The Family Frankiaceae

  • Philippe NormandEmail author
  • David R. Benson
  • Alison M. Berry
  • Louis S. Tisa
Reference work entry


The family Frankiaceae, within the order Actinomycetales, contains bacteria isolated mainly from root nodules and occasionally from soil. Members of the genus Frankia have been found associated with the roots of 23 genera of dicots belonging to eight families. Historically, strains isolated in pure culture were grouped into two physiological categories, those that use carbohydrates and those that do not. Newer genomic information indicated that frankiae in general differ markedly in their complements of genes. Besides physiological grouping, these isolates were placed into four plant-compatibility groups (1-infective on Alnus and Myrica, 2-infective on Casuarina and Myrica, 3-infective on Elaeagnaceae and Myrica, 4-infective only on Elaeagnaceae). A 16S rRNA gene-based phylogenetic study, comprising non-isolated endophytes, yielded four clusters or clades, three of which are symbiotic (1-infective on Alnus and Casuarinaceae except Gymnostoma, 2-non-isolated strains in nodules of Rosaceae-Datisca-Coriaria-Rhamnaceae, 3-infective on Elaeagnaceae and Gymnostoma) and a fourth cluster that groups non-infective and non-effective strains. These groupings have been confirmed on the whole by analysis of other loci. DNA-DNA hybridization studies have yielded 12–15 genospecies, only one of which has been named, Frankia alni; one Candidatus Frankia datiscae was recently named to accommodate the genome of an endophyte in nodules of Datisca glomerata.

The family Frankiaceae is close to Acidothermus, Cryptosporangium, Geodermatophilaceae (Geodermatophilus, Modestobacter, Blastococcus), Nakamurella, Sporichthya, and Fodinicola and was grouped into suborder Frankineae. A recent rearrangement has resulted in the elevation of suborder Frankineae to order Frankiales (Normand and Benson 2012b) containing families Acidothermaceae, Cryptosporangiaceae, Frankiaceae, Geodermatophilaceae, Nakamurellaceae, and Sporichthyaceae as well as the incertae sedis Fodinicola feengrottensis.


Mine Spoil Frankia Strain Actinorhizal Plant Muramic Acid Hippophae Rhamnoides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akimov V, Dobritsa S, Stupar O (1991) Grouping of Frankia strains by DNA-DNA homology: how many genospecies are in the genus Frankia? In: Polsinelli M, Materassi R, Vincenzini M (eds) Nitrogen fixation. Kluwer, Dordrecht, pp 635–636CrossRefGoogle Scholar
  2. Akimov V, Dobritsa S (1992) Grouping of Frankia strains on the basis of DNA relatedness. Syst Appl Microbiol 15:372–379CrossRefGoogle Scholar
  3. Alloisio N, Félix S, Maréchal J, Pujic P, Rouy Z, Vallenet D et al (2007) Frankia alni proteome under nitrogen-fixing and nitrogen-replete conditions. Physiol Plant 13:440–453CrossRefGoogle Scholar
  4. Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D et al (2010) The Frankia alni symbiotic transcriptome. Mol Plant Microbe Interact 23:593–607PubMedCrossRefGoogle Scholar
  5. An C, Riggsby W, Mullin B (1985) Relationships of Frankia isolates based on deoxyribonucleic acid homology studies. Int J Syst Bacteriol 35:140–146CrossRefGoogle Scholar
  6. An C, Riggsby W, Mullin B (1987) DNA relatedness of Frankia isolates ArI4 and EuI1 to other actinomycetes of cell wall type III. Actinomycetes 20:50–59Google Scholar
  7. An C, Wills J, Riggsby W, Mullin B (1983) Deoxyribonucleic acid base composition of 12 Frankia isolates. Can J Bot 61:2859–2862CrossRefGoogle Scholar
  8. Baker D (1987) Relationships among pure-cultured strains of Frankia based on host specificity. Physiol Plant 70:245–248CrossRefGoogle Scholar
  9. Baker D, Torrey J (1979) The isolation and cultivation of actinomycetous root nodule endophytes. In: JC Gordon, Wheeler CT, Perry DA, Corvallis OR (eds) Symbiotic nitrogen fixation in the management of temperate forests. Oregon State University, Forest Research Laboratory, pp 38–56Google Scholar
  10. Barabote RD, Xie G, Leu DH, Normand P, Necsulea A, Daubin V et al (2009) Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Res 19:1033–1043PubMedCentralPubMedCrossRefGoogle Scholar
  11. Becking JH (1970) Frankiaceae fam. nov. (Actinomycetales) with one new combination and six new species of the genus Frankia Brunchorst 1886, 174. Int J Syst Bacteriol 20:201–220CrossRefGoogle Scholar
  12. Beijerinck MW (1888) Die Bacterien der Papilionaceen-Knöllchen. Bot Zeitung 46:725–735Google Scholar
  13. Benson D, Stephens D, Clawson M, Silvester W (1996) Amplification of 16s rrna genes from Frankia strains in root nodules of Ceanothus griseus, Coriaria arborea, Coriaria plumosa, Discaria toumatou and Purshia tridentata. Appl Environ Microbiol 62:2904–2909PubMedCentralPubMedGoogle Scholar
  14. Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319PubMedCentralPubMedGoogle Scholar
  15. Berry A (1983) The development of the actinorhizal association between Frankia and Alnus rubra Bong.: life, history and cultural methods for the symbionts and a structural interpretation of the infection process. University of Massachusetts, AmherstGoogle Scholar
  16. Berry A, Sunell L (1990) The infection process and nodule development. In Schwintzer C, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, San Diego, pp 61–81Google Scholar
  17. Berry A, Kahn R, Booth M (1989) Identification of indole compounds secreted by Frankia HFPArI3 in defined culture medium. Plant Soil 118:205–209CrossRefGoogle Scholar
  18. Berry A, Harriott O, Moreau R, Osman S, Benson D, Jones A (1993) Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc Natl Acad Sci USA 90:6091–6094PubMedCentralPubMedCrossRefGoogle Scholar
  19. Beveridge T, Li TS, Oomah BD, Smith A (1999) Sea buckthorn products: manufacture and composition. J Agric Food Chem 47:3480–3488PubMedCrossRefGoogle Scholar
  20. Bloom RA, Mullin BC, Tate RL 3rd (1989) DNA restriction patterns and DNA-DNA solution hybridization studies of Frankia isolates from Myrica pennsylvanica (bayberry). Appl Environ Microbiol 55:2155–2160PubMedCentralPubMedGoogle Scholar
  21. Bordage E (1916) Le repeuplement végétal et animal des îles Krakatoa depuis l'éruption de 1883. Ann de Géog 25:1–22CrossRefGoogle Scholar
  22. Boyd ES, Anbar AD, Miller S, Hamilton TL, Lavin M, Peters JW (2011) A late methanogen origin for molybdenum-dependent nitrogenase. Geobiology 9:221–232PubMedCrossRefGoogle Scholar
  23. Brunchorst J (1886) Uber einige Wurzelanschwellungen, besonders die jenigen von Alnus, und den Elaeagnaceen. Unters bot Inst Tubingen 2:151–177Google Scholar
  24. Callaham D, Del Tredici P, Torrey J (1978) Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199:899–902PubMedCrossRefGoogle Scholar
  25. Callaham D, Newcomb W, Torrey J, Peterson R (1979) Root hair infection in actinomycete-induced root nodule initiation in Casuarina, Myrica, and Comptonia. Bot Gaz 140S:S1–S9CrossRefGoogle Scholar
  26. Cannone N, Guglielmin M, Gerdol R (2004) Relationships between vegetation patterns and periglacial landforms in northwestern Svalbard. Polar Biol 27:562–571CrossRefGoogle Scholar
  27. Cavalier-Smith T (2002) The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52:7–76PubMedGoogle Scholar
  28. Ceremonie H, Debelle F, Fernandez MP (1999) Structural and functional comparison of Frankia root hair deforming factor and rhizobia Nod factor. Can J Bot 77:1293–1301Google Scholar
  29. Chapin FS, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay. Alaska Ecol Monogr 64:149–175CrossRefGoogle Scholar
  30. Clawson M, Gawronski J, Benson DR (1999) Dominance of Frankia strains in stands of Alnus incana subsp. rugosa and Myrica pensylvanica. Can J Bot 77:1203–1207Google Scholar
  31. Clawson ML, Caru M, Benson DR (1998) Diversity of Frankia strains in root nodules of plants from the families Elaeagnaceae and Rhamnaceae. Appl Environ Microbiol 64:3539–3543PubMedCentralPubMedGoogle Scholar
  32. Clawson ML, Bourret A, Benson DR (2004) Assessing the phylogeny of Frankia-actinorhizal plant nitrogen-fixing root nodule symbioses with Frankia 16S rRNA and glutamine synthetase gene sequences. Mol Phylogenet Evol 31:131–138PubMedCrossRefGoogle Scholar
  33. Cooper W (1923) The recent ecological history of Glacier Bay, Alaska, part 1. Ecology 4:93–128CrossRefGoogle Scholar
  34. Crane PR, Friis ER, Pedersen KR (1995) The origin and early diversification of angiosperms. Nature 374:27–33CrossRefGoogle Scholar
  35. Crocker R, Major J (1955) Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. J Ecol 43:427–448CrossRefGoogle Scholar
  36. Dai Y, Cao J, Tang X, Zhang C (2004) Diversity of Frankia in nodules of Alnus nepalensis at Gaoligong Mountains revealed by IGS, PCR-RFLP analysis. Ying Yong Sheng Tai Xue Bao 15:186–190PubMedGoogle Scholar
  37. Dawson JO (1986) Actinorhizal plants: their use in forestry and agriculture. Outlook Agr 15:202–208Google Scholar
  38. Dommergues Y (1995) Contribution of actinorhizal plants to tropical soil productivity and rehabilitation. Soil Biol Biochem 29:931–941CrossRefGoogle Scholar
  39. Doyle JJ (2012) Phylogenetic perspectives on the origins of nodulation. MPMI 24:1289–1295CrossRefGoogle Scholar
  40. Fani R, Gallo R, Lio P (2000) Molecular evolution of nitrogen fixation: the evolutionary history of the nifD, nifK, nifE, and nifN genes. J Mol Evol 51:1–11PubMedGoogle Scholar
  41. Fernandez M, Meugnier H, Grimont P, Bardin R (1989) Deoxyribonucleic acid relatedness among members of the genus Frankia. Int J Syst Bacteriol 39:424–429CrossRefGoogle Scholar
  42. Frank B (1887) Sind die Wurzelanschwellungen der Erlen und Elaeagnaceen Pilzgallen? Ber Deutsch Botan Gesell 5:50–58Google Scholar
  43. Funk D (1973) Growth and development of alder plantings on Ohio strip mine banks. In Anonymous (ed) Ecology and reclamation of devastated land. Gordon and Breech, London, pp 483–491Google Scholar
  44. Gardes M, Lalonde M (1987) Identification and subgrouping of Frankia strains using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Physiol Plant 70:237–244CrossRefGoogle Scholar
  45. Gauthier D, Diem H, Dommergues Y (1981) Infectivité et effectivité de souches de Frankia isolées de nodules de Casuarina equisetifolia et d'Hippophaë rhamnoides. Comptes Rendus Seances Académie Sciences Ser III 293:489–491Google Scholar
  46. Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G et al (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc Natl Acad Sci USA 105:4928–4932PubMedCentralPubMedCrossRefGoogle Scholar
  47. Ghinet MG, Bordeleau E, Beaudin J, Brzezinski R, Roy S, Burrus V (2011) Uncovering the prevalence and diversity of integrating conjugative elements in actinobacteria. PLoS One 6:e27846PubMedCentralPubMedCrossRefGoogle Scholar
  48. Ghodhbane-Gtari F, Nouioui I, Chair M, Boudabous A, Gtari M (2010) 16S-23S rRNA intergenic spacer region variability in the genus Frankia. Microb Ecol 60:487–495PubMedCrossRefGoogle Scholar
  49. Gordon M, Lechevalier M, Lapa E (1983) Nonpathogenicity of Frankia sp. CpI1 in the Dermatophilus pathogenicity test. Actinomycetes 18:50–53Google Scholar
  50. Gtari M, Daffonchio D, Boudabous A (2007a) Occurrence and diversity of Frankia in Tunisian soils. Physiol Plant 130:372–379CrossRefGoogle Scholar
  51. Gtari M, Brusetti L, Skander G, Mora D, Boudabous A, Daffonchio D (2004) Isolation of Elaeagnus-compatible Frankia from soils collected in Tunisia. FEMS Microbiol Lett 234:349–355PubMedCrossRefGoogle Scholar
  52. Gtari M, Brusetti L, Hassen A, Mora D, Daffonchio D, Boudabous A (2007b) Genetic diversity among Elaeagnus compatible Frankia strains and sympatric-related nitrogen-fixing actinobacteria revealed by nifH sequence analysis. Soil Biol Biochem 39:372–377CrossRefGoogle Scholar
  53. Haansuu JP, Klika KD, Soderholm PP, Ovcharenko VV, Pihlaja K, Haahtela KK, Vuorela PM (2001) Isolation and biological activity of frankiamide. J Ind Microbiol Biotechnol 27:62–66PubMedCrossRefGoogle Scholar
  54. Hahn D, Lechevalier M, Fischer A, Stackebrandt E (1989) Evidence for a close phylogenetic relationship between members of the genera Frankia, Geodermatophilus, and “Blastococcus” and emendation of the family Frankiaceae. Syst Appl Microbiol 11:236–242CrossRefGoogle Scholar
  55. Hahn D, Mirza B, Benagli C, Vogel G, Tonolla M (2011) Typing of nitrogen-fixing Frankia strains by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. Syst Appl Microbiol 34:63–68PubMedCrossRefGoogle Scholar
  56. Hammad Y, Nalin R, Marechal J, Fiasson K, Pepin R, Berry AM et al (2003) A possible role for phenylacetic acid (PAA) in Alnus glutinosa nodulation by Frankia. Plant Soil 254:193–205CrossRefGoogle Scholar
  57. Hartmann LS, Barnum SR (2010) Inferring the evolutionary history of Mo-dependent nitrogen fixation from phylogenetic studies of nifK and nifDK. J Mol Evol 71:70–85PubMedCrossRefGoogle Scholar
  58. Hellriegel H, Wilfarth H (1888) Untersuchungen über die Stickstoffnahrung der Gramineen und Leguminosen. Buchdruckerei der "Post" Kayssler, BerlinGoogle Scholar
  59. Hery M, Philippot L, Meriaux E, Poly F, Le Roux X, Navarro E (2005) Nickel mine spoils revegetation attempts: effect of pioneer plants on two functional bacterial communities involved in the N-cycle. Environ Microbiol 7:486–498PubMedCrossRefGoogle Scholar
  60. Hiltner L (1896) Uber die Bedeutung der Wurzelknöllchen von Alnus glutinosa fur die Stickstoffernahrung dieser Pflanze. Landw Versuchsst 46:153–161Google Scholar
  61. Hirsch A, McKhann H, Reddy A, Liao J, Fang Y, Marshall C (1995) Assessing horizontal transfer of nifHDK genes in eubacteria: nucleotide sequence of nifK from Frankia strain HFPCcI3. Mol Biol Evol 12:16–27PubMedCrossRefGoogle Scholar
  62. Hocher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P et al (2011) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 156:1–12 (
  63. Huguet V, Mergeay M, Cervantes E, Fernandez MP (2004) Diversity of Frankia strains associated to Myrica gale in Western Europe: impact of host plant (Myrica vs. Alnus) and of edaphic factors. Environ Microbiol 6:1032–1041PubMedCrossRefGoogle Scholar
  64. Huguet V, Gouy M, Normand P, Zimpfer JF, Fernandez MP (2005a) Molecular phylogeny of Myricaceae: a reexamination of host-symbiont specificity. Mol Phylogenet Evol 34:557–568PubMedCrossRefGoogle Scholar
  65. Huguet V, Land EO, Casanova JG, Zimpfer JF, Fernandez MP (2005b) Genetic diversity of Frankia microsymbionts from the relict species Myrica faya (Ait.) and Myrica rivas-martinezii (S.) in Canary Islands and Hawaii. Microb Ecol 49:617–625PubMedCrossRefGoogle Scholar
  66. Huguet V, Batzli JM, Zimpfer JF, Normand P, Dawson JO, Fernandez MP (2001) Diversity and specificity of Frankia strains in nodules of sympatric Myrica gale, Alnus incana, and Shepherdia canadensis determined by rrs gene polymorphism. Appl Environ Microbiol 67:2116–2122PubMedCentralPubMedCrossRefGoogle Scholar
  67. Jeong S, Ritchie N, Myrold D (1999) Molecular phylogenies of plants and Frankia support multiple origins of actinorhizal symbioses. Mol Phylogenet Evol 13:493–503PubMedCrossRefGoogle Scholar
  68. John TR, Rice JM, Johnson JD (2001) Analysis of pFQ12, a 22.4-kb Frankia plasmid. Can J Microbiol 47:608–617PubMedCrossRefGoogle Scholar
  69. Kennedy PG, Schouboe JL, Rogers RH, Weber MG, Nadkarni NM (2010) Frankia and Alnus rubra canopy roots: an assessment of genetic diversity, propagule availability, and effects on soil nitrogen. Microb Ecol 59:214–220PubMedCrossRefGoogle Scholar
  70. Kim TU, Cho SH, Han JH, Shin YM, Lee HB, Kim SB (2012) Diversity and physiological properties of root endophytic actinobacteria in native herbaceous plants of Korea. J Microbiol 50:50–57PubMedCrossRefGoogle Scholar
  71. Klika KD, Haansuu JP, Ovcharenko VV, Haahtela KK, Vuorela PM, Pihlaja K (2001) Frankiamide, a highly unusual macrocycle containing the imide and orthoamide functionalities from the symbiotic actinomycete Frankia. J Org Chem 66:4065–4068PubMedCrossRefGoogle Scholar
  72. Kucho K, Hay A, Normand P (2010) The determinants of the actinorhizal symbiosis. Microbe Environ 25:241–252CrossRefGoogle Scholar
  73. Lake JA (2009) Evidence for an early prokaryotic endosymbiosis. Nature 460:967–971PubMedCrossRefGoogle Scholar
  74. Lalonde M (1979) Immunological and ultrastructural demonstration of nodulation of the European Alnus glutinosa (L.) Gaertn. host plant by an actinomycetal isolate from the North American Comptonia peregrina (L.) Coult. root nodule. Bot Gaz 140(S):S35–S43Google Scholar
  75. Lalonde M, Simon L, Bousquet J, Séguin A (1988) Advances in the taxonomy of Frankia: recognition of species alni and elaeagni and novel subspecies pommerii and vandijkii. In H Bothe, F.d.B., Newton WE (eds) Nitrogen fixation: hundred years after. Gustav Fischer, Stuttgart, pp 671–680Google Scholar
  76. Lavire C, Louis D, Perriere G, Briolay J, Normand P, Cournoyer B (2001) Analysis of pFQ31, a 8551-bp cryptic plasmid from the symbiotic nitrogen-fixing actinomycete Frankia. FEMS Microbiol Lett 197:111–116PubMedCrossRefGoogle Scholar
  77. Lawrence D, Schoenike R, Quispel A, Bond G (1967) The role of Dryas drummondii in vegetation development following ice recession at Glacier Bay, Alaska, with special reference to its nitrogen fixation by root nodules. J Ecol 55:793–813CrossRefGoogle Scholar
  78. Lechevalier MP, Lechevalier HA (1990) Systematics, isolation and culture of Frankia. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. San Diego: Academic, pp 35–60Google Scholar
  79. Lilburn TG, Garrity GM (2004) Exploring prokaryotic taxonomy. Int J Syst Evol Microbiol 54:7–13PubMedCrossRefGoogle Scholar
  80. Liu Q-Q, Berry A (1991) The infection process and nodule initiation in the Frankia-Ceanothus root nodule symbiosis: a structural and histochemical study. Protoplasma 163:82–92CrossRefGoogle Scholar
  81. Lumini E, Bosco M (1999) Polymerase chain reaction – restriction fragment length polymorphisms for assessing and increasing biodiversity of Frankia culture collections. Can J Bot 77:1261–1269Google Scholar
  82. Lumini E, Bosco M, Fernandez MP (1996) PCR-RFLP and total DNA homology revealed three related genomic species among broad-host-range Frankia strains. FEMS Microbiol Ecol 21:303–311CrossRefGoogle Scholar
  83. Maggia L, Bousquet J (1994) Molecular phylogeny of the actinorhizal Hamamelidae and relationships with host promiscuity towards Frankia. Mol Ecol 3:459–467CrossRefGoogle Scholar
  84. Markmann K, Giczey G, Parniske M (2008) Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol 6:e68PubMedCentralPubMedCrossRefGoogle Scholar
  85. Miller I, Baker D (1985) The initiation, development and structure of root nodules in Elaeagnus angustifolia L. (Elaeagnaceae). Protoplasma 128:107–119CrossRefGoogle Scholar
  86. Miller I, Baker D (1986) Nodulation of actinorhizal plants by Frankia strains capable of both root hair infection and intercellular penetration. Protoplasma 131:82–91CrossRefGoogle Scholar
  87. Mirza BS, Welsh A, Hahn D (2009a) Growth of Frankia strains in leaf litter-amended soil and the rhizosphere of a nonactinorhizal plant. FEMS Microbiol Ecol 70:132–141PubMedCrossRefGoogle Scholar
  88. Mirza BS, Welsh A, Rieder JP, Paschke MW, Hahn D (2009b) Diversity of frankiae in soils from five continents. Syst Appl Microbiol 32:558–570PubMedCrossRefGoogle Scholar
  89. Mishra AK, Singh A, Singh SS (2010) Diversity of Frankia strains nodulating Hippophae salicifolia D Don using FAME profiling as chemotaxonomic markers. J Basic Microbiol 50:318–324PubMedCrossRefGoogle Scholar
  90. Mort A, Normand P, Lalonde M (1983) 2-O-methyl-D-mannose, a key sugar in the taxonomy of Frankia. Can J Microbiol 29:993–1002CrossRefGoogle Scholar
  91. Navarro E, Jaffre T, Gauthier D, Gourbiere F, Rinaudo G, Simonet P, Normand P (1999) Distribution of Gymnostoma spp. microsymbiotic Frankia strains in New Caledonia is related to soil type and to host-plant species. Mol Ecol 8:1781–1788PubMedCrossRefGoogle Scholar
  92. Navarro E, Nalin R, Gauthier D, Normand P (1997) The nodular microsymbionts of Gymnostoma spp. are Elaeagnus-infective strains. Appl Environ Microbiol 63:1610–1616PubMedCentralPubMedGoogle Scholar
  93. Nghia NH, Thu PQ, Pinyopusarerk K (2011) Research and development of Casuarina equisetifolia in Vietnam. In: Zhong C, Pinyopusarerk K, Kalinganire A, Franche C (eds) Improving smallholder livelihoods through improved Casuarina productivity: proceeding of the 4th international Casuarina workshop, Haikou, China. China Forestry Publishing House, Beijing, pp 17–22Google Scholar
  94. Normand P, Lalonde M (1982) Evaluation of Frankia strains isolated from provenances of two Alnus species. Can J Microbiol 28:1133–1142CrossRefGoogle Scholar
  95. Normand P, Bousquet J (1989) Phylogeny of nitrogenase sequences in Frankia and other nitrogen-fixing microorganisms. J Mol Evol 29:436–447PubMedCrossRefGoogle Scholar
  96. Normand P, Chapelon C (1997) Direct characterization of Frankia and of close phyletic neighbors from an Alnus viridis rhizosphere. Physiol Plant 99:722–731CrossRefGoogle Scholar
  97. Normand P, Benson D (2012a) The Frankiaceae Becking 1970, 201AL emend. Hahn, Lechevalier, Fischer and Stackebrandt 1989, 241 emend. Normand, Orso, Cournoyer, Jeannin, Chapelon, Dawson, Evtushenko and Misra 1996, 8 emend. Stackebrandt, Rainey and Ward-Rainey 1997, 487. In: WB Whitman, MG, Kämpfer P, Busse H-J, Trujillo ME, Ludwig W, Suzuki K-i (eds) The Bergey’s manual of systematic bacteriology. Bergey’s Manual Trust, Springer, p 512Google Scholar
  98. Normand P, Benson DR (2012b) Order VI Frankiales ord. nov. In: Bergey’s manual of systematic bacteriology, Volume 5 The Actinobacteria. Bergey’s Manual Trust, Athens, pp 509–551Google Scholar
  99. Normand P, Simonet P, Butour J, Rosenberg C, Moiroud A, Lalonde M (1983) Plasmids in Frankia sp. J Bacteriol 155:32–35PubMedCentralPubMedGoogle Scholar
  100. Normand P, Queiroux C, Tisa L, Benson D, Cruveiller S, Rouy Z, Medigue C (2007a) Exploring the genomes of Frankia sp. Physiol Plant 13:331–343CrossRefGoogle Scholar
  101. Normand P, Orso S, Cournoyer B, Jeannin P, Chapelon C, Dawson J et al (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 46:1–9PubMedCrossRefGoogle Scholar
  102. Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E et al (2007b) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15PubMedCentralPubMedCrossRefGoogle Scholar
  103. Nouioui I, Ghodhbane-Gtari F, Beauchemin NJ, Tisa LS, Gtari M (2011) Phylogeny of members of the Frankia genus based on gyrB, nifH and glnII sequences. Antonie Van Leeuwenhoek 100:579–587PubMedCrossRefGoogle Scholar
  104. Oakley B, North M, Franklin JF, Hedlund BP, Staley JT (2004) Diversity and distribution of Frankia strains symbiotic with Ceanothus in California. Appl Environ Microbiol 70:6444–6452PubMedCentralPubMedCrossRefGoogle Scholar
  105. Okubara PA, Pawlowski K, Murphy TM, Berry AM (1999) Symbiotic root nodules of the actinorhizal plant Datisca glomerata express rubisco activase mRNA. Plant Physiol 120:411–420PubMedCentralPubMedCrossRefGoogle Scholar
  106. Pech P, Arques S, Jomelli V, Maillet I, Melois N, Moreau M (2007) Spatial and temporal biodiversity variations in a high mountain environment: the case of the proglacial margin of the Evettes, Natura 2000 area (Savoie, French Alps). Environment, Nature, Paysage, 374Google Scholar
  107. Périnet P, Lalonde M (1983) In vitro propagation and nodulation of the actinorhizal host plant Alnus glutinosa (L.) Gaertn. Plant Sci Lett 29:9–17CrossRefGoogle Scholar
  108. Persson T, Benson DR, Normand P, Vanden Heuvel B, Pujic P, Chertkov O et al (2011) Genome sequence of “Candidatus Frankia datiscae” Dg1, the uncultured microsymbiont from nitrogen-fixing root nodules of the dicot Datisca glomerata. J Bacteriol 193:7017–7018PubMedCentralPubMedCrossRefGoogle Scholar
  109. Pokharel A, Mirza BS, Dawson JO, Hahn D (2011) Frankia populations in soil and root nodules of sympatrically grown Alnus taxa. Microb Ecol 61:92–100PubMedCrossRefGoogle Scholar
  110. Pommer E (1956) Beiträge zur Anatomie und Biologie der Wurzelknöllchen von Alnus glutinosa Gaertn. Flora 14:603–634Google Scholar
  111. Pommer E (1959) Uber die Isolierung des Endophyten aus den Wurzelknöllchen Alnus glutinosa Gaertn. und uber erfolgreiche Re-Infektionsversuche. Ber Deutsch Botan Gesell 72:138–150Google Scholar
  112. Pujic P, Fournier P, Alloisio N, Hay AE, Marechal J, Anchisi S, Normand P (2012) Lectin genes in the Frankia alni genome. Arch Microbiol 194:47–56PubMedCrossRefGoogle Scholar
  113. Racette S, Torrey J (1989) Root nodule initiation in Gymnostoma (Casuarinaceae) and Shepherdia (Elaeagnaceae) induced by Frankia strain HFPGpI1. Can J Bot 67:2873–2879CrossRefGoogle Scholar
  114. Rawat GS, Kumar NK, Nicodemus A (2011) Research and development of Casuarina in India. In: Zhong C, Pinyopusarerk K, Kalinganire A, Franche C (eds) Improving smallholder livelihoods through improved Casuarina productivity: Proceeding of the 4th international Casuarina workshop, Haikou, China. China Forestry Publishing House, Beijing, China, pp 11–16Google Scholar
  115. Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554PubMedCrossRefGoogle Scholar
  116. Reiners W, Worley I, Lawrence D (1971) Plant diversity in a chronosequence at Glacier Bay, Alaska. Ecol 52:55–69CrossRefGoogle Scholar
  117. Ritchie N, Myrold D (1999) Geographic distribution and genetic diversity of ceanothus-infective Frankia strains. Appl Environ Microbiol 65:1378–1383PubMedCentralPubMedGoogle Scholar
  118. Roy S, Khasa DP, Greer CW (2007) Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Can J Bot 85:237–251CrossRefGoogle Scholar
  119. Santos C, Vieira J, Normand P, Moradas-Ferreira P, Tavares F (2007) Expression, activity and phylogeny of catalases: a global approach to Frankia alni ACN14a oxidative stress response. Physiol Plant 130:454–463CrossRefGoogle Scholar
  120. Sati SC, Sati N, Sati OP (2011) Bioactive constituents and medicinal importance of genus Alnus. Pharmacogen Rev 5:174–183CrossRefGoogle Scholar
  121. Schultz NA, Benson DR (1989) Developmental potential of Frankia vesicles. J Bacteriol 171:6873–6877PubMedCentralPubMedGoogle Scholar
  122. Simonet P, Navarro E, Rouvier C, Reddell P, Zimpfer J, Dommergues Y et al (1999) Co-evolution between Frankia populations and host plants in the family Casuarinaceae and consequent patterns of global dispersal. Environ Microbiol 1:525–533PubMedCrossRefGoogle Scholar
  123. Sims HJ, Herendeen PS, Lupia R, Christopher RA, Crane PR (1999) Fossil flowers with Normapolles pollen from the Late Cretaceous of southeastern North America. Rev Palaeobotany Palynol 106:131–157CrossRefGoogle Scholar
  124. Soltis D, Soltis P, Morgan D, Swensen S, Mullin B, Dowd J, Martin P (1995) Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc Natl Acad Sci USA 92:2647–2651PubMedCentralPubMedCrossRefGoogle Scholar
  125. Stevens G, Berry A (1988) Cytokinin secretion by Frankia sp. HFPArI3 in defined medium. Plant Physiol 87:15–16PubMedCentralPubMedCrossRefGoogle Scholar
  126. Swensen S, Benson DR (2008) Evolution of actinorhizal host plants and Frankia Endosymbionts. Chapter 4. In Newton W, Pawlowski K (eds) Frankia and actinorhizal plants. SpringerGoogle Scholar
  127. Swensen SM, Mullin BC (1997) Phylogenetic relationships among actinorhizal plants. The impact of molecular systematics and implications for the evolution of actinorhizal symbioses. Physiol Plant 99:565–573CrossRefGoogle Scholar
  128. Tanaka H, Chiba H, Inokoshi J, Kuno A, Sugai T, Takahashi A et al (2009) Mechanism by which the lectin actinohivin blocks HIV infection of target cells. Proc Natl Acad Sci U S A 106:15633–15638PubMedCentralPubMedCrossRefGoogle Scholar
  129. te Poele EM, Samborskyy M, Oliynyk M, Leadlay PF, Bolhuis H, Dijkhuizen L (2008) Actinomycete integrative and conjugative pMEA-like elements of Amycolatopsis and Saccharopolyspora decoded. Plasmid 59:202–316CrossRefGoogle Scholar
  130. Thomas BA, Spicer RA (1987) The evolution and paleobiology of land plants. Croom Helm, London, p 309pGoogle Scholar
  131. Torrey J (1983) Casuarina actinorhizal dinitrogen-fixing tree of the tropics. In SJ Midgley, JT, Johnston RD (ed) Casuarina ecology, management and utilization. Australia: Commonwealth Scientific and Industrial Research Organization (CSIRO), Canberra, pp 193–204Google Scholar
  132. Trujillo M, Kroppenstedt R, Schumann P, Carro L, Martínez-Molina E (2006) Micromonospora coriariae sp. nov., isolated from root nodules of Coriaria myrtifolia. Int J Syst Evol Microbiol 56:2381–2385PubMedCrossRefGoogle Scholar
  133. Uchytil RJ (1989) Alnus viridis subsp. sinuata. In: Fire effects information system, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available. [, September 1)]
  134. Udwary DW, Gontang EA, Jones AC, Jones CS, Schultz AW, Winter JM et al (2011) Significant natural product biosynthetic potential of actinorhizal symbionts of the genus Frankia, as revealed by comparative genomic and proteomic analyses. Appl Environ Microbiol 77:3617–3625PubMedCentralPubMedCrossRefGoogle Scholar
  135. Valdes M, Perez NO, Estrada-de Los Santos P, Caballero-Mellado J, Pena-Cabriales JJ, Normand P, Hirsch AM (2005) Non-Frankia actinomycetes isolated from surface-sterilized roots of Casuarina equisetifolia fix nitrogen. Appl Environ Microbiol 71:460–466PubMedCentralPubMedCrossRefGoogle Scholar
  136. Van Ghelue M, Lovaas E, Ringo E, Solheim B (1997) Early interactions between Alnus glutinosa and Frankia strain ArI3. Production and specificity of root hair deformation factor(s). Physiol Plant 99:579–587CrossRefGoogle Scholar
  137. Vanden Heuvel BD, Benson DR, Bortiri E, Potter D (2004) Low genetic diversity among Frankia spp. strains nodulating sympatric populations of actinorhizal species of Rosaceae, Ceanothus (Rhamnaceae) and Datisca glomerata (Datiscaceae) west of the Sierra Nevada (California). Can J Microbiol 50:989–1000PubMedCrossRefGoogle Scholar
  138. Vitousek PM, Walker LR, Whiteaker LD, Mueller-Dombois D, Matson PA (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238:802–804PubMedCrossRefGoogle Scholar
  139. von Tubeuf K (1895) Pflanzenkrankheiten durch Kryptogame Parasiten verursacht : eine Einführung in das Studium der parasitären Pilze, Schleimpilze, Spaltpilze und Algen; Zugleich eine Anleitung zur Bekämpfung von Krankheiten der Kulturpflanzen. Verlag J Springer, Berlin, p 599pGoogle Scholar
  140. Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R et al (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci USA 106:3853–3858PubMedCentralPubMedCrossRefGoogle Scholar
  141. Welsh AK, Dawson JO, Gottfried GJ, Hahn D (2009) Diversity of Frankia populations in root nodules of geographically isolated Arizona alder trees in central Arizona (United States). Appl Environ Microbiol 75:6913–6918PubMedCentralPubMedCrossRefGoogle Scholar
  142. Woronin MS (1866) Uber die bei der Schwarzerle (Alnus glutinosa) und bei der gewöhnlichen Garten-Lupine (Lupinus mutabilis) auftretenden Wurzelanschwellungen. Mémoires de l'Academie Impériale des Sciences de St Pétersbourg VII Series 10:1–13Google Scholar
  143. Wolters DJ, Van Dijk C, Zoetendal EG, Akkermans ADL (1997) Phylogenetic characterization of ineffective Frankia in Alnus glutinosa (L.) Gaertn. nodules from wetland soil inoculants. Mol Ecol 6:971–981PubMedCrossRefGoogle Scholar
  144. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN et al (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060PubMedCentralPubMedCrossRefGoogle Scholar
  145. Xu X, Kong R, de Bruijn FJ, He SY, Murry MA, Newman T, Wolk CP (2002) DNA sequence and genetic characterization of plasmid pFQ11 from Frankia alni strain CpI1. FEMS Microbiol Lett 207:103–107PubMedCrossRefGoogle Scholar
  146. Yergeau E, Bokhorst S, Kang S, Zhou J, Greer CW, Aerts R, Kowalchuk GA (2012) Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. Isme J 6:692–702PubMedCentralPubMedCrossRefGoogle Scholar
  147. Zhao K, Penttinen P, Guan T, Xiao J, Chen Q, Xu J et al (2011) The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi plateau, China. Curr Microbiol 62:182–190PubMedCrossRefGoogle Scholar
  148. Zhong C, Zhang Y, Chen Y, Jiang Q, Chen Z, Liang J et al (2010) Casuarina research and applications in China. Symbiosis 50:107–114CrossRefGoogle Scholar
  149. Zhong C, Zhang Y, Chen Y, Jiang Q, Chen Z, Wu C et al (2011) Casuarina research and development in China. In: Zhong C, Pinyopusarerk K, Kalinganire A, Franche C (eds) Improving smallholder livelihoods through improved Casuarina productivity: Proceeding of the 4th international Casuarina workshop, Haikou, China. China Forestry Publishing House, Beijing, China, pp 5–10Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Philippe Normand
    • 1
    Email author
  • David R. Benson
    • 2
  • Alison M. Berry
    • 3
  • Louis S. Tisa
    • 4
  1. 1.Ecologie MicrobienneCentre National de la Recherche Scientifique UMR 5557, Université Lyon I, Université LyonVilleurbanne CedexFrance
  2. 2.Department of Molecular & Cell BiologyUniversity of ConnecticutStorrsUSA
  3. 3.Department of Plant SciencesUniversity of CaliforniaDavisUSA
  4. 4.Department of Cellular, Molecular and Biomedical SciencesUniversity of New HampshireDurhamUSA

Personalised recommendations