Advertisement

The Family Cellulomonadaceae

  • Erko Stackebrandt
  • Peter Schumann
Reference work entry

Abstract

Cellulomonadaceae, a family within the order Actinomycetales, embraces the genera Cellulomonas, Oerskovia, Paraoerskovia (including Koreibacter), Actinotalea, and Tropheryma. Irrespective of algorithms applied to the set of 16S rRNA gene sequences of type strains, Tropheryma whipplei and Actinotalea fermentans branch deeply and have Cellulomonas bogoriensis as their phylogenetic neighbor. Based upon the fragmentary phenotypic data on Tropheryma whipplei and comparative analysis of full genome sequences of some members of the suborder Micrococcineae, the position of the genus Tropheryma must be considered tentative. Members of the family are defined by a wide range of morphological and chemotaxonomic properties, such as polar lipids, fatty acids, amino acids of peptidoglycan, and whole cell sugars which are used for the delination of genera and species. Members of the family are mainly found in soil, but they have been isolated from patient material and the marine environment as well. Many species are described for their ability to decompose not only plant-derived macromolecules such as cellulose, starch, and xanthan but also chitin, DNA, and gelatine. Some strains of the genera Cellulomonas and Oerskovia are opportunistic pathogens. This contribution is a modified and updated version of previous family descriptions (Stackebrandt E, Schumann P, Prauser H (2006) The family Cellulomonadaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, 3rd edn. Springer, New York, pp 983–1001; Stackebrandt E, Schumann P (2012) Cellulomonadaceae. In: Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Garrity G, Ludwig W, Suzuki K-I (eds) Bergey’s manual of systematic bacteriology, vol 6, 2nd edn. Springer, New York, p 699).

Keywords

Type Strain Sugar Cane Bagasse Sisal Fibre Methyl Halide Tropheryma Whipplei 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abt B, Foster B, Lapidus A, Clum A, Sun H, Pukall R, Lucas S, Glavina Del Rio T, Nolan M, Tice H, Cheng J-F, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Ovchinnikova G, Pati A, Goodwin L, Chen A, Palaniappan K, Land M, Hauser L, Chang Y-J, Jeffries CD, Rohde M, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk H-P (2010) Complete genome sequence of Cellulomonas flavigena type strain (134T). Stand Genomic Sci 3:15–25PubMedCentralPubMedCrossRefGoogle Scholar
  2. Agamuthu P, Tan EL (1985) Digestion of dried palm oil mill effluent by Cellulomonas species. Microbiol Lett 30:109–113Google Scholar
  3. Al-Awadhi H, Sulaiman RH, Mahmoud HM, Radwan SS (2007) Alkaliphilic and halophilic hydrocarbon-utilizing bacteria from Kuwaiti coasts of the Arabian Gulf. Appl Microbiol Biotechnol 77:183–186PubMedCrossRefGoogle Scholar
  4. An DS, Im WT, Yang HC, Kang MS, Kim KK, Jin L, Kim MK, Lee ST (2005) Cellulomonas terrae sp. nov., a cellulolytic and xylanolytic bacterium isolated from soil. Int J Syst Evol Microbiol 55:1705–1709PubMedCrossRefGoogle Scholar
  5. Bagnara C, Toci R, Gaudin C, Belaich JP (1985) Isolation and characterization of a cellulolytic microorganism, Cellulomonas fermentans sp. nov. Int J Syst Bacteriol 35:502–507CrossRefGoogle Scholar
  6. Balci I, Eksi F, Bayram A (2002) Coryneform bacteria isolated from blood cultures and their antibiotic susceptibilities. J Int Med Res 30:422–427PubMedCrossRefGoogle Scholar
  7. Bayer EA, Shoham Y, Lamed R (2000) Cellulose decomposing bacteria and their enzyme systems. Prokaryotes 2:578–617Google Scholar
  8. Bayer TS, Widmaier DM, Temme K, Mirsky EA, Santi DV, Voigt CA (2009) Synthesis of methyl halides from biomass using engineered microbes. J Am Chem Soc 13:6508–6515CrossRefGoogle Scholar
  9. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (eds) (1923) Bergey’s manual of determinative bacteriology. Williams & Wilkins, BaltimoreGoogle Scholar
  10. Betancourt Castellanos L, Ponz Clemente E, Fontanals Aymerich D, Blasco Cabañas C, Marquina Parra D, Grau Pueyo C, García García M (2011) First case of peritoneal infection due to Oerskovia turbata (Cellulosimicrobium funkei). Nefrologia 31:2223–2225 [in Spanish]Google Scholar
  11. Bichet-Hébé I, Pourcher A-M, Sutra L, Comel C, Moguedet G (1999) Detection of a whitening fluorescent agent as an indicator of white paper biodegradation: a new approach to study the kinetics of cellulose hydrolysis by mixed cultures. J Microbiol Methods 37:101–109PubMedCrossRefGoogle Scholar
  12. Bodnar G, Szabó IM, Zicsi A (1989) Untersuchungen über die intestinalen actinomyceten-gemeinschaften von Mesoniscus graniger friv/isopoda. Memoires de Biospeologie 17:131–136Google Scholar
  13. Boraston AB, Warren RA, Kilburn DG (2001) Glycosylation by pichia pastoris decreases the affinity of a family 2a carbohydrate-binding module from Cellulomonas fimi: a functional and mutational analysis. Biochem J 358:423–430PubMedCentralPubMedCrossRefGoogle Scholar
  14. Boraston AB, Sandercock LE, Warren RA, Kilburn DG (2003) O-glycosylation of a recombinant carbohydrate-binding module mutant secreted by Pichia pastoris. J Mol Microbiol Biotechnol 5:29–36PubMedCrossRefGoogle Scholar
  15. Borneman J, Triplett EW (1997) Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653PubMedCentralPubMedGoogle Scholar
  16. Brito EM, Guyoneaud R, Goñi-Urriza M, Ranchou-Peyruse A, Verbaere A, Crapez MA, Wasserman JC, Duran R (2006) Characterization of bacterial communities from mangrove sediments in Guanabara Bay. Brazil Res Microbiol 157:752–762CrossRefGoogle Scholar
  17. Brown JM, Frazier RP, Morey RE, Steigerwalt AG, Pellegrini GJ, Daneshvar MI, Hollis DG, McNeil MM (2005) Phenotypic and genetic characterization of clinical isolates of CDC coryneform group a-3: proposal of a new species of Cellulomonas. Cellulomonas denverensis sp. nov. J Clin Microbiol 43:1732–1737PubMedCentralPubMedCrossRefGoogle Scholar
  18. Brown JM, Steigerwalt AG, Money RE, Daneshva MI, Romero LJ, McNeil MM (2006) Characterization of clinical isolates previously identified as Oerskovia turbata: proposal of Cellulosimicrobium funkei sp. nov. And emended description of the genus Cellulosimicrobium. Int J Syst Evol Microbiol 56:801–804PubMedCrossRefGoogle Scholar
  19. Bryant MP (1972) Commentary on the hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25:1324–1328PubMedGoogle Scholar
  20. Busse H-J (2012) Order Micrococcales. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo M, Suzuki K, Ludwig W, Whitman W (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. Springer, New York, pp 569–570Google Scholar
  21. Chen HC, Hsu MF, Jiang ST (1997) Purification and characterization of an exo-N, N’-diacetylchitobiohydrolase-like enzyme from Cellulomonas flavigena NTOU 1. Enzyme Microb Technol 20:191–197CrossRefGoogle Scholar
  22. Choi WY, Haggett KD, Dunn NW (1978) Isolation of a cotton wool degrading strain of Cellulomonas mutants with altered ability to degrade cotton wool. Aus J Biol Sci 31:553–564Google Scholar
  23. Clark FE (1952) In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) (1986) Bergey’s manual of systematic bacteriology, 1st edn, vol 2. Williams & Wilkins, Baltimore, pp 1325–1329Google Scholar
  24. Clark FE (1953) Criteria suitable for species differentiation in Cellulomonas and a revision of the genus. Int Bull Bacteriol Nom Tax 3:179–199CrossRefGoogle Scholar
  25. Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354PubMedCentralPubMedGoogle Scholar
  26. Collins MD, Pascual C (2000) Reclassification of Actinomyces humiferus (Gledhill and casida) as Cellulomonas humilata nom corrig, comb. Int J Syst Evol Microbiol 50:661–663PubMedCrossRefGoogle Scholar
  27. Cottyn B, Regalado E, Lanoot B, De Cleene M, Mewand TW, Swings J (2001) Bacterial populations associated with rice seed in the tropical environment. Phytopath 91:282–292CrossRefGoogle Scholar
  28. Cruickshank JG, Gawler AH, Shaldon C (1979) Oerskovia species rare opportunistic pathogens. J Med Microbiol 12:513–515PubMedCrossRefGoogle Scholar
  29. Cure GL, Keddie RM (1973) Methods for the morphological examination of aerobic coryneform bacteria. In: Board RG, Lovelock DW (eds) Sampling and microbiological monitoring of environments. Society for applied bacteriology technical series, vol 7. Academic, London, pp 123–135Google Scholar
  30. De Leon CA, Joson LM (1980) Conversion of celluloses to protein. Acta Manilana Ser Natl Appl Sci 19:75–77Google Scholar
  31. Dermoun Z, Belaich JP (1985) Microcalorimetric study of cellulose degradation by Cellulomonas uda ATCC 21399. Biotech Bioeng 27:1005–1011CrossRefGoogle Scholar
  32. Dermoun Z, Belaich JP (1988) Crystalline index change in cellulose during aerobic and anaerobic Cellulomonas uda growth. Appl Microbiol Biotechnol 27:399–404CrossRefGoogle Scholar
  33. Dermoun Z, Gaudin C, Belaich JP (1988) Effects of end-product inhibition of Cellulomonas uda anaerobic growth on cellobiose chemostat culture. J Bacteriol 170:2827–2831PubMedCentralPubMedGoogle Scholar
  34. Deschamps AM (1982) Nutritional capacities of bark and wood decaying bacteria with particular emphasis on condensed tannin degrading strains. Eur J Pathol 12:252–257CrossRefGoogle Scholar
  35. Dey BP (1976) Production, nutritional and toxicological evaluation of Cellulomonas for protein source. PhD dissertation, University of Missouri-ColumbiaGoogle Scholar
  36. Dey BP, Fields ML (1995) Toxiticity evaluation of strains of Cellulomonas. J Food Safety 15:265–273CrossRefGoogle Scholar
  37. Diaz PL, Guirola HA (1983) Fermentation study of cellulosic materials of sugarcane by species of the genus Cellulomonas. Rev Cienc Biol 14:283–298Google Scholar
  38. Duckworth AW, Grant WD, Jones BE, van Steenbergen R (1996) Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19:181–191CrossRefGoogle Scholar
  39. Dunlap CE, Callihan CD (1974) Single cell protein production from cellulosic waste. In: Yen H (ed) Recycling and disposal of solidwastes: industrial, agricultural, domestic. Ann Harbor Scientific Publishers, Ann Arbor, pp 335–347Google Scholar
  40. Dzingov A, Márialigeti K, Jáger K, Contreras E, Kondics L, Szabó IM (1982) Studies on the microflora of millipedes (Diplopoda) I a comparison of actinomycetes isolated from surface structures of the exoskeleton and the digestive tract. Pedobiologia 24:1–7Google Scholar
  41. Elberson MA, Malekzadeh F, Yazdi MT, Kameranpour N, Noori-Daloii MR, Matte MH, Shahamat M, Colwell RR, Sowers KR (2000) Cellulomonas persica sp. nov. And Cellulomonas iranensis sp. nov., mesophilic cellulose-degrading bacteria isolated from forest soils. Int J Syst Evol Microbiol 50:993–996PubMedCrossRefGoogle Scholar
  42. Evtushenko LI, Janushkene NA, Streshinskaya GM, Naumova IBA, Agre NS (1984) Occurrence of teichoic acids in representatives of the order Actinomycetales. Dokl Akad Nauk SSSR 278:237–239PubMedGoogle Scholar
  43. Felske A, Wolterink A, van Lis R, Akkermans ADL (1998) Phylogeny of the main bacterial 16S rRNA sequences in drentse a grassland soils (the Netherlands). Appl Environ Microbiol 64:871–879PubMedCentralPubMedGoogle Scholar
  44. Fields ML, Tantratian S, Baldwin RE (1991) Production of bacterial and yeast biomass in ground corn cob and ground corn stalk media. J Food Prot 54:117–120Google Scholar
  45. Funke G, Ramos CP, Collins MD (1995) Identification of some clinical strains of CDC coryneform group a-3 and a-4 bacteria as Cellulomonas species and proposal of Cellulomonas hominis sp. nov. For some group a-3 strains. J Clin Microbiol 33:2091–2097PubMedCentralPubMedGoogle Scholar
  46. Gao B, Gupta RS (2005) Conserved indels in protein sequences that are characteristic of the phylum Actinobacteria. Int J Syst Evol Microbiol 55:2401–2412PubMedCrossRefGoogle Scholar
  47. Gledhill WE, Casida LE Jr (1969) Predominant catalase negative soil bacteria 11 occurrence and characterization of Actinomyces humiferus, sp. Appl Microbiol 18:114–121PubMedCentralPubMedGoogle Scholar
  48. Groth I, Schumann P, Rainey FA, Martin K, Schütze B, Augsten K (1997a) Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 47:1129–1133PubMedCrossRefGoogle Scholar
  49. Groth I, Schumann P, Rainey FA, Martin K, Schütze B, Augsten K (1997b) Bogoriella caseilytica gen. nov., sp. nov., a new alkaliphilic actinomycete from a soda lake in Africa. Int J Syst Bacteriol 47:788–794PubMedCrossRefGoogle Scholar
  50. Groth I, Schumann P, Schuetze B, Augsten K, Kramer I, Stackebrandt E (1999) Beutenbergia cavernae gen. nov., sp. nov., an L-lysine-containing actinomycete isolated from a cave. Int J Syst Bacteriol 49:1733–1740PubMedCrossRefGoogle Scholar
  51. Gutiérrez-Nava A, Herrera-Herrera A, Mayorga-Reyes L, Salgado LM, Ponce-Noyola T (2003) Expression and characterization of the celcflB gene from Cellulomonas flavigena encoding an endo-ß-1,4-glucanase. Curr Microbiol 47:359–363PubMedCrossRefGoogle Scholar
  52. Guyot JP (1986) Role of formate in methanogenesis from xylane by Cellulomonas sp associated with methanogens and Desulfovibrio vulgaris: inhibition of the aceticlastic reaction. FEMS Microbiol Lett 34:149–153CrossRefGoogle Scholar
  53. Haggatt KD, Choi WY, Dunn NW (1978) Mutants of Cellulomonas which produce increased levels of β-glucosidase. Eur J Appl Microbiol Biotechnol 6:189–191CrossRefGoogle Scholar
  54. Halsall DM, Gibson AH (1985) Cellulose decomposition and associated nitrogen fixation by mixed cultures of Cellulomonas gelida and Azospirillum species or bacillus macerans. Appl Environ Microbiol 50:1021–1026PubMedCentralPubMedGoogle Scholar
  55. Halsall DM, Gibson AH (1986) Comparison of two Cellulomonas strains and their interaction with Azospirillum brasilense in degradation of wheat straw and associated nitrogen fixation. Appl Environ Microbiol 51:855–861PubMedCentralPubMedGoogle Scholar
  56. Halsall DM, Goodchild DJ (1986) Nitrogen fixation associated with development and localizationof mixed populations of Cellulomonas sp. and Azospirillum brasiliense grown on cellulose or wheat straw. Appl Environ Microbiol 51:849–854PubMedCentralPubMedGoogle Scholar
  57. Han YW, Srinivasan VR (1968) Isolation and characterization of a cellulose-utilizing bacterium. Appl Microbiol 16:1140–1145PubMedCentralPubMedGoogle Scholar
  58. Han YW, Dunlap CE, Callahan CD (1971) Single cell protein from cellulosic waste. Food Technol 25:32–34Google Scholar
  59. Hansen AA, Herbert RA, Mikkelsen K, Jensen LL, Kristoffersen T, Tiedje JM, Lomstein BA, Finster KW (2007) Viability, diversity and composition of the bacterial community in a high arctic permafrost soil from Spitsbergen, Northern Norway. Environ Microbiol 9:2870–2884PubMedCrossRefGoogle Scholar
  60. Hatayama K, Esaki K, Ide T (2012) Cellulomonas soli sp. nov., and Cellulomonas oligotrophica sp. nov., isolated from soil. Int J Syst Evol Microbiol 63:60–65Google Scholar
  61. Hekmat O, Lo Leggio L, Rosengren A, Kamarauskaite J, Kolenova K, Stalbrand H (2010) Rational engineering of mannosyl binding in the distal glycone subsites of Cellulomonas fimi endo-beta-1,4-mannanase: mannosyl binding promoted at subsite −2 and demoted at subsite −3. Biochem 49:4884–4896CrossRefGoogle Scholar
  62. Higgins ML, Lechevalier MP, Lechevalier HA (1967) Flagellated actinomycetes. J Bacteriol 93:1446–1451PubMedCentralPubMedGoogle Scholar
  63. Horcasitas CM, López JO, Plaza IM (1998) Xylanases from Cellulomonas flavigena: purification and characterization. Biotechnol Tech 12:663–666CrossRefGoogle Scholar
  64. Hsing W, Canale-Parola E (1992) Cellobiose chemotaxis by the cellulolytic bacterium Cellulomonas gelida. J Bacteriol 74:7996–8002Google Scholar
  65. Hsing W, Canale-Parola E (1996) A methyl-accepting protein involved in multiple-sugar chemotaxis by Cellulomonas gelida. J Bacteriol 178:5153–5158PubMedCentralPubMedGoogle Scholar
  66. Hungate RE (1950) The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14:1–49PubMedCentralPubMedGoogle Scholar
  67. Hungate RE (1969) A roll tube method for cuitivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3B. Academic New York, pp 117–132Google Scholar
  68. Jáger K, Márialigeti K, Hauck M, Barabás G (1983) Promicromonospora enterophila sp. nov., a new species of monospore actinomycetes. Int J Syst Bacteriol 33:525–531CrossRefGoogle Scholar
  69. Jedar H, Deschamps AM, Lederbelt JM (1987) Production of single cell protein with Cellulomonas sp. on hemstalk wastes. Acta Biotech 7:103–109CrossRefGoogle Scholar
  70. Jones BE, Grant WD, Duckworth AW, Schumann P, Weiss N, Stackebrandt E (2005) Cellulomonas bogoriensis sp. nov., an alkaliphilic cellulomonads. Int J Syst Evol Microbiol 55:1711–1714PubMedCrossRefGoogle Scholar
  71. Kang MS, Im WT, Jung HM, Kim MK, Goddfellow M, Kim KK, Yang HC, An DS, Lee ST (2007) Cellulomonas composti sp. nov., a cellulolytic bacterium isolated from cattle farm compost. Int J Syst Evol Microbiol 57:1256–1260PubMedCrossRefGoogle Scholar
  72. Kaufmann A, Fegan J, Doleac P, Gainer C, Wittech D, Glann A (1976) Identification and characterization of a cellulolytic isolate. J Gen Microbiol 94:405–408PubMedCrossRefGoogle Scholar
  73. Kauri T, Kushner DJ (1985) Role of contact in bacterial degradation of cellulose. FEMS Microbiol Ecol 31:301–306CrossRefGoogle Scholar
  74. Keddie RM (1974) Genus III. Cellulomonas. In: Buchanan RE. Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore, pp 629–631Google Scholar
  75. Keddie RM, Cure GL (1977) The cell wall composition and distribution of free mycolic acids in named strains of coryneforms bacteria and in isolates from various natural sources. J Appl Bacteriol 42:229–253PubMedCrossRefGoogle Scholar
  76. Keddie RM, Jones D (1981) Aerobic saprophytic coryneform bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes a handbook on habitats. Isolation and identification of bacteria. Springer Verlag, New York, pp 1838–1878Google Scholar
  77. Keddie RM, Leask BGS, Grainger JM (1966) A comparison of coryneforms bacteria from soil and herbage: cell wall composition and nutrition. J Appl Bacteriol 29:17–43CrossRefGoogle Scholar
  78. Kellerman KF, Scales FM, Smith NR (1913) Identification and classification of cellulose dissolving bacteria. Zentrabl Bakteriol Parasitenk Infektionskr Hyg Abt II 39:502–522Google Scholar
  79. Khan ST, Harayama S, Tamura T, Ando K, Takagi M, Kazuo S (2009) Paraoerskovia marina gen. nov., sp. nov., an actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol 59:2094–2098PubMedCrossRefGoogle Scholar
  80. Khanna S (1993) Glucose uptake by Cellulomonas fimi. World J Microbiol Biotech 9:559–561CrossRefGoogle Scholar
  81. Kim BH (1987) Carbohydrate catabolism in cellulolytic strains of Cellulomonas, Pseudomonas, and Nocardia. Kor J Microbiol 25:28–33Google Scholar
  82. Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264PubMedCentralPubMedCrossRefGoogle Scholar
  83. Kuske CR, Barns SM, Busch JD (1997) Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Appl Environ Microbiol 63:3614–3621PubMedCentralPubMedGoogle Scholar
  84. La Scola B, Fenollar F, Fournier PE, Altwegg M, Mallet MN, Raoult D (2001) Description of Tropheryma whipplei gen. nov., sp. nov., the Whipple’s disease bacillus. Int J Syst Evol Microbiol 51:1471–1479PubMedGoogle Scholar
  85. Lai PC, Chen YS, Lee SS (2009) Infective endocarditis and osteomyelitis caused by Cellulomonas: a case report and review of the literature. Diagn Microbiol Infect Dis 65:184–187PubMedCrossRefGoogle Scholar
  86. Lechevalier MP (1972) Description of a new species, Oerskovia xanthineolytica, and emendation of Oerskovia Prauser et al. Int J Syst Bacteriol 22:260–264CrossRefGoogle Scholar
  87. Lechevalier HA, Lechevalier MP (1989) Genus Oerskovia. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 2379–2382Google Scholar
  88. Lechevalier MP, Stern AE, Lechevalier HA (1981) Phospholipids in the taxonomy of actinomycetes. In: Schaal KP, Pulverer G (eds) Actinomycetes proceedings of the fourth international symposium on actinomycete biology. Gustav Fischer, Stuttgart, pp 111–116Google Scholar
  89. Lednicka D, Mergaert J, Cnockaert MC, Swings J (2000) Isolation and identification of cellulolytic bacteria involved in the degradation of natural cellulosic fibres. Syst Appl Microbiol 23:292–299PubMedCrossRefGoogle Scholar
  90. Lee CM, Weon HY, Hong SB, Jeon YA, Schumann P, Kroppenstedt RM, Kwon SW, Stackebrandt E (2008) Cellulomonas aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 58:2925–2929PubMedCrossRefGoogle Scholar
  91. Lee DW, Lee SD (2010) Koreibacter algae gen. nov., sp. nov., isolated from seaweed. Int J Syst Evol Microbiol 60:1510–1515PubMedCrossRefGoogle Scholar
  92. Lovley DR, Greening RC, Ferry JG (1984) Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate. Appl Environ Microbiol 48:81–87PubMedCentralPubMedGoogle Scholar
  93. Malekzadeh F, Azin M, Shahamat M, Colwell RR (1993) Isolation and identification of three Cellulomonas spp. from forest soils. World J Microbiol Biotechnol 9:53–55PubMedCrossRefGoogle Scholar
  94. Márialigeti K, Contreras E, Barabás G, Heydrich M, Szabó IM (1985) True intestinal actinomycetes of millipedes (Diplopoda). J Invert Pathol 45:120–121CrossRefGoogle Scholar
  95. Marschoun S, Rapp P, Wagner F (1987) Metabolism of hexoses and pentoses by Cellulomonas uda under aerobic conditions and during fermentation. Can J Microbiol 33:1024–1031CrossRefGoogle Scholar
  96. Martin K, Schumann P, Rainey FA, Schuetze B, Groth I (1997) Janibacter limosus gen. nov., sp. nov., a new actinomycete with meso-diaminopimelic acid in the cell wall. Int J Syst Bacteriol 47:529–534PubMedCrossRefGoogle Scholar
  97. Mayorga-Reyes L, Ponce-Noyola T (1998) Isolation of a hyperxylanolytic Cellulomonas flavigena mutant growing on continuous culture on sugar cane bagasse. Biotech Lett 20:443–446CrossRefGoogle Scholar
  98. Mayorga-Reyes L, Morales Y, Salgado LM, Ortega A, Ponce-Noyola T (2002) Cellulomonas flavigena: characterization of an endo-1,4-xylanase tightly induced by sugarcane bagasse. FEMS Microbiol Lett 214:205–209PubMedCrossRefGoogle Scholar
  99. McCaig AE, Glover LA, Prosser JI (1999) Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol 65:1721–1730PubMedCentralPubMedGoogle Scholar
  100. McNeil MM, Brown JM, Carvalho ME, Hollis DG, Morey RE, Reller LB (2004) Molecular epidemiologic evaluation of endocarditis due to Oerskovia turbata and CDC group A-3 associated with contaminated homograft valves. J Clin Microbiol 42:2495–2500PubMedCentralPubMedCrossRefGoogle Scholar
  101. Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95CrossRefGoogle Scholar
  102. Morales-Jiménez J, Zúñiga G, Villa-Tanaca L, Hernández-Rodríguez C (2009) Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microb Ecol 58:879–891PubMedCrossRefGoogle Scholar
  103. Müller HE (1995) Detection of sialidase activity in Oerskovia (Cellulomonas). Zbl Bakt 282:13–17CrossRefGoogle Scholar
  104. Odom J, Wall JD (1983) Photoproduction of H2 from cellulose by an anaerobic bacterial coculture. Appl Environ Microbiol 45:1300–1305PubMedCentralPubMedGoogle Scholar
  105. Ohtaki H, Ohkusu K, Sawamura H, Ohta H, Inoue R, Iwasa J, Ito H, Murakami N, Ezaki T, Moriwaki H, Seishima M (2009) First report of acute cholecystitis with sepsis caused by Cellulomonas denverensis. J Clin Microbiol 47:3391–3393PubMedCentralPubMedCrossRefGoogle Scholar
  106. Owens JD, Keddie RM (1969) The nitrogen nutrition of soil and herbage coryneforms bacteria. J Appl Bacteriol 32:338–347PubMedCrossRefGoogle Scholar
  107. Park Y-H, Hori H, Suzuki K-I, Osaa S, Komagata K (1987) Phylogenetic analysis of the coryneform bacteria by 5S rRNA sequences. J Bacteriol 169:1801–1806PubMedCentralPubMedGoogle Scholar
  108. Ponce-Noyola T, de la Torre M (1995) Isolation of a high-specific-growth-rate mutant of Cellulomonas flavigena on sugar cane bagasse. Appl Microbiol Biotechnol 42:709–712CrossRefGoogle Scholar
  109. Poulsen OM, Petersen LW (1988) Growth of Cellulomonas sp. ATCC 21399 on different polysaccharides as sole carbon source Induction of extracellular enzymes. Appl Microbiol Biotechnol 19:480–484CrossRefGoogle Scholar
  110. Pourcher A-M, Sutra L, Hébé I, Moguedet G, Bollet C, Simoneau P, Gardan L (2001) Enumeration and characterization of cellulolytic bacteria from refuse of a landfill. FEMS Microb Ecol 34:229–241CrossRefGoogle Scholar
  111. Power EGM, Abdulla YH, Talsania HG, W, Aathithan S, French G-L (1995) VanA genes in vancomycin-resistant clinical isolates of Oerskovia turbata and Arcanobacterium (Corynebacterium) Haemolyticum. J Antimicr Chemother 36:595–606Google Scholar
  112. Prauser H (1984) Phage host ranges in the classification and identification of gram-positive branched and related bacteria. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical, and biomedical aspects of actinomycetes. Academic, Orlando, pp 617–633CrossRefGoogle Scholar
  113. Prauser H (1986) The Cellulomonas, Oersovia, Promicromonospora complex. In: Szabó G, Biro S, Goodfellow M (eds) Biological, biochemical, and biomedical aspects of actinomycetes, part B. Akademiai Kiado, Budapest, pp 527–539Google Scholar
  114. Prauser H, Falta R (1968) Phagensensibilität, Zellwand-Zusammensetzung und Taxonomy von Aktinomyzeten. Zeitschr Allg Mikrobiol 8:39–46CrossRefGoogle Scholar
  115. Prauser H, Lechevalier MP, Lechevalier H (1970) Description of Oerskovia gen. nov. to, harbor ørskov’s motile nocardia. Appl Microbiol 19:534PubMedCentralPubMedGoogle Scholar
  116. Przybyl K (1979) Bacterial microflora isolated from the bark surface of poplars growing in areas where air pollution is very high. Acta Soc Bot Pol 48:489–496Google Scholar
  117. Rainey FA, Weiss N, Stackebrandt E (1995) Phylogenetic analysis of the genera Cellulomonas, Promicromonospora, and Jonesia and proposal to exclude the genus Jonesia from the family Cellulomonadaceae. Int J Syst Bacteriol 45:649–652PubMedCrossRefGoogle Scholar
  118. Rajoka MI, Malik KA (1986) Comparison of different strains of Cellulomonas for production of cellulolytic and xylanolytic enzymes from biomass produced on saline lands. Biotechnol Lett 8:753–756CrossRefGoogle Scholar
  119. Rajoka MI, Malik KA (1997) Enhanced production of cellulases by Cellulomonas strains grown on different cellulosic residues. Folia Microbiol (Praha) 142:59–64CrossRefGoogle Scholar
  120. Ramasamy K, Meyers M, Bevers J, Verachtert H (1981) Isolation and characterization of cellulolytic bacteria from activated sludge. J Appl Microbiol 51:475–482Google Scholar
  121. Rapp P, Reng H, Hempel DC, Wagner F (1984) Cellulose degradation and monitoring of viscosity decrease incultures of Cellulomonas uda grown on printed newspaper. Biotechnol Bioeng 26:1167–1175PubMedCrossRefGoogle Scholar
  122. Ravasz K, Zicsi A, Contreras E, Szabó IM (1987) Comparative bacteriological analyses of the fecal matter of different earthworm species. In: Pagliai AMP, Omodeo P (eds) On earthworms. Selected symposia and monographs C Z I, 2nd edn. Mucchi, Modena, Italy, pp 389–399Google Scholar
  123. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7PubMedCentralPubMedGoogle Scholar
  124. Reller LB, Maddoux GL, Eckman MR, Pappas G (1975) Bacterial endocarditis caused by Oerskovia turbata. Ann Intern Med 83:664–666PubMedCrossRefGoogle Scholar
  125. Richard PAD, Peiris SP (1981) The hydrolysis of bagasse hemicellulose by selected strains of Cellulomonas. Biotechnol Lett 3:3944Google Scholar
  126. Rivas R, Trujillo ME, Mateos PF, Martínez-Molina E, Velázquez E (2004) Cellulomonas xylanilytica sp. nov., a cellulolytic and xylanolytic bacterium isolated from a decayed elm tree. Int J Syst Evol Microbiol 54:533–536PubMedCrossRefGoogle Scholar
  127. Roden EE, Lovley DR (1993) Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol 59:734–742PubMedCentralPubMedGoogle Scholar
  128. Rodríguez H, Alvarez R, Enríques A (1993) Evaluation of different alkali treatments of bagasse pith for cultivation of Cellulomonas sp. World J Microbiol Biotechnol 9:213–215PubMedCrossRefGoogle Scholar
  129. Rowlinson MC, Bruckner DA, Hinnebusch C, Nielsen K, Deville JG (2006) Clearance of Cellulosimicrobium cellulans bacteriemia in a child without central venous catheter removal. J Clin Microbiol 44:2650–2654PubMedCentralPubMedCrossRefGoogle Scholar
  130. Rusznyák AM, Tóth E, Schumann P, Spröer C, Makk J, Szabó G, Vladár P, Márialigeti K, Borsodi AK (2011) Cellulomonas phragmiteti sp. nov., a cellulolytic bacterium isolated from reed (Phragmites australis) periphyton in a shallow soda pond. Int J Syst Evol Microbiol 61:1662–1666CrossRefGoogle Scholar
  131. Schaal KP (1986) Genus Actinomyces Harz 1877, 133AL. In: Sneath PH, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 1383–1418Google Scholar
  132. Schumann P, Weiss N, Stackebrandt E (2001) Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int J Syst Evol Microbiol 51:1007–1010PubMedCrossRefGoogle Scholar
  133. Schumann P, Busse J, Toth E, Pukall R (2009) Subcommittee on the taxonomy of the suborder Micrococcineae. Int J Syst Evol Microbiol 59:643–644CrossRefGoogle Scholar
  134. Schumann P, Pukall R, Spröer C, Stackebrandt E (2013) Reclassification of koreibacter algae as a later heterotypic synonym of Paraoerskovia marina and emended descriptions of the genus Paraoerskovia Khan et al. 2009 And of Paraoerskovia marina Khan et al. 2009. Int J Syst Evol Microbiol 63:219–223PubMedCrossRefGoogle Scholar
  135. Seidl PH, Faller AH, Loider R, Schleifer KH (1980) Peptidoglycan types and cytochrome patterns of strains of Oerskovia turbata and O. xanthineolytica. Arch Microbiol 127:173–178CrossRefGoogle Scholar
  136. Shi Z, Luo G, Wang G (2012) Cellulomonas carbonis sp. nov., isolated from coal mine soil. Int J Syst Evol Microbiol 62:2004–2010PubMedCrossRefGoogle Scholar
  137. Silva CF, Schwan RFS, Dias ES, Wheals AE (2000) Microbial diversity during maturation and natural processing of coffee cherries of Coffea Arabica in Brazil. Int J Food Microbiol 60:251–260CrossRefGoogle Scholar
  138. Sottnek FO, Brown JM, Weaver RE, Carroll GF (1977) Recognition of Oerskovia species on the clinical laboratory: characterization of 35 isolates. Int J Syst Bacteriol 27:263–270CrossRefGoogle Scholar
  139. Stackebrandt E, Kandler O (1974) Biochemisch-taxonomische Untersuchungen an der Gattung Cellulomonas. Zbl Bakt Hyg I Abt Orig A228:128–135Google Scholar
  140. Stackebrandt E, Kandler O (1979) Taxonomy of the genus Cellulomonas, based on phenotypic characters and deoxyribonucleic acid-deoxyribonucleic acid homology, and proposal seven neotype strains. Int J Syst Bacteriol 29:273–282CrossRefGoogle Scholar
  141. Stackebrandt E, Kandler O (1980a) Cellulomonas cartae sp. nov. Int J Syst Bacteriol 30:186–188CrossRefGoogle Scholar
  142. Stackebrandt E, Kandler O (1980b) Fermentation pathway and redistribution of 14C inspecifically labelled glucose in Cellulomonas. Zbl Bakt I Abt Orig C1:40–50Google Scholar
  143. Stackebrandt E, Keddie RM (1986) Genus Cellulomonas Bergey et al. 1923, 154, emend mut char Clark 1952, 50AL. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 1325–1329Google Scholar
  144. Stackebrandt E, Prauser H (1991) The family Cellulomonadaceae. In: Balows A, Trüper H, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, vol 2, 2nd edn. Springer, New York, pp 1323–1345Google Scholar
  145. Stackebrandt E, Schumann P (2000) Description of Bogoriellaceae fam. nov., Dermacoccaceae fam. nov., Rarobacteraceae fam nov and Sanguibacteraceae fam. nov. and emendation of some families of the suborder Micrococcineae. Int J Syst Evol Microbiol 50:1279–1285PubMedCrossRefGoogle Scholar
  146. Stackebrandt E, Schumann P (2012) Cellulomonadaceae. In: Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Garrity G, Ludwig W, Suzuki K-I (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. Springer, New York, p 699Google Scholar
  147. Stackebrandt E, Woese CR (1981) Towards a phylogeny of the actinomycetes and related organisms. Curr Microbiol 5:197–202CrossRefGoogle Scholar
  148. Stackebrandt E, Lewis BJ, Woese CR (1980) The phylogenetic structure of the coryneform group of bacteria. Zbl Bakt Hyg I Abt Orig C1:137–149Google Scholar
  149. Stackebrandt E, Seiler H, Schleifer KH (1982) Union of the genera Cellulomonas Bergey et al and Oerskovia Prauser et al in a redefined genus Cellulomonas. Zb Bac Hy Ab Ori C3:401–409Google Scholar
  150. Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491CrossRefGoogle Scholar
  151. Stackebrandt E, Breymann S, Steiner U, Prauser H, Weiss N, Schumann P (2002) Re-evaluation of the status of the genus Oerskovia, reclassification of promicromonospora enterophila (Jáger et al. 1983) As Oerskovia enterophila comb. nov. and description of Oerskovia jenensis sp. nov. and Oerskovia paurometabola sp. nov. Int J Syst Evol Microbiol 52:1105–1111PubMedCrossRefGoogle Scholar
  152. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  153. Stewart BJ, Leatherwood JM (1976) Depressed synthesis of cellulose by Cellulomonas. J Bacteriol 128:609–615PubMedCentralPubMedGoogle Scholar
  154. Stoppok W, Rapp P, Wagner F (1982) Formation, location and regulation of endo-1,4-ß-glucanases and ß-glucosidases from Cellulomonas uda. Appl Environ Microbiol 44:44–53PubMedCentralPubMedGoogle Scholar
  155. Suihko M-L, Skyttä E (2009) Characterisation of aerobically grown non-spore-forming bacteria from paper mill pulps containing recycled fibres. Ind J Ind Microbiol Biotechnol 36:53–64CrossRefGoogle Scholar
  156. Sukapure RS, Lechevalier MP, Reber H, Higgins ML, Lechevalier HA, Prauser H (1970) Motile nocardioid Actinomycetales. Appl Microbiol 19:527–533PubMedCentralPubMedGoogle Scholar
  157. Szabó IM, Jáger K, Contreras E, Márialigeti K, Dzingov A, Barabás G, Pobozsny M (1983) Composition and properties of the external and internal microflora of millipedes (Diplopoda). In: Lebrun P, Andre HM, De Medts A, Gregoire-Wibo C, Wauthy G (eds) Proceedings of the VIII Int Coll Soil Zool Dieu-Brichart, Ottignies-Louvain-la-Neuve, pp 197–206Google Scholar
  158. Szabó IM, Márialigeti K, Loc CT, Jáger K, Szabó I, Contreras E, Ravasz K, Heydrich M, Palik E (1986) On the ecology of nocardioform intestinal actinomycetes of millipedes (Diplopoda). In: Szabó G, Biró S, Goodfellow M (eds) Biological, biochemical, and biomedical aspects of actinomycetes, part B. Akademiai Kiadó, Budapest, pp 701–704Google Scholar
  159. Thayer DW, Lowther SV, Philips JG (1984) Cellulolytic activities of strains of the genus Cellulomonas. Int J Syst Bacteriol 34:432–438CrossRefGoogle Scholar
  160. Thomas P, Soly TA (2009) Endophytic bacteria associated with growing shoot tips of banana (Musa sp.) cv grand naine and the affinity of endophytes to the host. Microb Ecol 58:952–964PubMedCrossRefGoogle Scholar
  161. Ue H, Matsuo Y, Kasai H, Yokota A (2011) Demequina globuliformis sp. nov., Demequina oxidasica sp. nov. And Demequina aurantiaca sp. nov., actinobacteria isolated from marine environments, and proposal of Demequinaceae fam nov. Int J Syst Evol Microbiol 61:1322–1329PubMedCrossRefGoogle Scholar
  162. Ulrich A, Wirth S (1999) Phylogenetic diversity and population densities of culturable cellulolytic soil bacteria across an agricultural encatchment. Microb Ecol 37:238–247PubMedCrossRefGoogle Scholar
  163. Viamajala S, Peyton BM, Gerlach R, Sivaswamy V, Apel WA, Petersen JN (2008) Permeable reactive biobarriers for in situ Cr(VI) reduction: bench scale tests using Cellulomonas sp strain ES6. Biotechnol Bioeng 101:1150–1162PubMedCrossRefGoogle Scholar
  164. Vladut-Talor M, Kauri T, Kushner DJ (1986) Effects of cellulose on growth, enzyme production, and ultrastructure of a Cellulomonas species. Arch Microbiol 144:191–195CrossRefGoogle Scholar
  165. Weeger W, Lièvremont D, Perret M, Lagarde F, Hubert JC, Leroy M, Lett MC (1999) Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 12:141–149PubMedCrossRefGoogle Scholar
  166. Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Garrity G, Ludwig W, Suzuki K-I (eds) (2012) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. Springer, New YorkGoogle Scholar
  167. Yamamoto N, Sato SI, Saito K, Hasuo T, Tadenuma M, Suzuki KI, Tamaoka J, Komagata K (1988) Rarobacter faecitabidus gen. nov., sp. nov., a yeast-lysing coryneform bacterium. Int J Syst Bacteriol 38:7–11CrossRefGoogle Scholar
  168. Yaman M, Ertürk O, Aslan I (2010) Isolation of some pathogenic bacteria from the great spruce bark beetle, Dendroctonus micans and its specific predator, Rhizophagus grandis. Folia Microbiol (Praha) 5:35–38CrossRefGoogle Scholar
  169. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living-tree project based on 16S and 23S rRNA sequence analyses. System Appl Microbiol 33:291–299CrossRefGoogle Scholar
  170. Yi HR, Min K-H, Kim C-K, Ka J-O (2000) Phylogenetic and phenotypic diversity of 4-chlorobenzoate-degrading bacteria isolated from soils. FEMS Microbiol Ecol 31:53–60PubMedCrossRefGoogle Scholar
  171. Yi H, Schumann P, Chun J (2007) Demequina aestuarii gen. nov., sp. nov., a novel actinomycete of the suborder Micrococcineae, and reclassification of Cellulomonas fermentans Bagnara et al. 1985 As Actinotalea fermentans gen. nov., comb. nov. Int J Syst Evol Microbiol 57:151–156PubMedCrossRefGoogle Scholar
  172. Yin LJ, Jiang ST, Pon SH, Lin HH (2010) Hydrolysis of Chlorella by Cellulomonas sp. YJ5 cellulases and its biofunctional properties. J Food Sci 75:317–323CrossRefGoogle Scholar
  173. Yoon MH, Ten LN, Im WT, Lee ST (2008) Cellulomonas chitinilytica sp. nov., a chitinolytic bacterium isolated from cattle-farm compost. Int J Syst Evol Microbiol 58:1878–1884PubMedCrossRefGoogle Scholar
  174. Zhi X-Y, Li W-J, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweigGermany

Personalised recommendations