The Class Nitriliruptoria

  • Erko Stackebrandt
  • Linda G. Otten
Reference work entry


The Nitriliruptoria line of descent is one of the deeply branching actinobacterial lineages, containing the orders Nitriliruptorales and Euzebyales. Each of them is defined by a single family, genus, and species, respectively: within Nitriliruptoraceae, it is the genus Nitriliruptor with Nitriliruptor alkaliphilus (Sorokin et al. 2009) and within Euzebyaceae, it is Euzebya with Euzebya tangerina (Kurahashi et al. 2010). The higher classification as a subclass Nitriliruptoridae, and recently as a class Nitriliruptoria, followed the description of Euzebya tangerina and the notion that Nitriliruptorales and Euzebyales are phylogenetic neighbors, sharing a common origin. Nitriliruptor alkaliphilus has been isolated from soda lake sediments of the Kulunda Steppe (Altai, Russia). The Gram-positive type strain ANL-iso2T is the only known alkaliphilic bacterium to degrade isobutyronitrile [iBN, (CH3)2CHCN] and utilizes it as a sole source of energy, carbon, and nitrogen. Biodegradation is via the nitrile hydratase/amidase system. Euzebya tangerina was isolated from abdominal epidermidis of a sea cucumber, Holothuria edulis. In addition to the type strains, the lineage contains several unclassified isolates and hitherto uncultured strains from sources different to those of the type strains.


Nitrile Hydratase Kulunda Steppe Alkaline Saline Soil Nucleic Acid Database Strain F10T 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Parts of this chapter have been prepared under the EMbaRC project (EU Seventh Framework Programme Research Infrastructures [Infra-2—8- Biological Resources Centres (BRCs) for Microorganisms, grant Agreement No: FP7-228310) to support science in BRCs.


  1. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75PubMedCentralPubMedCrossRefGoogle Scholar
  2. Barabote RD, Xie G, Leu DH, Normand P, Necsulea A, Daubin V, Médigue C, Adney WS, Xu XC, Lapidus A, Parales RE, Detter C, Pujic P, Bruce D, Lavire C, Challacombe JF, Brettin TS, Berry AM (2009) Complete genome of the cellulolytic thermophile acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Res 19:1033–1043PubMedCentralPubMedCrossRefGoogle Scholar
  3. Chertkov O, Sikorski J, Nolan M, Lapidus A, Lucas S, Del Rio TG, Tice H, Cheng JF, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Djao OD, Land M, Hauser L, Chang YJ, Jeffries CD, Brettin T, Han C, Detter JC, Rohde M, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk HP, Kyrpides NC (2011) Complete genome sequence of Thermomonospora curvata type strain (B9). Stand Genomic Sci 4:13–22PubMedCentralPubMedCrossRefGoogle Scholar
  4. Clark DA, Norris PR (1996) Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142:785–790CrossRefGoogle Scholar
  5. Horath T, Bachofen R (2009) Molecular characterization of an endolithic microbial community in dolomite rock in the central Alps (Switzerland). Microb Ecol 58:290–306PubMedCrossRefGoogle Scholar
  6. Humayoun SB, Bano N, Hollibaugh JT (2003) Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69:1030–1042PubMedCentralPubMedCrossRefGoogle Scholar
  7. Kim J-S, Crowley DE (2007) Microbial diversity in natural Asphalts of the Rancho La Brea Tar Pits. Appl Environ Microbiol 73:4579–4591PubMedCentralPubMedCrossRefGoogle Scholar
  8. Kurahashi M, Yokota A (2004) Agarivorans albus gen. nov., sp. nov., a γ-proteobacterium isolated from marine animals. Int J Syst Evol Microbiol 54:693–697PubMedCrossRefGoogle Scholar
  9. Kurahashi M, Fukunaga Y, Sakiyama Y, Harayama S, Yokota A (2009) Iamia majanohamensis gen. nov., sp. nov., an actinobacterium isolated from sea cucumber Holothuria edulis, and proposal of Iamiaceae fam. nov. Int J Syst Evol Microbiol 59:869–873PubMedCrossRefGoogle Scholar
  10. Kurahashi M, Fukunaga Y, Sakiyama Y, Harayama S, Yokota A (2010) Euzebya tangerina gen. nov., sp. nov., a deeply branching marine actinobacterium isolated from the sea cucumber Holothuria edulis, and proposal of Euzebyaceae fam. nov., Euzebyales ord. nov. and Nitriliruptoriaceae subclassis nov. Int J Syst Evol Microbiol 60:2314–2319PubMedCrossRefGoogle Scholar
  11. Ludwig W, Euzeby J, Schumann P, Busse H-J, Trujillo ME, Kämpfer P, Whitman WB (2012) Road map of the phylum Actinobacteria. In: Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Garrity G, Ludwig W, Suzuki K-I (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. Springer, New York, pp 1–28CrossRefGoogle Scholar
  12. Matsumoto A, Kasai H, Matsuo Y, Omura S, Shizuri Y, Takahashi Y (2009) Ilumatobacter fluminis gen. nov., sp. nov., a novel actinobacterium isolated from the sediment of an estuary. J Appl Microbiol 55:201–205Google Scholar
  13. McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 103:15582–15587PubMedCentralPubMedCrossRefGoogle Scholar
  14. Mesbah NM, Abou-El-Ela HS, Wiegel J (2007) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi an Natrun, Egypt. Microb Ecol 54:598–616PubMedCrossRefGoogle Scholar
  15. Normand P (2006) The families Frankiaceae, Geodermatophilaceae, Acidothermaceae and Sporichthyaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, 3rd edn. Springer, New York, pp 669–681CrossRefGoogle Scholar
  16. Prasad S, Bhalla TC (2010) Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnol Adv 28:725–741PubMedCrossRefGoogle Scholar
  17. Sorokin DY, van Pelt S, Tourova TP, Muyzer G (2007) Microbial isobutyronitrile utilization at haloalkaline conditions. Appl Environ Microbiol 73:5574–5579PubMedCentralPubMedCrossRefGoogle Scholar
  18. Sorokin DY, van Pelt S, Tourova TP, Evtushenko LI (2009) Nitriliruptor alkaliphilus gen. nov., sp. nov., a deep lineage haloalkaliphilic actinobacterium from soda lakes capable of growth on aliphatic nitriles, and proposal of Nitriliruptoraceae fam. nov. and Nitriliruptorales ord. nov. Int J Syst Evol Microbiol 59:248–253PubMedCrossRefGoogle Scholar
  19. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  20. Valenzuela-Encinas C, Neria-González I, Alcántara-Hernández RJ, Enríquez-Aragón JA, Estrada-Alvarado I, Hernández-Rodríguez C, Dendooven L, Marsch R (2008) Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico). Extremophiles 12:247–254PubMedCrossRefGoogle Scholar
  21. Van Pelt S, Quignard S, Kubáč D, Sorokin DY, van Rantwijk F, Sheldon RA (2008a) Nitrile hydratase CLEAs: the immobilization and stabilization of an industrially important enzyme. Green Chem 10:395–400CrossRefGoogle Scholar
  22. Van Pelt S, van Rantwijk F, Sheldon RA (2008b) Nitrile hydratases in synthesis. Chim Oggi 26:S2–S4Google Scholar
  23. Van Pelt S, van Rantwijk F, Sheldon RA (2009) Synthesis of aliphatic (S)-α-hydroxycarboxylic amides using a one-pot bienzymatic cascade of immobilised oxynitrilase and nitrile hydratase. Adv Synth Catal 351:397–404CrossRefGoogle Scholar
  24. Van Pelt S, Zhang M, Otten LG, Holt J, Sorokin DY, van Rantwijk F, Black GW, Perry JJ, Sheldon RA (2011) Probing the enantioselectivity of a diverse group of purified cobalt-centred nitrile hydratases. Org Biomol Chem 9:3011–3019PubMedCrossRefGoogle Scholar
  25. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living-tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweigGermany
  2. 2.Biocatalysis Group, Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations