The Genus Arthrobacter

  • Hans-Jürgen Busse
  • Monika Wieser
Reference work entry


The genus Arthrobacter is a member of the family Micrococcaceae and compared to other genera of the family, it contains the highest number of species. The genus cannot be considered monophyletic because within the clade embracing all Arthrobacter species also members of other genera of the family are present. Based on quinone system and peptidoglycan structure, the genus Arthrobacter can be subdivided into two major groups. One group is characterized by a quinone system with monosaturated menaquinone [MK-8(H2 and/or MK-9(H2) and peptidoglycan type A3α. The second group contains completely unsaturated menaquinones (MK-8, MK-9, and/or MK-10) and peptidoglycan type A4α. Combining chemotaxonomic and 16S rRNA based data, the genus can be subdivided at least into 11 subgroups. The majority of established species has been isolated from soil and sediments, but some were recovered from clinical specimens, as well. Arthrobacters are heterotrophic bacteria that do not require fastidious growth conditions. Most of them are mesophilic with growth optima below 30 °C, but some strains isolated from cold environments (Arctica, Antarctica, glaciers) are psychrotolerant or even psychrophilic. Numerous arthrobacters have been studied that are able to degrade harmful compounds such as 4-chlorophenol, 4-fluorophenol, 4-nitrophenol, or phenanthrene. Some strains have been identified as a source of enzymes including cold-adapted β-galactosidases. Since the genus Sinomonas harbors three former Arthrobacter species, its species will be dealt with here without separating from Arthrobacter species.


Polar Lipid Profile Strain JS443 Arthrobacter Strain Arthrobacter Globiformis Arthrobacter Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abramowicz DA (1995) Aerobic and anaerobic PCB biodegradation in the environment. Environ Health Perspect 103:97–99PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bae HS, Lee JM, Lee S-T (1996) Biodegradation of 4-chlorophenol via a hydroquinone pathway by Arthrobacter ureafaciens CPR706. FEMS Microbiol Lett 145:125–129PubMedCrossRefGoogle Scholar
  3. Baitsch D, Sandu C, Brandsch R, Igloi GL (2001) Gene cluster on pAO1 of Arthrobacter nicotinovorans involved in degradation of the plant alkaloid nicotine: cloning, purification, and characterization of 2,6-dihydroxypyridine 3-hydroxylase. J Bacteriol 183:5262–5267PubMedCentralPubMedCrossRefGoogle Scholar
  4. Balkwill DL, Boone DR (1997) Identity and diversity of microorganisms cultured from subsurface environments. In: Amy PS, Haldeman DL (eds) The Microbiology of the Terrestrial Deep Subsurface. Lewis Publishers, New York, pp 105–117Google Scholar
  5. Bauer JE, Capone DG (1988) Effects of co-occuring aromatic hydrocarbons on degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries. Appl Environ Microbiol 54:1649–1655PubMedCentralPubMedGoogle Scholar
  6. Bazot S, Bois P, Joyeux C, Lebeau T (2007) Mineralization of diuron [3-(3,4-dichlorophenyl)-1, 1-dimethylurea] by co-immobilized Arthrobacter sp. and Delftia acidovorans. Biotechnol Lett 29:749–754PubMedCrossRefGoogle Scholar
  7. Bernasconi E, Valsangiacomo C, Peduzzi R, Carota A, Moccetti T, Funke G (2004) Arthrobacter woluwensis subacute infective endocarditis: Case report and review of the literature. Clin Infect Dis 38:e27–e31PubMedCrossRefGoogle Scholar
  8. Bhadbhade BJ, Sarnaik SS, Kanekar PP (2002) Bioremediation of an organophosphorus pesticide, Monocrotophos, by soil bacteria. J Appl Microbiol 93:224–234PubMedCrossRefGoogle Scholar
  9. Bockelmann WA, Hoppe-Seyler T (2001) The surface flora of bacterial smear-ripened cheeses from cow‘s and goat’s milk. Int Dairy J 11:307–314CrossRefGoogle Scholar
  10. Boivin-Jahns V, Bianchi A, Ruimy R, Garcin J, Daumas S, Christen R (1995) Comparison of phenotypical and molecular methods for the identification of bacterial strains isolated from a deep subsurface environment. Appl Environ Microbiol 61:3400–3406PubMedCentralPubMedGoogle Scholar
  11. Borodina E, Kelly DP, Rainey FA, Ward-Rainey NL, Wood AP (2000) Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter. Arch Microbiol 173:425–437PubMedCrossRefGoogle Scholar
  12. Borodina E, Kelly DP, Schumann P, Rainey FA, Ward-Rainey NL, Wood AP (2002) Enzymes of dimethylsulfone metabolism and the phylogenetic characterization of the facultative methylotrophs Arthrobacter sulfonivorans sp. nov., Arthrobacter methylotrophus sp. nov., and Hyphomicrobium sulfonivorans sp. nov. Arch Microbiol 177:173–183PubMedCrossRefGoogle Scholar
  13. Bradley DE (1967) Ultrastructure of bacteriophages and bacteriocins. Bacteriol Rev 31:230–314PubMedCentralPubMedGoogle Scholar
  14. Brown DR, Holt JG, Pattee PA (1978) Isolation and characterization of Arthrobacter bacteriophages and their application to phage typing of soil arthrobacters. Appl Environ Microbiol 35(1):85–191Google Scholar
  15. Busse HJ, Wieser M, Buczolits S (2012) Genus III. Arthrobacter. In: Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI, Ludwig W, Whitman WB (eds) Bergey’s Manual of Systematic Bacteriology, vol 5, 2nd edn. Springer, New York, pp 578–624Google Scholar
  16. Cai B, Han Y, Liu B, Ren Y, Jiang S (2003) Isolation and characterization of an atrazine-degrading bacterium from industrial wastewater in China. Lett Appl Microbiol 36:272–276PubMedCrossRefGoogle Scholar
  17. Casellas M, Grifoll M, Bayona JM, Solanas AM (1997) New metabolites in the degradation of fuorene by Arthrobacter sp. strain F101. Appl Environ Microbiol 63:819–826PubMedCentralPubMedGoogle Scholar
  18. Casida LE Jr, Liu K-C (1974) Arthrobacter globiformis and its bacteriophage in soil. Appl Microbiol 28:951–959PubMedCentralPubMedGoogle Scholar
  19. Chang HW, Bae JW, Nam YD, Kwon HY, Park JR, Shin KS, Kim KH, Quan ZX, Rhee SK, An KG, Park YH (2007) Arthrobacter subterraneus sp. nov., isolated from deep subsurface water of the South Coast of Korea. J Microbiol Biotechnol 17:1875–1879PubMedGoogle Scholar
  20. Chauhan A, Jain RK (2000) Degradation of o-nitrobenzoate via anthranilic acid (o-aminobenzoate) by Arthrobacter protophormiae: a plasmid encoded new pathway. Biochem Biophys Res Commun 267:236–244PubMedCrossRefGoogle Scholar
  21. Chen M, Xiao X, Wang P, Zeng X, Wang F (2005) Arthrobacter ardleyensis sp. nov., isolated from Antarctic lake sediment and deep-sea sediment. Arch Microbiol 183:301–305PubMedCrossRefGoogle Scholar
  22. Chen Y-G, Tang S-K, Zhang Y-Q, Li Z-Y, Yi L-B, Wang Y-X, Li W-J, Cui X-L (2009) Arthrobacter halodurans sp. nov., a new halotolerant bacterium isolated from sea water. Antonie Van Leeuwenhoek 96:63–70PubMedCrossRefGoogle Scholar
  23. Chun J, Rhee MS, Han JI, Bae KS (2001) Arthrobacter siderocapsulatus Dubinina and Zhdanov 1975AL is a later subjective synonym of Pseudomonas putida (Trevisan 1889) Migula 1895AL. Int J Syst Evol Microbiol 51:169–170PubMedGoogle Scholar
  24. Clark FE (1951) The generic classification of certain cellulolytic bacteria. Soil Sci Soc Am Proc 15:180–182CrossRefGoogle Scholar
  25. Clark FE (1955) The designation of Corynebacterium ureafaciens Krebs and Eggleston as Arthrobacter ureafaciens (Krebs and Eggleston) comb nov. Int Bull Bacteriol Nomencl Taxon 5:111–113Google Scholar
  26. Coker JA, Sheridan PP, Loveland-Curtze J, Gutshall KR, Auman AJ, Brenchley JE (2003) Biochemical characterization of a β-galactosidase with a low temperature optimum obtained from an Antarctic Arthrobacter isolate. J Bacteriol 185:5473–5482PubMedCentralPubMedCrossRefGoogle Scholar
  27. Collins MD (1987) Transfer of Arthrobacter variabilis (Müller) to the genus Corynebacterium, as Corynebacterium variabilis comb. nov. Int J Syst Bacteriol 37:287–288CrossRefGoogle Scholar
  28. Collins MD, Goodfellow M, Minnikin DE (1982) Polar lipid composition in the classification of Arthrobacter and Microbacterium. FEMS Microbiol Lett 15:199–302CrossRefGoogle Scholar
  29. Collins MD, Jones D, Kroppenstedt RM (1981) Reclassification of Corynebacterium ilicis (Mandel, Guba and Litsky) in the genus Arthrobacter as Arthrobacter ilicis comb. nov. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt. 1 Orig. C2, pp 318–323Google Scholar
  30. Collins MD, Kroppenstedt RM (1983) Lipid composition as a guide to the classification of some coryneform bacteria- containing an A4α type peptidoglycan (Schleifer and Kandler). Sys Appl Microbiol 4:95–104CrossRefGoogle Scholar
  31. Collins MD, Jones D, Keddie RM, Kroppenstedt RM, Schleifer KH (1983) Classification of some coryneform bacteria in a new genus Aureobacterium. Syst Appl Microbiol 4:236–252PubMedCrossRefGoogle Scholar
  32. Collins MD, Dorsch M, Stackebrandt E (1989) Transfer of Pimelobacter tumescens to Terrabacter gen. nov. as Terrabacter tumescens comb. nov. and of Pimelobacter jensenii to Nocardioides as Nocardioides jensenii comb. nov. Int J Syst Bacteriol 39:1–6CrossRefGoogle Scholar
  33. Collins MD, Hoyles L, Foster G, Falsen E, Weiss N (2002) Arthrobacter nasiphocae sp. nov., from the common seal (Phoca vitulina). Int J Syst Evol Microbiol 52:569–571PubMedGoogle Scholar
  34. Conn HJ, Dimmick I (1947) Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J Bacteriol 54:291–303PubMedCentralPubMedGoogle Scholar
  35. Conn HJ, Bottcher EJ, Randall C (1945) The value of bacteriophage in classifying certain soil bacteria. J Bacteriol 49:359–373PubMedCentralPubMedGoogle Scholar
  36. Crocker FH, Fredrickson JK, White DC, Ringelberg DB, Balkwill DL (2000) Phylogenetic and physiological diversity of Arthrobacter strains isolated from unconsolidated subsurface sediments. Microbiology 146:1295–1310PubMedGoogle Scholar
  37. Cullington JE, Walker A (1999) Rapid biodegradation of diuron and other phenylurea herbicides by a soil bacterium. Soil Biol Biochem 31:677–686CrossRefGoogle Scholar
  38. D’Addario E (1996) Biological desulfurization of oil products. In: Shejbal E (ed) Proceedings of the Symposium AAA Biotechnology. Vol 4. Ferrara Fiere, Ferrara, pp 139±149Google Scholar
  39. Daems WT (1963) A preliminary report on the fine structure of a bacteriophage of Arthrobacter polychromogenes Schippers-Lammertse, Muysers et Klatser-OedekerkGoogle Scholar
  40. de Prada P, Loveland-Curtze J, Brenchley JE (1996) Production of two extracellular alkaline phosphatases by a psychrophilic Arthrobacter strain. Appl Environ Microbiol 62:3732–3738PubMedCentralPubMedGoogle Scholar
  41. Decker K, Eberwein H, Gries FA, Brühmüller M (1961) Über den Abbau des Nicotins durch Bakterienenzyme. IV. L-6-Hydroxy-nicotine als erstes Zwischenprodukt. Biochem Z 334:227–244PubMedGoogle Scholar
  42. Ding L, Hirose T, Yokota A (2009) Four novel Arthrobacter species isolated from filtration substrate. Int J Syst Evol Microbiol 59:856–862PubMedGoogle Scholar
  43. Dore SY, Clancy QE, Rylee SM, Kulpa CF (2003) Naphthalene-utilizing and mercury-resistant bacteria isolated from an acidic environment. Appl Microbiol Biotechnol 63:194–199PubMedCrossRefGoogle Scholar
  44. Dubinina G, Zhdanov AV (1975) Recognition of the iron bacteria “Siderocapsa” as arthrobacters and description of Arthrobacter siderocapsulatus sp. nov. Int J Syst Bacteriol 25:340–350CrossRefGoogle Scholar
  45. Eberwein H, Gries FA, Decker K (1961) Über den Abbau des Nikotins durch Bakterienenzyme. II. Isolierung und Charakterisierung eines Nikotin-abbauenden Bodenbakteriums. Hoppe-Seyler’s Z Physiol Chem 323:236–248PubMedCrossRefGoogle Scholar
  46. Einck KH, Pattee PA, Holt JG, Hagedorn C, Miller JA, Berryhill DL (1973) Isolation and characterization of a bacteriophage of Arthrobacter globiformis. J Virol 12:1031–1033PubMedCentralPubMedGoogle Scholar
  47. Eliskases-Lechner F, Ginzinger W (1995) The bacterial flora of surface-ripened cheeses with special regard to coryneforms. Lait 75:571–584CrossRefGoogle Scholar
  48. Elväng AM, Westerberg K, Jernberg C, Jansson JK (2001) Use of green fluorescent protein and luciferase biomarkers to monitor survival and activity of Arthrobacter chlorophenolicus A6 cells during degradation of 4-chlorophenol in soil. Environ Microbiol 3:32–42PubMedCrossRefGoogle Scholar
  49. Eschbach M, Möbitz H, Rompf A, Jahn D (2003) Members of the genus Arthrobacter grow anaerobically using nitrate ammonification and fermentative processes: anaerobic adaptation of aerobic bacteria abundant in soil. FEMS Microbiol Lett 223:227–230PubMedCrossRefGoogle Scholar
  50. Ferreira MIM, Marchesi JR, Janssen DB (2008) Degradation of 4-fluorophenol by Arthrobacter sp. strain IF1. Appl Microbiol Biotechnol 78:709–717PubMedCentralPubMedCrossRefGoogle Scholar
  51. Ferreira MI, Iida T, Hasan SA, Nakamura K, Fraaije MW, Janssens DB, Kudo T (2009) Analysis of two gene clusters involved in the degradation of 4-fluorophenol by Arthrobacter sp. strain IF1. Appl Environ Microbiol 75:7767–7773PubMedCentralPubMedCrossRefGoogle Scholar
  52. Fondi M, Orlandini V, Maida I, Perrin E, Papaleo MC, Emiliani G, de Pascale D, Parrilli E, Tutino ML, Michaud L, Lo Giudice A, Fani R (2012) Draft genome sequence of the volatile organic compound-producing Antarctic bacterium Arthrobacter sp. strain TB23, able to inhibit cystic fibrosis pathogens belonging to the Burkholderia cepacia complex. J Bacteriol 194:6334–6335PubMedCentralPubMedCrossRefGoogle Scholar
  53. Frerichs-Deeken U, Fetzner S (2005) Dioxygenases without requirement for cofactors: Identification of amino acid residues involved in substrate binding and catalysis, and testing for rate-limiting steps in the reaction of 1H-3-Hydroxy-4-oxoquinaldine 2,4-dioxygenase. Curr Microbiol 51:344–352PubMedCrossRefGoogle Scholar
  54. Funke G, Hutson RA, Bernard KA, Pfyffer GE, Wauters G, Collins MD (1996) Isolation of Arthrobacter spp. from clinical specimens and description of Arthrobacter cumminsii sp. nov. and Arthrobacter woluwensis sp. nov. J Clin Microbiol 34:2356–2363PubMedCentralPubMedGoogle Scholar
  55. Funke G, Pagano-Niederer M, Sjödén B, Falsen E (1998) Characteristics of Arthrobacter cumminsii, the most frequently encountered Arthrobacter species in human clinical specimens. J Clin Microbiol 36:1539–1543PubMedCentralPubMedGoogle Scholar
  56. Gabor LI, Brandsch R (2003) Sequence of the 165-Kilobase catabolic plasmid pAO1 from Arthrobacter nicotinovorans and identification of a pAO1-dependent nicotine uptake system. J Bacteriol 185:1976–1986CrossRefGoogle Scholar
  57. Ganzert L, Bajerski F, Mangelsdorf K, Lipski A, Wagner D (2011) Arthrobacter livingstonensis sp. nov. and Arthrobacter cryotolerans sp. nov., salt-tolerant and psychrotolerant species from Antarctic soil. Int J Syst Evol Microbiol 61:979–984PubMedGoogle Scholar
  58. Gasdorf HJ, Benedict RG, Cadmus MC, Anderson RF, Jackson RW (1965) Polymer-producing species of Arthrobacter. J Bacteriol 90:147–150PubMedCentralPubMedGoogle Scholar
  59. Germida JJ, Casida LE Jr (1981) Isolation of Arthrobacter bacteriophage from soil. Appl Environ Microbiol 41:1389–1393PubMedCentralPubMedGoogle Scholar
  60. Gherna RL, Richardson SH, Rittenberg SC (1965) The bacterial oxidation of nicotine. VI. The metabolism of 2,6-dihydroxypseudooxynicotine. J Biol Chem 240:3669–3674PubMedGoogle Scholar
  61. Gillespie DC (1960) Isolation of bacteriophage for Arthrobacter globiformis. Can J Microbiol 6:477–478CrossRefGoogle Scholar
  62. Grifoll M, Casellas M, Bayona JM, Solanas AM (1992) Isolation and characterization of a fluorene-degrading bacterium: identification of ring oxidation and ring-fission products. Appl Environ Microbiol 58:2910–2917PubMedCentralPubMedGoogle Scholar
  63. Gupta P, Reddy GSN, Delille D, Shivaji S (2004) Arthrobacter gangotriensis sp. nov. and Arthrobacter kerguelensis sp. nov. from Antarctica. Int J Syst Evol Microbiol 54:2375–2378PubMedGoogle Scholar
  64. Gutshall KR, Trimbur DE, Kasmir JJ, Brenchley JE (1995) Analysis of a novel gene and β-galactosidase isozyme from a psychrotrophic Arthrobacter isolate. J Bacteriol 177:1981–1988PubMedCentralPubMedGoogle Scholar
  65. Gutshall K, Wang K, Brenchley JE (1997) A novel Arthrobacter ß-galactosidase with homology to eukaryotic ß-galactosidases. J Bacteriol 179:3064–3067PubMedCentralPubMedGoogle Scholar
  66. Haak-Rho Y, Kyung-Hee M, Chi-Kyung K, Jong-Ok K (2000) Phylogenetic and phenotypic diversity of 4- chlorobenzoate-degrading bacteria isolated from soils. FEMS Microbiol Ecol 31:53–60CrossRefGoogle Scholar
  67. Haldeman DL, Amy PS, Ringelberg D, White DC (1993) Characterization of the microbiology within a 21 m3 section of rock from the deep subsurface. Microb Ecol 26:145–159PubMedCrossRefGoogle Scholar
  68. Hamm H-H, Decker K (1978) Regulation of flavoprotein synthesis in vivo in a riboflavin-requiring mutant of Arthrobacteroxidans. Arch Microbiol 119:65–70PubMedCrossRefGoogle Scholar
  69. Hasan SA, Ferreira MIM, Koetsier MJ, Arif MI, Janssen DB (2011) Complete biodegradation of 4-fluorocinnamic acid by a consortium comprising Arthrobacter sp. strain G1 and Ralstonia sp. strain H1. Appl Environ Microbiol 77:572–579PubMedCentralPubMedCrossRefGoogle Scholar
  70. Hayatsu M, Hirano M, Nagata T (1999) Involvement of Two Plasmids in the Degradation of Carbaryl by Arthrobacter sp. Strain RC100. Appl Environ Microbiol 65:1015–1019PubMedCentralPubMedGoogle Scholar
  71. Hayatsu M, Mizutani A, Hashimoto M, Sato K, Hayano K (2001) Purification and characterisation of carbarylhydrolase from Arthrobacter sp. RC100. FEMS Microbiol Lett 201:99–103PubMedCrossRefGoogle Scholar
  72. Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788PubMedCentralPubMedGoogle Scholar
  73. Heyrman J, Verbeeren J, Schumann P, Swings J, De Vos P (2005) Six novel Arthrobacter species isolated from deteriorated mural paintings. Int J Syst Evol Microbiol 55:1457–1464PubMedGoogle Scholar
  74. Hildebrandt P, Wanarska M, Kur J (2009) A new cold-adapted β -d-galactosidase from the Antarctic Arthrobacter sp 32c – gene cloning, overexpression, purification and properties. BMC Microbiol 9:151PubMedCentralPubMedCrossRefGoogle Scholar
  75. Hou XG, Kawamura Y, Sultana F, Shu S, Hirose K, Goto K, Ezaki T (1998) Description of Arthrobacter creatinolyticus sp. nov., isolated from human urine. Int J Syst Bacteriol 48:423–429PubMedCrossRefGoogle Scholar
  76. Hsu CL, Shih LY, Leu HS, Wu CL, Funke G (1998) Septicemia due to Arthrobacter species in a neutropenic patient with acute lymphoblastic leukemia. Clin Infect Dis 27:1334–1335PubMedCrossRefGoogle Scholar
  77. Huang Y, Zhao N, He L, Wang L, Liu Z, You M, Guan F (2005) Arthrobacter scleromae sp. nov. isolated from human clinical specimens. J Clin Microbiol 43:1451–1455PubMedCentralPubMedCrossRefGoogle Scholar
  78. Husserl J, Spain JC, Hughes JB (2010) Growth of Arthrobacter sp. strain JBH1 on nitroglycerin as the sole source of carbon and nitrogen. Appl Environ Microbiol 76:1689–1691PubMedCentralPubMedCrossRefGoogle Scholar
  79. Husserl J, Hughes JB, Spain JC (2012) Key enzymes enabling the growth of Arthrobacter sp. strain JBH1with Nitroglycerin as the sole source of carbon and nitrogen. Appl Environ Microbiol 78:3649–3655PubMedCentralPubMedCrossRefGoogle Scholar
  80. Imshenetskii AA, Popova LS, Kirillova NF (1997) Microorganisms decomposing acetylcholine. Microbiologiia 43:986–991Google Scholar
  81. Irlinger F, Bimet F, Delettre J, Lefèvre M, Grimont PAD (2005) Arthrobacter bergerei sp. nov. and Arthrobacter arilaitensis sp. nov., novel coryneform species isolated from the surfaces of cheeses. Int J Syst Evol Microbiol 55:457–462PubMedGoogle Scholar
  82. Ishikawa T, Yokota A (2006) Reclassification of Arthrobacter duodecadis Lochhead 1958 as Tetrasphaera duodecadis comb. nov. and emended description of the genus Tetrasphaera. Int J Syst Evol Microbiol 56:1369–1373PubMedGoogle Scholar
  83. Jain RK, Dreisbach JH, Spain JC (1994) Biodegradation of p-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp. Appl Environ Microbiol 60:3030–3032PubMedCentralPubMedGoogle Scholar
  84. Jernberg C, Jansson JK (2002) Impact of 4-chlorophenol contamination and/or inoculation with the 4-chlorophenol-degrading strain, Arthrobacter chlorophenolicus A6L, on soil bacterial community structure. FEMS Microbiol Ecol 42:387–397PubMedCrossRefGoogle Scholar
  85. Kageyama A, Takahashi Y, Morisaki K, Omura S (2008) Arthrobacter oryzae sp. nov. and Arthrobacter humicola sp. nov. Int J Syst Evol Microbiol 58:53–56PubMedGoogle Scholar
  86. Kallimanis A, Frillingos S, Drainas C, Koukkou AI (2007) Taxonomic identification, phenanthrene uptake activity, and membrane lipid alterations of the PAH degrading Arthrobacter sp. Strain Sphe3. Appl Microbiol Biotechnol 76:709–717PubMedCrossRefGoogle Scholar
  87. Kallimanis A, Kavakiotis K, Perisynakis A, Spröer C, Pukall R, Drainas C, Koukkou AI (2009) Arthrobacter phenanthrenivorans sp. nov., to accommodate the phenanthrene-degrading bacterium Arthrobacter sp. strain Sphe3. Int J Syst Evol Microbiol 59:275–279PubMedGoogle Scholar
  88. Kallimanis AK, Labutti M, Lapidus A, Clum A, Lykidis A, Mavromatis K, Pagani I, Liolios K, Ivanova N, Goodwin L, Pitluck S, Chen A, Palaniappan K, Markowitz V, Bristow J, Velentzas AD, Perisynakis A, Ouzounis CC, Kyrpides NC, Koukkou AI, Drainas C (2011) Complete genome sequence of Arthrobacter phenanthrenivorans type strain (Sphe3). Stand Genomic Sci 4:123–130PubMedCentralPubMedCrossRefGoogle Scholar
  89. Kamigiri KK, Tokunaga TT, Shibazaki MM, Setiawan BB, Rantiatmodjo RM, Morrioka MM, Suzuki KK (1996) YM-30059, a novel quinolone antibioticproduced by Arthrobacter sp. J Antibiot 49:823–825PubMedCrossRefGoogle Scholar
  90. Kar S, Swaminathan T, Baradarajan A (1997) Biodegradation of phenol and cresol isomer mixtures by Arthrobacter. World J Microbiol Biotechnol 13:659–663CrossRefGoogle Scholar
  91. Kataoka M, Ikemi M, Morikawa T, Miyoshi T, Nishi K, Wada M, Yamada H, Shimizu S (1997) Isolation and characterization of d-threonine aldolase, a pyridoxal-5′-phosphate dependent enzyme from Arthrobacter sp. DK-38. Eur J Biochem 248:385–393PubMedCrossRefGoogle Scholar
  92. Keddie RM, Collins MD, Jones D (1986) Genus Arthrobacter Conn and Dimmick 1947, 300AL. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, 2nd edn. Williams & Wilkins, Baltimore, pp 1288–1301Google Scholar
  93. Kim KK, Lee KC, Oh H-M, Kim MJ, Eom MK, Lee J-S (2008) Arthrobacter defluvii sp. nov., 4-chlorophenol-degrading bacteria isolated from sewage. Int J Syst Evol Microbiol 58:1916–1921PubMedGoogle Scholar
  94. Koch C, Klatte S, Schumann P, Burkhardt J, Kroppenstedt RM, Stackebrandt E (1995) Transfer of Arthrobacter picolinophilus Tate and Ensign 1974 to Rhodococcus erythropolis. Int J Syst Bacteriol 45:576–577CrossRefGoogle Scholar
  95. Kocur M, Schleifer KH (1975) Taxonomic status of Micrococcus agilis Ali-Cohen 1889. Int J Syst Bacteriol 25:294–297CrossRefGoogle Scholar
  96. Kodama Y, Yamamoto H, Amano N, Amachi T (1992) Reclassification of two strains of Arthrobacter oxydans and proposal of Arthrobacter nicotinovorans sp. nov. Int J Syst Bacteriol 42:234–239PubMedCrossRefGoogle Scholar
  97. Komagata K, Suzuki KI (1987) Lipid and cell-wall analysis in bacterial systematics. In: Colwell RR, Grigorova R (eds) Methods in Microbiology, vol 19. Academic, London, pp 161–207Google Scholar
  98. Komancová M, Jurčoá I, Kochánková L, Burkhard J (2003) Metabolic pathways of polychlorinated biphenyls degradation by Pseudomonas sp. 2. Chemosphere 50:537–543PubMedCrossRefGoogle Scholar
  99. Konstantinidis KT, Isaacs N, Simpson J, Long DT, Marsh TL (2003) Microbial diversity and resistance to copper in metal-contaminated lake sediment. Microb Ecol 45:191–202PubMedCrossRefGoogle Scholar
  100. Kostiw LL, Boylen CW, Tyson BJ (1972) Lipid composition of growing and starving cells of Arthrobacter crystallopoietes. J Bacteriol 111:103–111PubMedCentralPubMedGoogle Scholar
  101. Kotoucková L, Schumann P, Durnová E, Spröer C, Sedlácek I, Neca J, Zdráhal Z, Nemec M (2004) Arthrobacter nitroguajacolicus sp. nov., a novel 4-nitroguaiacol-degrading actinobacterium. Int J Syst Evol Microbiol 54:773–777PubMedGoogle Scholar
  102. Kuhn DA, Starr MP (1960) Arthrobacter atrocyaneus, n. sp., and its blue pigment. Arch Mikrobiol 36:175–181PubMedCrossRefGoogle Scholar
  103. Lee D-G, Kim S-J (2003) Bacterial species in biofilm cultivated from the end of the Seoul water distribution system. J Appl Microbiol 95:317–324PubMedCrossRefGoogle Scholar
  104. Lee J-S, Lee KC, Pyun Y-R, Bae KS (2003) Arthrobacter koreensis sp. nov., a novel alkalitolerant bacterium from soil. Int J Syst Evol Microbiol 53:1277–1280PubMedGoogle Scholar
  105. Lei Y, Mulchandani P, Chen W, Wang J, Mulchandani A (2003) A microbial biosensor for p-nitrophenol using Arthrobacter sp. Electroanal 15:1160–1164CrossRefGoogle Scholar
  106. Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H, Huang X, Kobayashi K, Ezaki T (2004) Rothia aeria sp. nov., Rhodococcus baikonurensis sp. nov. and Arthrobacter russicus sp. nov., isolated from air in the Russian space laboratory Mir. Int J Syst Evol Microbiol 54:827–835PubMedGoogle Scholar
  107. Lilley AK, Fry JC, Bailey MJ, Day MJ (1996) Comparison of aerobic heterotrophic taxa isolated from four root domains of mature sugar beet (Beta vulgaris). FEMS Microbiol Ecol 21:231–242CrossRefGoogle Scholar
  108. Lochhead AG (1957) Genus VI. Arthrobacter. In: Breed RS, Murray EGD, SMITH NR (eds) Bergey’s manual of determinative bacteriology, 7th edn. The Williams & Wilkins, Baltimore, pp 605–612Google Scholar
  109. Lochhead AG (1958) Two new species of arthrobacter requiring respectively vitamin B12 and the terregens factor. Arch Mikrobiol 31:163–170CrossRefGoogle Scholar
  110. Loveland J, Gutshall K, Kasmir J, Prema P, Brenchley JE (1994) Characterization of psychrotrophic microorganisms producing β-galactosidase activities. Appl Environ Microbiol 60:12–18PubMedCentralPubMedGoogle Scholar
  111. Loveland-Curtze J, Sheridan PP, Gutshall KR, Brenchley JE (1999) Biochemical and phylogenetic analyses of psychrophilic isolates belonging to the Arthrobacter subgroup and description of Arthrobacter psychrolactophilus, sp. nov. Arch Microbiol 171:355–363PubMedCrossRefGoogle Scholar
  112. Macur RE, Jackson CR, Botero LM, McDermott TR, Inskeep WP (2004) Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environ Sci Technol 38:104–111PubMedCrossRefGoogle Scholar
  113. Mages IS, Frodl R, Bernard KA, Funke G (2008) Identities of Arthrobacter spp. and Arthrobacter-like bacteria encountered in human clinical specimens. J Clin Microbiol 46:2980–2986PubMedCentralPubMedCrossRefGoogle Scholar
  114. Margesin R, Schumann P, Spröer C, Gounot AM (2004) Arthrobacter psychrophenolicus sp. nov., isolated from an alpine ice cave. Int J Syst Evol Microbiol 54:2067–2072PubMedGoogle Scholar
  115. Margesin R, Schumann P, Zhang DC, Redzic M, Zhou YG, Liu HC, Schinner F (2012) Arthrobacter cryoconiti sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 62:397–402PubMedGoogle Scholar
  116. Marks TS, Smith ARW, Quirk AV (1984) Degradation of 4-chlorobenzoic acid by Arthrobacter sp. Appl Environ Microbiol 48:1020–1025PubMedCentralPubMedGoogle Scholar
  117. Marshall SJ, White GF (2001) Complete denitration of nitroglycerin by bacteria isolated from a washwater soakaway. Appl Environ Microbiol 67:2622–2626PubMedCentralPubMedCrossRefGoogle Scholar
  118. Mohapatra BR, Bapuji M (1998) Characterization of acetylcholinesterase from Arthrobacter ilicis associated with the marine sponge (Spirastrella sp.). J Appl Microbiol 84:393–398CrossRefGoogle Scholar
  119. Mongodin EF, Shapir N, Daugherty SC, DeBoy RT, Emerson JB, Radune AD, Vamathevan J, Riggs F, Grinberg V, Khouri H, Wackett LP, Nelson KE, Sadowsky MJ (2006) Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet 2:e214PubMedCentralPubMedCrossRefGoogle Scholar
  120. Monnet C, Loux V, Gibrat J-F, Spinnler E, Barbe V, Vacherie B, Gavory F, Gourbeyre E, Siguier P, Chandler M, Elleuch R, Irlinger F, Vallaeys T (2010) The Arthrobacter arilaitensis Re117 genome sequence reveals its genetic adaptation to the surface of cheese. PLoS One 5:e15489PubMedCentralPubMedCrossRefGoogle Scholar
  121. Müller G (1961) Mikrobiologische Untersuchungen über die “Futterverpilzung durch Selbsterhitzung”. III. Mitteilung: Ausfuhrliche Beschreibung neuer Bakterien-Species. Zentralbl Bakteriol- Parasitenkd Infektionskr Abt II 114:520–537Google Scholar
  122. Nakagawa T, Fujimoto Y, Ikehata R, Miyaji T, Tomizuka N (2006) Purification and molecular characterization of cold-active β-galactosidase from Arthrobacter psychrolactophilus strains F2. Appl Microbiol Biotechnol 72:720–725PubMedCrossRefGoogle Scholar
  123. Niepel T, Meyer H, Wray V, Abraham W-R (1997) A new type of glycolipid, 1-[α-mannosyl-(1α-3)-(6-O-acyl-α-mannopyranosyl)]-3-O-acylglycerol, from Arthrobacter atrocyaneus. Tetrahedron 53:3593–3602CrossRefGoogle Scholar
  124. Niewerth H, Schuldes J, Parschat K, Kiefer P, Vorholt JA, Daniel R, Fetzner S (2012) Complete genome sequence and metabolic potential of the quinaldine-degrading bacterium Arthrobacter sp. Rue61a. BMC Genom 13:534CrossRefGoogle Scholar
  125. Noordman WH, Janssen DB (2002) Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl Environ Microbiol 68:4502–4508PubMedCentralPubMedCrossRefGoogle Scholar
  126. Osorio C, Barja JL, Hutson RA, Collins MD (1999) Arthrobacter rhombi sp. nov., isolated from Greenland halibut (Reinhardtius hippoglossoides). Int J Syst Bacteriol 49:1217–1220PubMedCrossRefGoogle Scholar
  127. Overhage J, Sielker S, Homburg S, Parschat K, Fetzner S (2005) Identification of large linear plasmids in Arthrobacter spp. encoding the degradation of quinaldine to anthranilate. Microbiology 151:491–500PubMedCrossRefGoogle Scholar
  128. Pakkiri LS, Wolucka BA, Lubert EJ, Waechter CJ (2004) Structural and topological studies on the lipid-mediated assembly of a membrane-associated lipomannan in Micrococcus luteus. Glycobiology 14:73–81PubMedCrossRefGoogle Scholar
  129. Park CH, Han MS, Kim JK, Jeong SJ, Ku NS, Kim H, Kim SB, Chung H-S, Han SH, Choi JY, Kim JS, Yong D, Song YG, Lee K, Kim JM (2012) Development of Arthrobacter woluwensis bacteremia in a Patient with multiple myeloma: a case report and comprehensive literature review. Infect Chemother 44:205–209CrossRefGoogle Scholar
  130. Parschat K, Hauer B, Kappl R, Kraft R, Hüttermann J, Fetzner S (2003) Gene cluster of Arthrobacter ilicis Rü61a involved in the degradation of quinaldine to anthranilate: characterization and functional expression of the quinaldine 4-oxidase qoxLMS genes. J Biol Chem 278:27483–27494PubMedCrossRefGoogle Scholar
  131. Parschat K, Overhage J, Strittmatter AW, Henne A, Gottschalk G, Fetzner S (2007) Complete nucleotide sequence of the 113-kilobase linear catabolic plasmid pAL1 of Arthrobacter nitroguajacolicus Rü61a and transcriptional analysis of genes involved in quinaldine degradation. J Bacteriol 189:3855–3867PubMedCentralPubMedCrossRefGoogle Scholar
  132. Paściak M, Holst O, Lindner B, Mierzchała M, Grzegorzewicz A, mordarska H, Gamian A (2004) Structural and serological characterization of the major glycolipid from Rothia mucilaginosa. Biochim Biophys Acta 1675:54–6161PubMedCrossRefGoogle Scholar
  133. Paściak M, Sanchez-Carballo P, Duda-Madej A, Lindner B, Gamian A, Holst O (2010) Structural characterization of the major glycolipids from Arthrobacter globiformis and Arthrobacter scleromae. Carbohydr Res 345:1497–1503PubMedCrossRefGoogle Scholar
  134. Perry LL, Zylstra GJ (2007) Cloning of a gene cluster involved in the catabolism of p-nitrophenol by Arthrobacter sp. strain JS443 and characterization of the p-nitrophenol monooxygenase. J Bacteriol 189:7563–7572PubMedCentralPubMedCrossRefGoogle Scholar
  135. Pettigrew CA, Breen A, Corcoran C, Sayler GS (1990) Chlorinated biphenyl mineralization by individual populations and consortia of freshwater bacteria. Appl Environ Microbiol 56:2036–2045PubMedCentralPubMedGoogle Scholar
  136. Pindi PK, Manorama R, Begum Z, Shivaji S (2010) Arthrobacter antarcticus sp. nov., isolated from a sediment from the Antarctic sea. Int J Syst Evol Microbiol 60:2263–2266PubMedGoogle Scholar
  137. Pipke R, Amrhein N (1988a) Degradation of the phosphonate herbicide glyphosate by Arthrobacter atrocyaneus ATCC 13752. Appl Environ Microbiol 54:1293–1296PubMedCentralPubMedGoogle Scholar
  138. Pipke R, Amrhein N (1988b) Isolation and characterization of a mutant of Arthrobacter sp. strain GLP-1 which utilizes the herbicide glyphosate as its sole source of phosphorus and nitrogen. Appl Environ Microbiol 54:2868–2870PubMedCentralPubMedGoogle Scholar
  139. Pohlenz HD, Boidol W, Schuttke I, Streber WR (1992) Purification and properties of an Arthrobacter oxydans P52 carbamate hydrolase specific for the herbicide phenmedipham and nucleotide sequence of the corresponding gene. J Bacteriol 174:6600–6607PubMedCentralPubMedGoogle Scholar
  140. Prisyazhnaya NV, Plotnikova EG, Bueva OV, Korsakova ES, Dorofeeva LV, Il’ina EN, Lebedev AT, Evtushenko LI (2012) Application of MALDI_TOF mass spectrometry for differentiation of closely related species of the “Arthrobacter crystallopoietes” phylogenetic group. Microbiology 81:696–701CrossRefGoogle Scholar
  141. Rakesh KJ, Dreisbach JH, Spain JC (1994) Biodegradation of p-Nitrophenol via 1,2,4-Benzenetriol by an Arthrobacter sp. Appl Environ Microbiol 60:3030–3032Google Scholar
  142. Reddy GSN, Aggarwal RK, Matsumoto GI, Shivaji S (2000) Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 50:1553–1561PubMedGoogle Scholar
  143. Reddy GSN, Prakash JSS, Matsumoto GI, Stackebrandt E, Shivaji S (2002) Arthrobacter roseus sp. nov., a psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 52:1017–1021PubMedGoogle Scholar
  144. Reeves RH, Reeves JY, Balkwill DL (1995) Strategies for phylogenetic characterization of subsurface bacteria. J Microbiol Methods 21:235–251CrossRefGoogle Scholar
  145. Roane TM, Pepper IL (2000) Microbial responses to environmentally toxic cadmium. Microb Ecol 38:358–364Google Scholar
  146. Roane TM, Josephson KL, Pepper IL (2001) Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil. Appl Environ Microbiol 67:3208–3215PubMedCentralPubMedCrossRefGoogle Scholar
  147. Rousseaux S, Hartmann A, Soulas G (2001) Isolation and characterisation of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils. FEMS Microbiol Lett 36:211–222CrossRefGoogle Scholar
  148. Rousseaux S, Soulas G, Hartmann A (2002) Plasmid localisation of atrazine-degrading genes in newly described Chelatobacter and Arthrobacter strains. FEMS Microbiol Lett 41:69–75CrossRefGoogle Scholar
  149. Rusterholtz KJ, Mallory LM (1994) Density, activity, and diversity of bacteria indigenous to a karstic aquifer. Microb Ecol 28:79–99PubMedCrossRefGoogle Scholar
  150. Sacks LE (1954) Observations on the morphogenesis of Arthrobacter citreus, spec nov. J Bacteriol 67:342–345PubMedCentralPubMedGoogle Scholar
  151. Sajjaphan K, Shapir N, Wackett LP, Palmer M, Blackmon B, Tomkins J, Sadowsky MJ (2004) Arthrobacter aurescens TC1 atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-kilobase region and are functional in Escherichia coli. Appl Environ Microbiol 70:4402–4407PubMedCentralPubMedCrossRefGoogle Scholar
  152. Sambrook J, Fritsch EF, Manniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  153. Schippers-Lammertse AF, Muijsers AO, Klatser-Oedekerk KB (1963) Arthrobacter polychromogenes nov. spec., its pigments, and a bacteriophage of this species. Antonie Van Leeuwenhoek 29:1–15CrossRefGoogle Scholar
  154. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477PubMedCentralPubMedGoogle Scholar
  155. Schmitz A, Gartemann K-H, Fiedler J, Grund E, Eichenlaub R (1992) Cloning and sequence analysis of genes for dehalogenation of 4-chlorobenzoate from Arthrobacter sp. strain SU. Appl Environ Microbiol 58:4068–4071PubMedCentralPubMedGoogle Scholar
  156. Schwartz E, Scow KM (1999) Using biodegradation kinetics to measure the availability of aged phenanthrene to a bacteria inoculated into soil. Environ Toxicol Chem 18(8):1742–1746CrossRefGoogle Scholar
  157. Schwartz E, Trinh SV, Scow KM (2000) Measuring growth of a phenanthrene-degrading inoculum in soil with a quantitative competitive polymerase chain reaction method. FEMS Microbiol Ecol 34:1–7PubMedCrossRefGoogle Scholar
  158. Seo J-S, Keum Y-S, Hu Y, Lee S-E, Li QX (2006) Phenanthrene degradation in Arthrobacter sp. P1-1: Initial 1,2-, 3,4- and 9,10-dioxygenation, and meta- and ortho-cleavages of naphthalene-1,2-diol after its formation from naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids. Environ Chem 65:2388–2394Google Scholar
  159. Serbolisca L, de Ferra F, Margarit I (1999) Manipulation of the DNA coding for the desulphurizing activity in a new isolate of Arthrobacter sp. Appl Microbiol Biotechnol 52:122–126PubMedCrossRefGoogle Scholar
  160. Shaw N, Stead D (1971) Lipid Composition of some species of Arthrobacter. J Bacteriol 107:130–133PubMedCentralPubMedGoogle Scholar
  161. Shimoni E, Baasov T, Ravid U, Shoham Y (2002) The trans-anethole degradation pathway in Arthrobacter sp. J Biolog Chem 227:11866–11872CrossRefGoogle Scholar
  162. Shin KS, Hong SB, Son BR (2006) A case of catheter-related bacteremia by Arthrobacter woluwensis. Korean J Lab Med 26:103–106PubMedCrossRefGoogle Scholar
  163. Shmeleva VG, Tsvekova NP, Balashova EK, Spitsyn PV (1989) Method of producing bacterial cholinesterase sensitive to organophosphorus compounds. U.S.S.R. Patent 1,514,775; Chem. Abstracts (1990) 113, 22239Google Scholar
  164. Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420CrossRefGoogle Scholar
  165. Smacchi E, Fox PF, Gobbetti M (1999a) Purification and characterization of two extracellular proteinases from Arthrobacter nicotianae 9458. FEMS Microbiol Lett 170:327–333PubMedCrossRefGoogle Scholar
  166. Smacchi E, Gobbetti M, Lanciotti R, Fox PF (1999b) Purification and characterization of an extracellular proline iminopeptidase from Arthrobacter nicotianae 9458. FEMS Microbiol Lett 178:190–197Google Scholar
  167. Smacchi E, Gobbetti M, Rossi J, Fox PF (2000) Purification and characterization of an extracellular esterase from Arthrobacter nicotiancae 9458. Lait 80:255–265CrossRefGoogle Scholar
  168. Smit KM, Engels WJM, Wouters JTM, Smit G (2004) Diversity of L-leucine catabolism in various microorganisms involved in dairy fermentations, and identification of the rate-controlling step in the formation of the potent flavour component 3-methylbutanal. Appl Microbiol Biotechnol 64:396–402PubMedCrossRefGoogle Scholar
  169. Smith MR, Zahnley JC (2005) Production of amylase by Arthrobacter psychrolactophilus. J Ind Microbiol Biotechnol 32:277–283PubMedCrossRefGoogle Scholar
  170. Sousa MJ, Ardö Y, Mc Seeney PLH (2001) Advances in the study of proteolysis during cheese ripening. Int Dairy J 11:327–345CrossRefGoogle Scholar
  171. Stackebrandt E, Fiedler F (1979) DNA-DNA homology studies among strains of Arthrobacter and Brevibacterium. Arch Microbiol 120:289–295PubMedCrossRefGoogle Scholar
  172. Stackebrandt E, Fowler VJ, Fiedler F, Seiler H (1983) Taxonomic studies on Arthrobacter nicotianae and related taxa: description of Arthrobacter uratoxydans sp. nov. and Arthrobacter sulfureus sp. nov. and reclassification of Brevibacterium protophormiae as Arthrobacter protophormiae comb. nov. Syst Appl Microbiol 4:470–486PubMedCrossRefGoogle Scholar
  173. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  174. Storms V, Devriese LA, Coopman R, Schumann P, Vyncke F, Gillis M (2003) Arthrobacter gandavensis sp. nov., for strains of veterinary origin. Int J Syst Evol Microbiol 53:1881–1884PubMedGoogle Scholar
  175. Strong LC, Rosendahl C, Johnson G, Sadowsky MJ, Wackett LP (2002) Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds. Appl Environ Microbiol 68:5973–5980PubMedCentralPubMedCrossRefGoogle Scholar
  176. Suzuki K, Komagata K (1983) Pimelobacter gen. nov., a new genus of coryneform bacteria with LL-diaminopimelic acid in the cell wall. J Gen Appl Microbiol 29:59–71CrossRefGoogle Scholar
  177. Suzuki K, Collins MD, Iuma E, Komagata K (1989) Chemotaxonomic characterization of a radiotolerant bacterium Arthrobacter radiotolerans: description of Rubrobacter radiotolerans gen. nov., comb. nov. FEMS Microbiol Lett 52:33–40CrossRefGoogle Scholar
  178. Takeuchi M, Hatano K (1998) Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. Int J Syst Bacteriol 48:739–747PubMedCrossRefGoogle Scholar
  179. Tam AC, Behki RM, Khan SU (1987) Isolation and characterization of an s-ethyl-N, N-dipropylthiocarbamate-degrading Arthrobacter strain and evidence for plasmid-associated s-ethyl-N, N-dipropylthiocarbamate degradation. Appl Environ Microbiol 53:1088–1093PubMedCentralPubMedGoogle Scholar
  180. Tate RL, Ensign JC (1974) A new species of Arthrobacter which degrades picolinic acid. Can J Microbiol 20:691–694PubMedCrossRefGoogle Scholar
  181. Tixier C, Sancelme M, Aït-Aïssa S, Wideham P, Bonnemoy F, Cuer A, Truffaut N, Veschambre H (2002) Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere 46:519–526PubMedCrossRefGoogle Scholar
  182. Trautwetter A, Blanco C (1988) Isolation and preliminary characterization of twenty bacteriophages infecting either Brevibacterium or Arthrobacter strains. Appl Environ Microbiol 54:1466–1471PubMedCentralPubMedGoogle Scholar
  183. Trimbur DE, Gutshall KR, Prema P, Brenchley JE (1994) Characterization of a psychrotrophic Arthrobacter gene and its cold-active β-galactosidase. Appl Environ Microbiol 60:4544–4552PubMedCentralPubMedGoogle Scholar
  184. Tsoi TV, Zaitsev GM, Plotnikova EG, Kosheleva IA, Boronin AM (1991) Cloning and expression of the Arthrobacter globiformis fcbA gene encoding dehalogenase (4-chlorobenzoate-4-hydroxylase) in Escherichia coli. FEMS Microbiol Lett 81:165–170CrossRefGoogle Scholar
  185. Tuovinen OH, Kelly DP (1973) Studies on the growth of Thibacillus ferroxidans. Arch Microbiol 88:285–298Google Scholar
  186. Turnbull GA, Cullington JE, Walker A, Morgan AW (2001a) Identification and characterisation of a diuron-degrading bacterium. Biol Fert Soil 33:472–476CrossRefGoogle Scholar
  187. Turnbull GA, Ousley M, Walker A, Shaw E, Morgan JAW (2001b) Degradation of substituted phenylurea herbicides by Arthrobacter globiformis strain D47 and characterization of a plasmid-associated hydrolase gene, puhA. Appl Environ Microbiol 67:2270–2275PubMedCentralPubMedCrossRefGoogle Scholar
  188. Uhlik O, Strejcek M, Junkova P, Sanda M, Hroudova M, Vlcek C, Mackova M, Macek T (2011) Matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometry- and MALDI biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Appl Environ Microbiol 77:6858–6866PubMedCentralPubMedCrossRefGoogle Scholar
  189. van Waasbergen LG, Balkwill DL, Crocker FH, Bjornstad BN, Miller RV (2000) Genetic diversity among Arthrobacter species collected across a heterogeneous series of terrestrial deep-subsurface sediments as determined on the basis of 16S rRNA and recA gene sequences. Appl Environ Microbiol 66:3454–3463PubMedCentralPubMedCrossRefGoogle Scholar
  190. Vandera E, Kavakiotis K, Kallimanis A, Kyrpides NC, Drainas C, Koukkou A-I (2012) Heterologous expression and characterization of two 1-hydroxy-2-naphthoic acid dioxygenases from Arthrobacter phenanthrenivorans. Appl Environ Microbiol 78:621–627PubMedCentralPubMedCrossRefGoogle Scholar
  191. Vargha M, Takáts Z, Konopka A, Nakatsu CH (2006) Optimization of MALDI-TOF MS for strain level differentiation of Arthrobacter isolates. J Microbiol Methods 66:399–409PubMedCrossRefGoogle Scholar
  192. Walker RW, Bastl CP (1967) The glycolipids of Arthrobacter globiformis. Carbohydr Res 4:49–54CrossRefGoogle Scholar
  193. Wang F, Gai Y, Chen M, Xiao X (2009) Arthrobacter psychrochitiniphilus sp. nov., a psychrotrophic bacterium isolated from Antarctica. Int J Syst Evol Microbiol 59:2759–2762PubMedGoogle Scholar
  194. Wauters G, Charlier J, Janssens M, Delmée M (2000) Identification of Arthrobacter oxydans, Arthrobacter luteolus sp. nov., and Arthrobacter albus sp. nov., isolated from human clinical specimens. J Clin Microbiol 38:2412–2415PubMedCentralPubMedGoogle Scholar
  195. Westerberg K, Elvang AM, Stackebrandt E, Jansson JK (2000) Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int J Syst Evol Microbiol 50:2083–2092PubMedGoogle Scholar
  196. Wideham P, Aït-Aïssa S, Tixier C, Sancelme M, Veschambre H, Truffaut N (2002) Isolation, characterization and diuron transformation capacities of a bacterial strain Arthrobacter sp. N2. Chemosphere 46:527–534CrossRefGoogle Scholar
  197. Wietz M, Månsson M, Bowman JS, Blom N, Ng Y, Grama L (2012) Wide distribution of closely related, antibiotic-producing Arthrobacter strains throughout the Arctic Ocean. Appl Environ Microbiol 78:2039–2042PubMedCentralPubMedCrossRefGoogle Scholar
  198. Win TT, Isono N, Kusnadi Y, Watanabe K, Obae K, Ito H, Matsui H (2004) Enzymatic synthesis of two novel non-reducing oligosaccharides using transfructosylation activity with beta-fructofuranosidase from Arthrobacter globiformis. Biotechnol Lett 26:499–503PubMedCrossRefGoogle Scholar
  199. Xu K, Tang X, Gai Y, Mehmood MA, Xiao X, Wang F (2011) Molecular characterization of cold-inducible β-galactosidase from Arthrobacter sp. ON14. J Microbiol Biotechnol 21:236–242PubMedGoogle Scholar
  200. Yao Y, Tang H, Ren H, Yu H, Wang L, Xu P (2012) Genome sequence of a nicotine-degrading strain of Arthrobacter. J Bacteriol 194:5714–5715PubMedCentralPubMedCrossRefGoogle Scholar
  201. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glöckner FO, Rossello-Mora R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar
  202. Yassin AF, Spröer C, Siering C, Hupfer H, Schumann P (2011) Arthrobacter equi sp. nov., isolated from veterinary clinical material. Int J Syst Evol Microbiol 61:2089–2094PubMedGoogle Scholar
  203. Yi HR, Min KH, Kim CK, Ka JO (2000) Phylogenetic and phenotypic diversity of 4- chlorobenzoate-degrading bacteria isolated from soils. FEMS Microbiol Ecol 31:53–60PubMedCrossRefGoogle Scholar
  204. Yoshinaka T, Yano K, Yamaguchi H (1973) Isolation of highly radioresistant bacterium. Arthrobacter radiotolerans nov. sp. Agr. Biol Chem 37:2269–2275Google Scholar
  205. Zaitsev GM, Tsoi TV, Grishenkov VG, Grishenkov EG, Plotnikova EG, Boronoin AM (1991) Genetic control of degradation of chlorinated benzoic acids in Arthrobacter globiformis, Corynebacterium sepedonicum and Pseudomonas cepacia strains. FEMS Microbiol Lett 81:171–176CrossRefGoogle Scholar
  206. Zhang D-C, Schumann P, Liu H-C, Xin Y-H, Zhou Y-G, Schinner F, Margesin R (2010) Arthrobacter alpinus sp. nov., a psychrophilic bacterium isolated from alpine soil. Int J Syst Evol Microbiol 60:2149–2153PubMedGoogle Scholar
  207. Zhang J, Ma Y, Yu H (2012) Arthrobacter cupressi sp. nov., an actinomycete isolated from the rhizosphere soil of Curpessus sempervirens. Int J Syst Evol Microbiol 62:2731–2736PubMedGoogle Scholar
  208. Zheng MA, Kellog ST (1994) Analysis of bacterial populations in a basalt aquifer. Can J Microbiol 40:944–954CrossRefGoogle Scholar
  209. Zhou Y, Wei W, Wang X, Lai R (2009) Proposal of Sinomonas flava gen. nov., sp. nov., and description of Sinomonas atrocyanea comb. nov. to accomodate Arthobacter atrocyaneus. Int J Syst Evol Microbiol 59:259–263PubMedGoogle Scholar
  210. Zhou Y, Chen X, Zhang Y, Wang W, Xu J (2012) Description of Sinomonas soli sp. nov., reclassification of Arthrobacter echigonensis and Arthrobacter albidus (Ding et al. 2009) as Sinomonas echigonense comb. nov. and Sinomonas albida comb. nov. and emended description of genus Sinomonas. Int J Syst Evol Microbiol 62:764–769PubMedGoogle Scholar
  211. Zhuang Z, Gartemann K-H, Eichenlaub R, Dunaway-Mariano D (2003) Characterization of the 4-hydroxybezoyl-coenzyme A thioesterase from Arthrobacter sp. strain SU. Appl Environ Microbiol 69:2707–2711PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Bacteriology, Mycology and HygieneVeterinary University ViennaViennaAustria
  2. 2.MycosafeViennaAustria

Personalised recommendations