and proposal seven neotype strains. Int J Syst Bacteriol 29:273–282

    Article  Google Scholar 

  • Stackebrandt E, Kandler O (1980a) Cellulomonas cartae sp. nov. Int J Syst Bacteriol 30:186–188

    Article  CAS  Google Scholar 

  • Stackebrandt E, Kandler O (1980b) Fermentation pathway and redistribution of 14C inspecifically labelled glucose in Cellulomonas. Zbl Bakt I Abt Orig C1:40–50

    Google Scholar 

  • Stackebrandt E, Keddie RM (1986) Genus Cellulomonas Bergey et al. 1923, 154, emend mut char Clark 1952, 50AL. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 1325–1329

    Google Scholar 

  • Stackebrandt E, Prauser H (1991) The family Cellulomonadaceae. In: Balows A, Trüper H, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, vol 2, 2nd edn. Springer, New York, pp 1323–1345

    Google Scholar 

  • Stackebrandt E, Schumann P (2000) Description of Bogoriellaceae fam. nov., Dermacoccaceae fam. nov., Rarobacteraceae fam nov and Sanguibacteraceae fam. nov. and emendation of some families of the suborder Micrococcineae. Int J Syst Evol Microbiol 50:1279–1285

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Schumann P (2012) Cellulomonadaceae. In: Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Garrity G, Ludwig W, Suzuki K-I (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. Springer, New York, p 699

    Google Scholar 

  • Stackebrandt E, Woese CR (1981) Towards a phylogeny of the actinomycetes and related organisms. Curr Microbiol 5:197–202

    Article  CAS  Google Scholar 

  • Stackebrandt E, Lewis BJ, Woese CR (1980) The phylogenetic structure of the coryneform group of bacteria. Zbl Bakt Hyg I Abt Orig C1:137–149

    Google Scholar 

  • Stackebrandt E, Seiler H, Schleifer KH (1982) Union of the genera Cellulomonas Bergey et al and Oerskovia Prauser et al in a redefined genus Cellulomonas. Zb Bac Hy Ab Ori C3:401–409

    Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Article  Google Scholar 

  • Stackebrandt E, Breymann S, Steiner U, Prauser H, Weiss N, Schumann P (2002) Re-evaluation of the status of the genus Oerskovia, reclassification of promicromonospora enterophila (Jáger et al. 1983) As Oerskovia enterophila comb. nov. and description of Oerskovia jenensis sp. nov. and Oerskovia paurometabola sp. nov. Int J Syst Evol Microbiol 52:1105–1111

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Stewart BJ, Leatherwood JM (1976) Depressed synthesis of cellulose by Cellulomonas. J Bacteriol 128:609–615

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stoppok W, Rapp P, Wagner F (1982) Formation, location and regulation of endo-1,4-ß-glucanases and ß-glucosidases from Cellulomonas uda. Appl Environ Microbiol 44:44–53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suihko M-L, Skyttä E (2009) Characterisation of aerobically grown non-spore-forming bacteria from paper mill pulps containing recycled fibres. Ind J Ind Microbiol Biotechnol 36:53–64

    Article  CAS  Google Scholar 

  • Sukapure RS, Lechevalier MP, Reber H, Higgins ML, Lechevalier HA, Prauser H (1970) Motile nocardioid Actinomycetales. Appl Microbiol 19:527–533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szabó IM, Jáger K, Contreras E, Márialigeti K, Dzingov A, Barabás G, Pobozsny M (1983) Composition and properties of the external and internal microflora of millipedes (Diplopoda). In: Lebrun P, Andre HM, De Medts A, Gregoire-Wibo C, Wauthy G (eds) Proceedings of the VIII Int Coll Soil Zool Dieu-Brichart, Ottignies-Louvain-la-Neuve, pp 197–206

    Google Scholar 

  • Szabó IM, Márialigeti K, Loc CT, Jáger K, Szabó I, Contreras E, Ravasz K, Heydrich M, Palik E (1986) On the ecology of nocardioform intestinal actinomycetes of millipedes (Diplopoda). In: Szabó G, Biró S, Goodfellow M (eds) Biological, biochemical, and biomedical aspects of actinomycetes, part B. Akademiai Kiadó, Budapest, pp 701–704

    Google Scholar 

  • Thayer DW, Lowther SV, Philips JG (1984) Cellulolytic activities of strains of the genus Cellulomonas. Int J Syst Bacteriol 34:432–438

    Article  CAS  Google Scholar 

  • Thomas P, Soly TA (2009) Endophytic bacteria associated with growing shoot tips of banana (Musa sp.) cv grand naine and the affinity of endophytes to the host. Microb Ecol 58:952–964

    Article  CAS  PubMed  Google Scholar 

  • Ue H, Matsuo Y, Kasai H, Yokota A (2011) Demequina globuliformis sp. nov., Demequina oxidasica sp. nov. And Demequina aurantiaca sp. nov., actinobacteria isolated from marine environments, and proposal of Demequinaceae fam nov. Int J Syst Evol Microbiol 61:1322–1329

    Article  PubMed  Google Scholar 

  • Ulrich A, Wirth S (1999) Phylogenetic diversity and population densities of culturable cellulolytic soil bacteria across an agricultural encatchment. Microb Ecol 37:238–247

    Article  CAS  PubMed  Google Scholar 

  • Viamajala S, Peyton BM, Gerlach R, Sivaswamy V, Apel WA, Petersen JN (2008) Permeable reactive biobarriers for in situ Cr(VI) reduction: bench scale tests using Cellulomonas sp strain ES6. Biotechnol Bioeng 101:1150–1162

    Article  CAS  PubMed  Google Scholar 

  • Vladut-Talor M, Kauri T, Kushner DJ (1986) Effects of cellulose on growth, enzyme production, and ultrastructure of a Cellulomonas species. Arch Microbiol 144:191–195

    Article  CAS  Google Scholar 

  • Weeger W, Lièvremont D, Perret M, Lagarde F, Hubert JC, Leroy M, Lett MC (1999) Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 12:141–149

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Garrity G, Ludwig W, Suzuki K-I (eds) (2012) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. Springer, New York

    Google Scholar 

  • Yamamoto N, Sato SI, Saito K, Hasuo T, Tadenuma M, Suzuki KI, Tamaoka J, Komagata K (1988) Rarobacter faecitabidus gen. nov., sp. nov., a yeast-lysing coryneform bacterium. Int J Syst Bacteriol 38:7–11

    Article  CAS  Google Scholar 

  • Yaman M, Ertürk O, Aslan I (2010) Isolation of some pathogenic bacteria from the great spruce bark beetle, Dendroctonus micans and its specific predator, Rhizophagus grandis. Folia Microbiol (Praha) 5:35–38

    Article  CAS  Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living-tree project based on 16S and 23S rRNA sequence analyses. System Appl Microbiol 33:291–299

    Article  CAS  Google Scholar 

  • Yi HR, Min K-H, Kim C-K, Ka J-O (2000) Phylogenetic and phenotypic diversity of 4-chlorobenzoate-degrading bacteria isolated from soils. FEMS Microbiol Ecol 31:53–60

    Article  CAS  PubMed  Google Scholar 

  • Yi H, Schumann P, Chun J (2007) Demequina aestuarii gen. nov., sp. nov., a novel actinomycete of the suborder Micrococcineae, and reclassification of Cellulomonas fermentans Bagnara et al. 1985 As Actinotalea fermentans gen. nov., comb. nov. Int J Syst Evol Microbiol 57:151–156

    Article  CAS  PubMed  Google Scholar 

  • Yin LJ, Jiang ST, Pon SH, Lin HH (2010) Hydrolysis of Chlorella by Cellulomonas sp. YJ5 cellulases and its biofunctional properties. J Food Sci 75:317–323

    Article  CAS  Google Scholar 

  • Yoon MH, Ten LN, Im WT, Lee ST (2008) Cellulomonas chitinilytica sp. nov., a chitinolytic bacterium isolated from cattle-farm compost. Int J Syst Evol Microbiol 58:1878–1884

    Article  CAS  PubMed  Google Scholar 

  • Zhi X-Y, Li W-J, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erko Stackebrandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Stackebrandt, E., Schumann, P. (2014). The Family Cellulomonadaceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30138-4_223

Download citation

Publish with us

Policies and ethics