The Families Jonesiaceae, Ruaniaceae, and Bogoriellaceae

  • Erko Stackebrandt
Reference work entry


All three families are members of the order Micrococcales (Busse 2012). As such they are Gram-positive, not acid-fast, do not form endospores, and do not contain mycolic acids in their cell wall. Jonesiacea is a monogeneric family and contains two species, J. denitrificans and J. quinhaiensis. Ruaniaceae encompasses two monospecific genera, Ruania and Haloactinobacterium, while Bogoriella embraces the monospecific genus Bogoriella and Georgenia for which six species have been described. Phylogenetic neighbors are the families Bogoriellaceae, Ruaniaceae, Beutenbergiaceae, and Actinomycetaceae. The rationale for treating these three neighboring genera in one chapter but omitting Actinomycetaceae is the fact that the latter family contains seven genera with more than 50 species, deserving a chapter on its own. Except for Jonesia denitrificans, a former member of the genus Listeria, hardly any information is available for other species of these families besides their original description.


Type Strain Recirculation Aquaculture System Chemotaxonomic Property Ribitol Phosphate Denitrify Sulfide Removal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J (1996) Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52CrossRefGoogle Scholar
  2. Altenburger P, Kämpfer P, Schumann P, Vybiral D, Lubitz W, Busse HJ (2002) Georgenia muralis gen. nov., sp. nov., a novel actinobacterium isolated from a medieval wall painting. Int J Syst Evol Microbiol 52:875–881PubMedCrossRefGoogle Scholar
  3. Busse H-J (2012) Order Micrococcales. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo M, Suzuki K, Ludwig W, Whitman W (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. Springer, New York, p 569–570Google Scholar
  4. Chatelain R, Second L (1976) Taxonomie numerique de quelques Brevibacterium. Ann Inst Pasteur 111:630–644Google Scholar
  5. Collins MD, Feresu S, Jones D (1983) Cell wall, DNA base composition and lipid studies on Listeria denitrificans (Prevot). FEMS Microbiol Lett 18:131–134CrossRefGoogle Scholar
  6. Fiedler F, Seger J (1983) The murein types of Listeria grayii, Listeria murrayi, and Listeria denitrificans. Syst Appl Microbiol 4:444–450PubMedCrossRefGoogle Scholar
  7. Fiedler F, Seger J, Schrettenbrunner A, Seeliger HPR (1984) The biochemistry of murein and cell wall teichoic acids in the genus Listeria. Syst Appl Microbiol 5:360–376CrossRefGoogle Scholar
  8. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B, Augsten K (1997) Bogoriella caseilytica gen. nov., sp. nov., a new alkaliphilic actinomycete from a soda lake in Africa. Int J Syst Bacteriol 47:788–794PubMedCrossRefGoogle Scholar
  9. Groth I, Schumann P, Schuetze B, Augsten K, Kramer I, Stackebrandt E (1999) Beutenbergia cavernae gen. nov., sp. nov., an L-lysine-containing actinomycete isolated from a cave. Int J Syst Evol Microbiol 49:1733–1740Google Scholar
  10. Gu Q, Pasciak M, Luo H, Gamian A, Liu Z, Huang Y (2007) Ruania albidiflava gen. nov., sp. nov., a novel member of the suborder Micrococcineae. Int J Syst Evol Microbiol 57:809–814PubMedCrossRefGoogle Scholar
  11. Hamada M, Iino T, Tamura T, Iwami T, Harayama S, Suzuki K (2009a) Serinibacter salmoneus gen. nov., sp. nov., an actinobacterium isolated from the intestinal tract of a fish, and emended descriptions of the families Beutenbergiaceae and Bogoriellaceae. Int J Syst Evol Microbiol 59:2809–2814PubMedCrossRefGoogle Scholar
  12. Hamada M, Tamura T, Ishida Y, Suzuki K (2009b) Georgenia thermotolerans sp. nov., an actinobacterium isolated from forest soil. Int J Syst Evol Microbiol 59:1875–1879PubMedCrossRefGoogle Scholar
  13. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for selective isolation of soil actinomycetes. J Ferment Technol 65:501–509CrossRefGoogle Scholar
  14. Hayakawa M, Nonomura H (1989) A new method for the intensive isolation of Actinomycetes from soil. Actinomycetologica 3:95–104CrossRefGoogle Scholar
  15. Hooper SJ, Crean SJ, Lewis MA, Spratt DA, Wade WG, Wilson MJ (2006) Viable bacteria present within oral squamous cell carcinoma tissue. J Clin Microbiol 44:1719–1725PubMedCentralPubMedCrossRefGoogle Scholar
  16. Huang YJ, Kim E, Cox MJ, Brodie EL, Brown R, Wiener-Kronish JP, Lynch SV (2010) A persistent and diverse airway microbiota present during chronic obstructive pulmonary disease exacerbations. OMICS 14:9–59PubMedCentralPubMedCrossRefGoogle Scholar
  17. Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson KH, Horikoshi K (2003) Microbial communities associated with geological horizons in coastal sub seafloor sediments from the sea of Okhotsk. Appl Environ Microbiol 69:7224–7235PubMedCentralPubMedCrossRefGoogle Scholar
  18. Jones D (1975) A numerical taxonomic study of coryneform and related bacteria. J Gen Microbiol 87:52–96PubMedCrossRefGoogle Scholar
  19. Kämpfer P, Steiof M, Dott W (1991) Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251PubMedCrossRefGoogle Scholar
  20. Kämpfer P, Arun AB, Busse H-J, Langer S, Young C-C, Chen W-M, Schumann P, Syed AA, Rekha PD (2010) Georgenia soli sp. nov., isolated from iron-ore-contaminated soil in India. Int J Syst Evol Microbiol 60:1027–1030PubMedCrossRefGoogle Scholar
  21. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R, Xu LH, Stackebrandt E, Jiang CL (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428PubMedCrossRefGoogle Scholar
  22. Loessner M, Busse M (1990) Bacteriophage typing of Listeria species. Appl Environ Microbiol 56:1912–1918PubMedCentralPubMedGoogle Scholar
  23. Mayhew LE, Swanner ED, Martin AP, Templeton AS (2008) Phylogenetic relationships and functional genes: distribution of a gene (mnxG) encoding a putative manganese-oxidizing enzyme in Bacillus species. Appl Environ Microbiol 74:7265–7271PubMedCentralPubMedCrossRefGoogle Scholar
  24. Prevot S (1961) Traité de bacteriologie systematique. Dunod, ParisGoogle Scholar
  25. Pukall R, Gehrich-Schröter G, Lapidus A, Nolan M, Del Glavina RT, Lucas S, Chen F, Tice H, Pitluck S, Cheng JF, Copeland A, Saunders E, Brettin T, Detter JC, Bruce D, Goodwin L, Pati A, Ivanova N, Mavromatis K, Ovchinnikova G, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Chain P, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Han C (2009) Complete genome sequence of Jonesia denitrificans type strain (Prevot 55134T). Stand Genomic Sci 1:262–269PubMedCentralPubMedCrossRefGoogle Scholar
  26. Rainey FA, Weiss N, Stackebrandt E (1995) Phylogenetic analysis of the genera Cellulomonas, Promicromonospora, and Jonesia and proposal to exclude the genus Jonesia from the family Cellulomonadaceae. Int J Syst Bacteriol 45:649–652PubMedCrossRefGoogle Scholar
  27. Rocourt J, Wehmeyer U, Stackebrandt E (1987) Transfer of Listeria denitrificans to a new genus, Jonesia gen. nov., as Jonesia denitrificans comb. nov. Int J Syst Bacteriol 37:266–270CrossRefGoogle Scholar
  28. Rocourt J, Boerlin P, Grimont F, Jaquet C, Piffaretti JC (1992) Assignment of Listeria grayi and Listeria murrayi to a single species, Listeria grayi, with a revised description of Listeria grayi. Int J Syst Bacteriol 42:171–174PubMedCrossRefGoogle Scholar
  29. Schaal KP, Yassin AF, Stackebrandt E (2006) The family Actinomycetaceae: the genera Actinomyces, Actinobaculum, Arcanobacterium, Varibaculum, and Mobiluncus. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes—a handbook on the biology of bacteria, vol 5, 3rd edn. Springer, New York, pp 430–557Google Scholar
  30. Schneider O, Chabrillon-Popelka M, Smidt H, Haenen O, Sereti V, Eding EH, Verreth JAJ (2007) HRT and nutrients affect bacterial communities grown on recirculation aquaculture system effluents. FEMS Microbiol Ecol 60:207–219PubMedCrossRefGoogle Scholar
  31. Schumann P, Cui X, Stackebrandt E, Kroppenstedt RM, Xu L, Jiang C (2004) Jonesia quinghaiensis sp. nov., a new member of the suborder Micrococcineae. Int J Syst Evol Microbiol 54:2181–2184PubMedCrossRefGoogle Scholar
  32. Seeliger HPR, Jones D (1986) Genus Listeria Pirie 1940 383AL. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1235–1245Google Scholar
  33. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  34. Sianidis G, Pozidis C, Becker F, Vrancken K, Sjoeholm C, Karamanou S, Takamiya-Wik M, van Mellaert L, Schaefer T, Anne J, Economou A (2005) Functional large-scale production of a novel Jonesia sp. xyloglucanase by heterologous secretion from Streptomyces lividans. J Biotechnol 121:498–507PubMedCrossRefGoogle Scholar
  35. Sohier R, Benazet F, Pkchaud M (1948) Sur un germe du genre Listeria apparemment non pathogene. Ann Inst Pasteur 74:54–57Google Scholar
  36. Stackebrandt E (2012) Family Jonesiaceae. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo M, Suzuki K, Ludwig W, Whitman W (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. Springer, New York, p 802Google Scholar
  37. Stackebrandt E, Goebel BM (1994) A place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  38. Stackebrandt E, Prauser H (1991) Assignment of the genera Cellulomonas, Oerskovia, Promicromonospora and Jonesia into Cellulomonadaceae fam. nov. Syst Appl Microbiol 14:261–265CrossRefGoogle Scholar
  39. Stackebrandt E, Schumann P (2000) Description of Bogoriellaceae fam. nov., Dermacoccaceae fam. nov., Rarobacteraceae fam. nov. and Sanguibacteraceae fam. nov. and emendation of some families of the suborder Micrococcineae. Int J Syst Evol Microbiol 50:1279–1285PubMedCrossRefGoogle Scholar
  40. Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491CrossRefGoogle Scholar
  41. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  42. Stuart SE, Welshimer HJ (1973) Intrageneric relatedness of Listeria Prie. Int J Syst Bacteriol 23:8–14CrossRefGoogle Scholar
  43. Stuart SE, Welshimer HJ (1974) Taxonomic re-examination of Listeria Pirie and transfer of Listeria grayi and Listeria murrayi to a new genus Murraya. Int J Syst Bacteriol 24:177–185CrossRefGoogle Scholar
  44. Tang S-K, Zhi X-Y, Wang Y, Wu J-Y, Lee J-C, Kim C-J, Lou K, Xu L-H, Li W-J (2010a) Haloactinobacterium album gen. nov., sp. nov., a halophilic actinobacterium, and proposal of Ruaniaceae fam. nov. Int J Syst Evol Microbiol 60:2113–2119PubMedCrossRefGoogle Scholar
  45. Tang S-K, Wang Y, Lee J-C, Lou K, Park D-J, Kim C-J, Li W-J (2010b) Georgenia halophila sp. nov., a halophilic actinobacterium from a salt lake. Int J Syst Evol Microbiol 60:1317–1321PubMedCrossRefGoogle Scholar
  46. Ue H, Matsuo Y, Kasai H, Yokota A (2011) Miniimonas arenae gen. nov., sp. nov., an actinobacterium isolated from sea sand. Int J Syst Evol Microbiol 61:123–127PubMedCrossRefGoogle Scholar
  47. von Wintzingerode F, Göbel UB, Siddiqui RA, Rösick U, Schumann P, Frühling A, Rohde M, Pukall R, Stackebrandt E (2001) Salana multivorans gen. nov., sp. nov., a novel actinobacterium isolated from an anaerobic bioreactor and capable of selenate reduction. Int J Syst Evol Microbiol 51:1653–1661CrossRefGoogle Scholar
  48. Welshimer HJ, Meredith AL (1971) Listeria murrayi sp. n.: a nitrate-reducing mannitol-fermenting Listeria. Int J Syst Bacterial 21:3–7CrossRefGoogle Scholar
  49. Wilkinson BJ, Jones D (1975) Some serological studies on Listeria and possibly related bacteria. In: Woodbine M (ed) Probems of Listeriosis. Leicester University Press, Leicester, pp 251–261Google Scholar
  50. Wilkinson BJ, Jones D (1977) A numerical taxonomic survey of Listeria and related bacteria. J Gen Microbiol 98:399–421PubMedCrossRefGoogle Scholar
  51. Woo S-G, Cui Y, Kang M-S, Jin L, Kim KK, Lee S-T, Lee M, Park J (2012) Georgenia daeguensis sp. nov., isolated from 4-chlorophenol enrichment culture. Int J Syst Evol Microbiol 62:1703–1707Google Scholar
  52. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living-tree project based on 16S and 23S rRNA sequence analyses. System Appl Microbiol 33:291–299CrossRefGoogle Scholar
  53. Zhi XY, Li WJ, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweigGermany

Personalised recommendations