Skip to main content

The Family Frankiaceae

  • Reference work entry
  • First Online:
Book cover The Prokaryotes

Abstract

The family Frankiaceae, within the order Actinomycetales, contains bacteria isolated mainly from root nodules and occasionally from soil. Members of the genus Frankia have been found associated with the roots of 23 genera of dicots belonging to eight families. Historically, strains isolated in pure culture were grouped into two physiological categories, those that use carbohydrates and those that do not. Newer genomic information indicated that frankiae in general differ markedly in their complements of genes. Besides physiological grouping, these isolates were placed into four plant-compatibility groups (1-infective on Alnus and Myrica, 2-infective on Casuarina and Myrica, 3-infective on Elaeagnaceae and Myrica, 4-infective only on Elaeagnaceae). A 16S rRNA gene-based phylogenetic study, comprising non-isolated endophytes, yielded four clusters or clades, three of which are symbiotic (1-infective on Alnus and Casuarinaceae except Gymnostoma, 2-non-isolated strains in nodules of Rosaceae-Datisca-Coriaria-Rhamnaceae, 3-infective on Elaeagnaceae and Gymnostoma) and a fourth cluster that groups non-infective and non-effective strains. These groupings have been confirmed on the whole by analysis of other loci. DNA-DNA hybridization studies have yielded 12–15 genospecies, only one of which has been named, Frankia alni; one Candidatus Frankia datiscae was recently named to accommodate the genome of an endophyte in nodules of Datisca glomerata.

The family Frankiaceae is close to Acidothermus, Cryptosporangium, Geodermatophilaceae (Geodermatophilus, Modestobacter, Blastococcus), Nakamurella, Sporichthya, and Fodinicola and was grouped into suborder Frankineae. A recent rearrangement has resulted in the elevation of suborder Frankineae to order Frankiales (Normand and Benson 2012b) containing families Acidothermaceae, Cryptosporangiaceae, Frankiaceae, Geodermatophilaceae, Nakamurellaceae, and Sporichthyaceae as well as the incertae sedis Fodinicola feengrottensis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akimov V, Dobritsa S, Stupar O (1991) Grouping of Frankia strains by DNA-DNA homology: how many genospecies are in the genus Frankia? In: Polsinelli M, Materassi R, Vincenzini M (eds) Nitrogen fixation. Kluwer, Dordrecht, pp 635–636

    Chapter  Google Scholar 

  • Akimov V, Dobritsa S (1992) Grouping of Frankia strains on the basis of DNA relatedness. Syst Appl Microbiol 15:372–379

    Article  CAS  Google Scholar 

  • Alloisio N, Félix S, Maréchal J, Pujic P, Rouy Z, Vallenet D et al (2007) Frankia alni proteome under nitrogen-fixing and nitrogen-replete conditions. Physiol Plant 13:440–453

    Article  CAS  Google Scholar 

  • Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D et al (2010) The Frankia alni symbiotic transcriptome. Mol Plant Microbe Interact 23:593–607

    Article  CAS  PubMed  Google Scholar 

  • An C, Riggsby W, Mullin B (1985) Relationships of Frankia isolates based on deoxyribonucleic acid homology studies. Int J Syst Bacteriol 35:140–146

    Article  CAS  Google Scholar 

  • An C, Riggsby W, Mullin B (1987) DNA relatedness of Frankia isolates ArI4 and EuI1 to other actinomycetes of cell wall type III. Actinomycetes 20:50–59

    Google Scholar 

  • An C, Wills J, Riggsby W, Mullin B (1983) Deoxyribonucleic acid base composition of 12 Frankia isolates. Can J Bot 61:2859–2862

    Article  CAS  Google Scholar 

  • Baker D (1987) Relationships among pure-cultured strains of Frankia based on host specificity. Physiol Plant 70:245–248

    Article  Google Scholar 

  • Baker D, Torrey J (1979) The isolation and cultivation of actinomycetous root nodule endophytes. In: JC Gordon, Wheeler CT, Perry DA, Corvallis OR (eds) Symbiotic nitrogen fixation in the management of temperate forests. Oregon State University, Forest Research Laboratory, pp 38–56

    Google Scholar 

  • Barabote RD, Xie G, Leu DH, Normand P, Necsulea A, Daubin V et al (2009) Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Res 19:1033–1043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Becking JH (1970) Frankiaceae fam. nov. (Actinomycetales) with one new combination and six new species of the genus Frankia Brunchorst 1886, 174. Int J Syst Bacteriol 20:201–220

    Article  Google Scholar 

  • Beijerinck MW (1888) Die Bacterien der Papilionaceen-Knöllchen. Bot Zeitung 46:725–735

    Google Scholar 

  • Benson D, Stephens D, Clawson M, Silvester W (1996) Amplification of 16s rrna genes from Frankia strains in root nodules of Ceanothus griseus, Coriaria arborea, Coriaria plumosa, Discaria toumatou and Purshia tridentata. Appl Environ Microbiol 62:2904–2909

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berry A (1983) The development of the actinorhizal association between Frankia and Alnus rubra Bong.: life, history and cultural methods for the symbionts and a structural interpretation of the infection process. University of Massachusetts, Amherst

    Google Scholar 

  • Berry A, Sunell L (1990) The infection process and nodule development. In Schwintzer C, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, San Diego, pp 61–81

    Google Scholar 

  • Berry A, Kahn R, Booth M (1989) Identification of indole compounds secreted by Frankia HFPArI3 in defined culture medium. Plant Soil 118:205–209

    Article  CAS  Google Scholar 

  • Berry A, Harriott O, Moreau R, Osman S, Benson D, Jones A (1993) Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc Natl Acad Sci USA 90:6091–6094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beveridge T, Li TS, Oomah BD, Smith A (1999) Sea buckthorn products: manufacture and composition. J Agric Food Chem 47:3480–3488

    Article  CAS  PubMed  Google Scholar 

  • Bloom RA, Mullin BC, Tate RL 3rd (1989) DNA restriction patterns and DNA-DNA solution hybridization studies of Frankia isolates from Myrica pennsylvanica (bayberry). Appl Environ Microbiol 55:2155–2160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bordage E (1916) Le repeuplement végétal et animal des îles Krakatoa depuis l'éruption de 1883. Ann de Géog 25:1–22

    Article  Google Scholar 

  • Boyd ES, Anbar AD, Miller S, Hamilton TL, Lavin M, Peters JW (2011) A late methanogen origin for molybdenum-dependent nitrogenase. Geobiology 9:221–232

    Article  CAS  PubMed  Google Scholar 

  • Brunchorst J (1886) Uber einige Wurzelanschwellungen, besonders die jenigen von Alnus, und den Elaeagnaceen. Unters bot Inst Tubingen 2:151–177

    Google Scholar 

  • Callaham D, Del Tredici P, Torrey J (1978) Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199:899–902

    Article  CAS  PubMed  Google Scholar 

  • Callaham D, Newcomb W, Torrey J, Peterson R (1979) Root hair infection in actinomycete-induced root nodule initiation in Casuarina, Myrica, and Comptonia. Bot Gaz 140S:S1–S9

    Article  Google Scholar 

  • Cannone N, Guglielmin M, Gerdol R (2004) Relationships between vegetation patterns and periglacial landforms in northwestern Svalbard. Polar Biol 27:562–571

    Article  Google Scholar 

  • Cavalier-Smith T (2002) The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52:7–76

    CAS  PubMed  Google Scholar 

  • Ceremonie H, Debelle F, Fernandez MP (1999) Structural and functional comparison of Frankia root hair deforming factor and rhizobia Nod factor. Can J Bot 77:1293–1301

    CAS  Google Scholar 

  • Chapin FS, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay. Alaska Ecol Monogr 64:149–175

    Article  Google Scholar 

  • Clawson M, Gawronski J, Benson DR (1999) Dominance of Frankia strains in stands of Alnus incana subsp. rugosa and Myrica pensylvanica. Can J Bot 77:1203–1207

    Google Scholar 

  • Clawson ML, Caru M, Benson DR (1998) Diversity of Frankia strains in root nodules of plants from the families Elaeagnaceae and Rhamnaceae. Appl Environ Microbiol 64:3539–3543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clawson ML, Bourret A, Benson DR (2004) Assessing the phylogeny of Frankia-actinorhizal plant nitrogen-fixing root nodule symbioses with Frankia 16S rRNA and glutamine synthetase gene sequences. Mol Phylogenet Evol 31:131–138

    Article  CAS  PubMed  Google Scholar 

  • Cooper W (1923) The recent ecological history of Glacier Bay, Alaska, part 1. Ecology 4:93–128

    Article  Google Scholar 

  • Crane PR, Friis ER, Pedersen KR (1995) The origin and early diversification of angiosperms. Nature 374:27–33

    Article  CAS  Google Scholar 

  • Crocker R, Major J (1955) Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. J Ecol 43:427–448

    Article  Google Scholar 

  • Dai Y, Cao J, Tang X, Zhang C (2004) Diversity of Frankia in nodules of Alnus nepalensis at Gaoligong Mountains revealed by IGS, PCR-RFLP analysis. Ying Yong Sheng Tai Xue Bao 15:186–190

    CAS  PubMed  Google Scholar 

  • Dawson JO (1986) Actinorhizal plants: their use in forestry and agriculture. Outlook Agr 15:202–208

    Google Scholar 

  • Dommergues Y (1995) Contribution of actinorhizal plants to tropical soil productivity and rehabilitation. Soil Biol Biochem 29:931–941

    Article  Google Scholar 

  • Doyle JJ (2012) Phylogenetic perspectives on the origins of nodulation. MPMI 24:1289–1295

    Article  CAS  Google Scholar 

  • Fani R, Gallo R, Lio P (2000) Molecular evolution of nitrogen fixation: the evolutionary history of the nifD, nifK, nifE, and nifN genes. J Mol Evol 51:1–11

    CAS  PubMed  Google Scholar 

  • Fernandez M, Meugnier H, Grimont P, Bardin R (1989) Deoxyribonucleic acid relatedness among members of the genus Frankia. Int J Syst Bacteriol 39:424–429

    Article  Google Scholar 

  • Frank B (1887) Sind die Wurzelanschwellungen der Erlen und Elaeagnaceen Pilzgallen? Ber Deutsch Botan Gesell 5:50–58

    Google Scholar 

  • Funk D (1973) Growth and development of alder plantings on Ohio strip mine banks. In Anonymous (ed) Ecology and reclamation of devastated land. Gordon and Breech, London, pp 483–491

    Google Scholar 

  • Gardes M, Lalonde M (1987) Identification and subgrouping of Frankia strains using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Physiol Plant 70:237–244

    Article  CAS  Google Scholar 

  • Gauthier D, Diem H, Dommergues Y (1981) Infectivité et effectivité de souches de Frankia isolées de nodules de Casuarina equisetifolia et d'Hippophaë rhamnoides. Comptes Rendus Seances Académie Sciences Ser III 293:489–491

    Google Scholar 

  • Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G et al (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc Natl Acad Sci USA 105:4928–4932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghinet MG, Bordeleau E, Beaudin J, Brzezinski R, Roy S, Burrus V (2011) Uncovering the prevalence and diversity of integrating conjugative elements in actinobacteria. PLoS One 6:e27846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghodhbane-Gtari F, Nouioui I, Chair M, Boudabous A, Gtari M (2010) 16S-23S rRNA intergenic spacer region variability in the genus Frankia. Microb Ecol 60:487–495

    Article  CAS  PubMed  Google Scholar 

  • Gordon M, Lechevalier M, Lapa E (1983) Nonpathogenicity of Frankia sp. CpI1 in the Dermatophilus pathogenicity test. Actinomycetes 18:50–53

    Google Scholar 

  • Gtari M, Daffonchio D, Boudabous A (2007a) Occurrence and diversity of Frankia in Tunisian soils. Physiol Plant 130:372–379

    Article  CAS  Google Scholar 

  • Gtari M, Brusetti L, Skander G, Mora D, Boudabous A, Daffonchio D (2004) Isolation of Elaeagnus-compatible Frankia from soils collected in Tunisia. FEMS Microbiol Lett 234:349–355

    Article  CAS  PubMed  Google Scholar 

  • Gtari M, Brusetti L, Hassen A, Mora D, Daffonchio D, Boudabous A (2007b) Genetic diversity among Elaeagnus compatible Frankia strains and sympatric-related nitrogen-fixing actinobacteria revealed by nifH sequence analysis. Soil Biol Biochem 39:372–377

    Article  CAS  Google Scholar 

  • Haansuu JP, Klika KD, Soderholm PP, Ovcharenko VV, Pihlaja K, Haahtela KK, Vuorela PM (2001) Isolation and biological activity of frankiamide. J Ind Microbiol Biotechnol 27:62–66

    Article  CAS  PubMed  Google Scholar 

  • Hahn D, Lechevalier M, Fischer A, Stackebrandt E (1989) Evidence for a close phylogenetic relationship between members of the genera Frankia, Geodermatophilus, and “Blastococcus” and emendation of the family Frankiaceae. Syst Appl Microbiol 11:236–242

    Article  CAS  Google Scholar 

  • Hahn D, Mirza B, Benagli C, Vogel G, Tonolla M (2011) Typing of nitrogen-fixing Frankia strains by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. Syst Appl Microbiol 34:63–68

    Article  CAS  PubMed  Google Scholar 

  • Hammad Y, Nalin R, Marechal J, Fiasson K, Pepin R, Berry AM et al (2003) A possible role for phenylacetic acid (PAA) in Alnus glutinosa nodulation by Frankia. Plant Soil 254:193–205

    Article  CAS  Google Scholar 

  • Hartmann LS, Barnum SR (2010) Inferring the evolutionary history of Mo-dependent nitrogen fixation from phylogenetic studies of nifK and nifDK. J Mol Evol 71:70–85

    Article  CAS  PubMed  Google Scholar 

  • Hellriegel H, Wilfarth H (1888) Untersuchungen über die Stickstoffnahrung der Gramineen und Leguminosen. Buchdruckerei der "Post" Kayssler, Berlin

    Google Scholar 

  • Hery M, Philippot L, Meriaux E, Poly F, Le Roux X, Navarro E (2005) Nickel mine spoils revegetation attempts: effect of pioneer plants on two functional bacterial communities involved in the N-cycle. Environ Microbiol 7:486–498

    Article  CAS  PubMed  Google Scholar 

  • Hiltner L (1896) Uber die Bedeutung der Wurzelknöllchen von Alnus glutinosa fur die Stickstoffernahrung dieser Pflanze. Landw Versuchsst 46:153–161

    Google Scholar 

  • Hirsch A, McKhann H, Reddy A, Liao J, Fang Y, Marshall C (1995) Assessing horizontal transfer of nifHDK genes in eubacteria: nucleotide sequence of nifK from Frankia strain HFPCcI3. Mol Biol Evol 12:16–27

    Article  CAS  PubMed  Google Scholar 

  • Hocher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P et al (2011) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 156:1–12 (www.plantphysiol.org/cgi/doi/10.1104/pp.1111.174151)

  • Huguet V, Mergeay M, Cervantes E, Fernandez MP (2004) Diversity of Frankia strains associated to Myrica gale in Western Europe: impact of host plant (Myrica vs. Alnus) and of edaphic factors. Environ Microbiol 6:1032–1041

    Article  CAS  PubMed  Google Scholar 

  • Huguet V, Gouy M, Normand P, Zimpfer JF, Fernandez MP (2005a) Molecular phylogeny of Myricaceae: a reexamination of host-symbiont specificity. Mol Phylogenet Evol 34:557–568

    Article  CAS  PubMed  Google Scholar 

  • Huguet V, Land EO, Casanova JG, Zimpfer JF, Fernandez MP (2005b) Genetic diversity of Frankia microsymbionts from the relict species Myrica faya (Ait.) and Myrica rivas-martinezii (S.) in Canary Islands and Hawaii. Microb Ecol 49:617–625

    Article  CAS  PubMed  Google Scholar 

  • Huguet V, Batzli JM, Zimpfer JF, Normand P, Dawson JO, Fernandez MP (2001) Diversity and specificity of Frankia strains in nodules of sympatric Myrica gale, Alnus incana, and Shepherdia canadensis determined by rrs gene polymorphism. Appl Environ Microbiol 67:2116–2122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeong S, Ritchie N, Myrold D (1999) Molecular phylogenies of plants and Frankia support multiple origins of actinorhizal symbioses. Mol Phylogenet Evol 13:493–503

    Article  CAS  PubMed  Google Scholar 

  • John TR, Rice JM, Johnson JD (2001) Analysis of pFQ12, a 22.4-kb Frankia plasmid. Can J Microbiol 47:608–617

    Article  CAS  PubMed  Google Scholar 

  • Kennedy PG, Schouboe JL, Rogers RH, Weber MG, Nadkarni NM (2010) Frankia and Alnus rubra canopy roots: an assessment of genetic diversity, propagule availability, and effects on soil nitrogen. Microb Ecol 59:214–220

    Article  PubMed  Google Scholar 

  • Kim TU, Cho SH, Han JH, Shin YM, Lee HB, Kim SB (2012) Diversity and physiological properties of root endophytic actinobacteria in native herbaceous plants of Korea. J Microbiol 50:50–57

    Article  CAS  PubMed  Google Scholar 

  • Klika KD, Haansuu JP, Ovcharenko VV, Haahtela KK, Vuorela PM, Pihlaja K (2001) Frankiamide, a highly unusual macrocycle containing the imide and orthoamide functionalities from the symbiotic actinomycete Frankia. J Org Chem 66:4065–4068

    Article  CAS  PubMed  Google Scholar 

  • Kucho K, Hay A, Normand P (2010) The determinants of the actinorhizal symbiosis. Microbe Environ 25:241–252

    Article  Google Scholar 

  • Lake JA (2009) Evidence for an early prokaryotic endosymbiosis. Nature 460:967–971

    Article  CAS  PubMed  Google Scholar 

  • Lalonde M (1979) Immunological and ultrastructural demonstration of nodulation of the European Alnus glutinosa (L.) Gaertn. host plant by an actinomycetal isolate from the North American Comptonia peregrina (L.) Coult. root nodule. Bot Gaz 140(S):S35–S43

    Google Scholar 

  • Lalonde M, Simon L, Bousquet J, Séguin A (1988) Advances in the taxonomy of Frankia: recognition of species alni and elaeagni and novel subspecies pommerii and vandijkii. In H Bothe, F.d.B., Newton WE (eds) Nitrogen fixation: hundred years after. Gustav Fischer, Stuttgart, pp 671–680

    Google Scholar 

  • Lavire C, Louis D, Perriere G, Briolay J, Normand P, Cournoyer B (2001) Analysis of pFQ31, a 8551-bp cryptic plasmid from the symbiotic nitrogen-fixing actinomycete Frankia. FEMS Microbiol Lett 197:111–116

    Article  CAS  PubMed  Google Scholar 

  • Lawrence D, Schoenike R, Quispel A, Bond G (1967) The role of Dryas drummondii in vegetation development following ice recession at Glacier Bay, Alaska, with special reference to its nitrogen fixation by root nodules. J Ecol 55:793–813

    Article  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1990) Systematics, isolation and culture of Frankia. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. San Diego: Academic, pp 35–60

    Google Scholar 

  • Lilburn TG, Garrity GM (2004) Exploring prokaryotic taxonomy. Int J Syst Evol Microbiol 54:7–13

    Article  PubMed  Google Scholar 

  • Liu Q-Q, Berry A (1991) The infection process and nodule initiation in the Frankia-Ceanothus root nodule symbiosis: a structural and histochemical study. Protoplasma 163:82–92

    Article  Google Scholar 

  • Lumini E, Bosco M (1999) Polymerase chain reaction – restriction fragment length polymorphisms for assessing and increasing biodiversity of Frankia culture collections. Can J Bot 77:1261–1269

    CAS  Google Scholar 

  • Lumini E, Bosco M, Fernandez MP (1996) PCR-RFLP and total DNA homology revealed three related genomic species among broad-host-range Frankia strains. FEMS Microbiol Ecol 21:303–311

    Article  CAS  Google Scholar 

  • Maggia L, Bousquet J (1994) Molecular phylogeny of the actinorhizal Hamamelidae and relationships with host promiscuity towards Frankia. Mol Ecol 3:459–467

    Article  Google Scholar 

  • Markmann K, Giczey G, Parniske M (2008) Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol 6:e68

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Miller I, Baker D (1985) The initiation, development and structure of root nodules in Elaeagnus angustifolia L. (Elaeagnaceae). Protoplasma 128:107–119

    Article  Google Scholar 

  • Miller I, Baker D (1986) Nodulation of actinorhizal plants by Frankia strains capable of both root hair infection and intercellular penetration. Protoplasma 131:82–91

    Article  Google Scholar 

  • Mirza BS, Welsh A, Hahn D (2009a) Growth of Frankia strains in leaf litter-amended soil and the rhizosphere of a nonactinorhizal plant. FEMS Microbiol Ecol 70:132–141

    Article  CAS  PubMed  Google Scholar 

  • Mirza BS, Welsh A, Rieder JP, Paschke MW, Hahn D (2009b) Diversity of frankiae in soils from five continents. Syst Appl Microbiol 32:558–570

    Article  CAS  PubMed  Google Scholar 

  • Mishra AK, Singh A, Singh SS (2010) Diversity of Frankia strains nodulating Hippophae salicifolia D Don using FAME profiling as chemotaxonomic markers. J Basic Microbiol 50:318–324

    Article  CAS  PubMed  Google Scholar 

  • Mort A, Normand P, Lalonde M (1983) 2-O-methyl-D-mannose, a key sugar in the taxonomy of Frankia. Can J Microbiol 29:993–1002

    Article  CAS  Google Scholar 

  • Navarro E, Jaffre T, Gauthier D, Gourbiere F, Rinaudo G, Simonet P, Normand P (1999) Distribution of Gymnostoma spp. microsymbiotic Frankia strains in New Caledonia is related to soil type and to host-plant species. Mol Ecol 8:1781–1788

    Article  PubMed  Google Scholar 

  • Navarro E, Nalin R, Gauthier D, Normand P (1997) The nodular microsymbionts of Gymnostoma spp. are Elaeagnus-infective strains. Appl Environ Microbiol 63:1610–1616

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nghia NH, Thu PQ, Pinyopusarerk K (2011) Research and development of Casuarina equisetifolia in Vietnam. In: Zhong C, Pinyopusarerk K, Kalinganire A, Franche C (eds) Improving smallholder livelihoods through improved Casuarina productivity: proceeding of the 4th international Casuarina workshop, Haikou, China. China Forestry Publishing House, Beijing, pp 17–22

    Google Scholar 

  • Normand P, Lalonde M (1982) Evaluation of Frankia strains isolated from provenances of two Alnus species. Can J Microbiol 28:1133–1142

    Article  Google Scholar 

  • Normand P, Bousquet J (1989) Phylogeny of nitrogenase sequences in Frankia and other nitrogen-fixing microorganisms. J Mol Evol 29:436–447

    Article  CAS  PubMed  Google Scholar 

  • Normand P, Chapelon C (1997) Direct characterization of Frankia and of close phyletic neighbors from an Alnus viridis rhizosphere. Physiol Plant 99:722–731

    Article  CAS  Google Scholar 

  • Normand P, Benson D (2012a) The Frankiaceae Becking 1970, 201AL emend. Hahn, Lechevalier, Fischer and Stackebrandt 1989, 241 emend. Normand, Orso, Cournoyer, Jeannin, Chapelon, Dawson, Evtushenko and Misra 1996, 8 emend. Stackebrandt, Rainey and Ward-Rainey 1997, 487. In: WB Whitman, MG, Kämpfer P, Busse H-J, Trujillo ME, Ludwig W, Suzuki K-i (eds) The Bergey’s manual of systematic bacteriology. Bergey’s Manual Trust, Springer, p 512

    Google Scholar 

  • Normand P, Benson DR (2012b) Order VI Frankiales ord. nov. In: Bergey’s manual of systematic bacteriology, Volume 5 The Actinobacteria. Bergey’s Manual Trust, Athens, pp 509–551

    Google Scholar 

  • Normand P, Simonet P, Butour J, Rosenberg C, Moiroud A, Lalonde M (1983) Plasmids in Frankia sp. J Bacteriol 155:32–35

    CAS  PubMed Central  PubMed  Google Scholar 

  • Normand P, Queiroux C, Tisa L, Benson D, Cruveiller S, Rouy Z, Medigue C (2007a) Exploring the genomes of Frankia sp. Physiol Plant 13:331–343

    Article  CAS  Google Scholar 

  • Normand P, Orso S, Cournoyer B, Jeannin P, Chapelon C, Dawson J et al (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 46:1–9

    Article  CAS  PubMed  Google Scholar 

  • Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E et al (2007b) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15

    Article  PubMed Central  PubMed  Google Scholar 

  • Nouioui I, Ghodhbane-Gtari F, Beauchemin NJ, Tisa LS, Gtari M (2011) Phylogeny of members of the Frankia genus based on gyrB, nifH and glnII sequences. Antonie Van Leeuwenhoek 100:579–587

    Article  PubMed  Google Scholar 

  • Oakley B, North M, Franklin JF, Hedlund BP, Staley JT (2004) Diversity and distribution of Frankia strains symbiotic with Ceanothus in California. Appl Environ Microbiol 70:6444–6452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okubara PA, Pawlowski K, Murphy TM, Berry AM (1999) Symbiotic root nodules of the actinorhizal plant Datisca glomerata express rubisco activase mRNA. Plant Physiol 120:411–420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pech P, Arques S, Jomelli V, Maillet I, Melois N, Moreau M (2007) Spatial and temporal biodiversity variations in a high mountain environment: the case of the proglacial margin of the Evettes, Natura 2000 area (Savoie, French Alps). Environment, Nature, Paysage, 374

    Google Scholar 

  • Périnet P, Lalonde M (1983) In vitro propagation and nodulation of the actinorhizal host plant Alnus glutinosa (L.) Gaertn. Plant Sci Lett 29:9–17

    Article  Google Scholar 

  • Persson T, Benson DR, Normand P, Vanden Heuvel B, Pujic P, Chertkov O et al (2011) Genome sequence of “Candidatus Frankia datiscae” Dg1, the uncultured microsymbiont from nitrogen-fixing root nodules of the dicot Datisca glomerata. J Bacteriol 193:7017–7018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pokharel A, Mirza BS, Dawson JO, Hahn D (2011) Frankia populations in soil and root nodules of sympatrically grown Alnus taxa. Microb Ecol 61:92–100

    Article  PubMed  Google Scholar 

  • Pommer E (1956) Beiträge zur Anatomie und Biologie der Wurzelknöllchen von Alnus glutinosa Gaertn. Flora 14:603–634

    Google Scholar 

  • Pommer E (1959) Uber die Isolierung des Endophyten aus den Wurzelknöllchen Alnus glutinosa Gaertn. und uber erfolgreiche Re-Infektionsversuche. Ber Deutsch Botan Gesell 72:138–150

    Google Scholar 

  • Pujic P, Fournier P, Alloisio N, Hay AE, Marechal J, Anchisi S, Normand P (2012) Lectin genes in the Frankia alni genome. Arch Microbiol 194:47–56

    Article  CAS  PubMed  Google Scholar 

  • Racette S, Torrey J (1989) Root nodule initiation in Gymnostoma (Casuarinaceae) and Shepherdia (Elaeagnaceae) induced by Frankia strain HFPGpI1. Can J Bot 67:2873–2879

    Article  Google Scholar 

  • Rawat GS, Kumar NK, Nicodemus A (2011) Research and development of Casuarina in India. In: Zhong C, Pinyopusarerk K, Kalinganire A, Franche C (eds) Improving smallholder livelihoods through improved Casuarina productivity: Proceeding of the 4th international Casuarina workshop, Haikou, China. China Forestry Publishing House, Beijing, China, pp 11–16

    Google Scholar 

  • Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554

    Article  CAS  PubMed  Google Scholar 

  • Reiners W, Worley I, Lawrence D (1971) Plant diversity in a chronosequence at Glacier Bay, Alaska. Ecol 52:55–69

    Article  Google Scholar 

  • Ritchie N, Myrold D (1999) Geographic distribution and genetic diversity of ceanothus-infective Frankia strains. Appl Environ Microbiol 65:1378–1383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roy S, Khasa DP, Greer CW (2007) Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Can J Bot 85:237–251

    Article  CAS  Google Scholar 

  • Santos C, Vieira J, Normand P, Moradas-Ferreira P, Tavares F (2007) Expression, activity and phylogeny of catalases: a global approach to Frankia alni ACN14a oxidative stress response. Physiol Plant 130:454–463

    Article  CAS  Google Scholar 

  • Sati SC, Sati N, Sati OP (2011) Bioactive constituents and medicinal importance of genus Alnus. Pharmacogen Rev 5:174–183

    Article  CAS  Google Scholar 

  • Schultz NA, Benson DR (1989) Developmental potential of Frankia vesicles. J Bacteriol 171:6873–6877

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simonet P, Navarro E, Rouvier C, Reddell P, Zimpfer J, Dommergues Y et al (1999) Co-evolution between Frankia populations and host plants in the family Casuarinaceae and consequent patterns of global dispersal. Environ Microbiol 1:525–533

    Article  CAS  PubMed  Google Scholar 

  • Sims HJ, Herendeen PS, Lupia R, Christopher RA, Crane PR (1999) Fossil flowers with Normapolles pollen from the Late Cretaceous of southeastern North America. Rev Palaeobotany Palynol 106:131–157

    Article  Google Scholar 

  • Soltis D, Soltis P, Morgan D, Swensen S, Mullin B, Dowd J, Martin P (1995) Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc Natl Acad Sci USA 92:2647–2651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stevens G, Berry A (1988) Cytokinin secretion by Frankia sp. HFPArI3 in defined medium. Plant Physiol 87:15–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swensen S, Benson DR (2008) Evolution of actinorhizal host plants and Frankia Endosymbionts. Chapter 4. In Newton W, Pawlowski K (eds) Frankia and actinorhizal plants. Springer

    Google Scholar 

  • Swensen SM, Mullin BC (1997) Phylogenetic relationships among actinorhizal plants. The impact of molecular systematics and implications for the evolution of actinorhizal symbioses. Physiol Plant 99:565–573

    Article  CAS  Google Scholar 

  • Tanaka H, Chiba H, Inokoshi J, Kuno A, Sugai T, Takahashi A et al (2009) Mechanism by which the lectin actinohivin blocks HIV infection of target cells. Proc Natl Acad Sci U S A 106:15633–15638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • te Poele EM, Samborskyy M, Oliynyk M, Leadlay PF, Bolhuis H, Dijkhuizen L (2008) Actinomycete integrative and conjugative pMEA-like elements of Amycolatopsis and Saccharopolyspora decoded. Plasmid 59:202–316

    Article  CAS  Google Scholar 

  • Thomas BA, Spicer RA (1987) The evolution and paleobiology of land plants. Croom Helm, London, p 309p

    Google Scholar 

  • Torrey J (1983) Casuarina actinorhizal dinitrogen-fixing tree of the tropics. In SJ Midgley, JT, Johnston RD (ed) Casuarina ecology, management and utilization. Australia: Commonwealth Scientific and Industrial Research Organization (CSIRO), Canberra, pp 193–204

    Google Scholar 

  • Trujillo M, Kroppenstedt R, Schumann P, Carro L, Martínez-Molina E (2006) Micromonospora coriariae sp. nov., isolated from root nodules of Coriaria myrtifolia. Int J Syst Evol Microbiol 56:2381–2385

    Article  CAS  PubMed  Google Scholar 

  • Uchytil RJ (1989) Alnus viridis subsp. sinuata. In: Fire effects information system, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available. [http://www.fs.fed.us/database/feis/(2011, September 1)]

  • Udwary DW, Gontang EA, Jones AC, Jones CS, Schultz AW, Winter JM et al (2011) Significant natural product biosynthetic potential of actinorhizal symbionts of the genus Frankia, as revealed by comparative genomic and proteomic analyses. Appl Environ Microbiol 77:3617–3625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Valdes M, Perez NO, Estrada-de Los Santos P, Caballero-Mellado J, Pena-Cabriales JJ, Normand P, Hirsch AM (2005) Non-Frankia actinomycetes isolated from surface-sterilized roots of Casuarina equisetifolia fix nitrogen. Appl Environ Microbiol 71:460–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Ghelue M, Lovaas E, Ringo E, Solheim B (1997) Early interactions between Alnus glutinosa and Frankia strain ArI3. Production and specificity of root hair deformation factor(s). Physiol Plant 99:579–587

    Article  Google Scholar 

  • Vanden Heuvel BD, Benson DR, Bortiri E, Potter D (2004) Low genetic diversity among Frankia spp. strains nodulating sympatric populations of actinorhizal species of Rosaceae, Ceanothus (Rhamnaceae) and Datisca glomerata (Datiscaceae) west of the Sierra Nevada (California). Can J Microbiol 50:989–1000

    Article  CAS  PubMed  Google Scholar 

  • Vitousek PM, Walker LR, Whiteaker LD, Mueller-Dombois D, Matson PA (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238:802–804

    Article  CAS  PubMed  Google Scholar 

  • von Tubeuf K (1895) Pflanzenkrankheiten durch Kryptogame Parasiten verursacht : eine Einführung in das Studium der parasitären Pilze, Schleimpilze, Spaltpilze und Algen; Zugleich eine Anleitung zur Bekämpfung von Krankheiten der Kulturpflanzen. Verlag J Springer, Berlin, p 599p

    Google Scholar 

  • Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R et al (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci USA 106:3853–3858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Welsh AK, Dawson JO, Gottfried GJ, Hahn D (2009) Diversity of Frankia populations in root nodules of geographically isolated Arizona alder trees in central Arizona (United States). Appl Environ Microbiol 75:6913–6918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woronin MS (1866) Uber die bei der Schwarzerle (Alnus glutinosa) und bei der gewöhnlichen Garten-Lupine (Lupinus mutabilis) auftretenden Wurzelanschwellungen. Mémoires de l'Academie Impériale des Sciences de St Pétersbourg VII Series 10:1–13

    Google Scholar 

  • Wolters DJ, Van Dijk C, Zoetendal EG, Akkermans ADL (1997) Phylogenetic characterization of ineffective Frankia in Alnus glutinosa (L.) Gaertn. nodules from wetland soil inoculants. Mol Ecol 6:971–981

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN et al (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu X, Kong R, de Bruijn FJ, He SY, Murry MA, Newman T, Wolk CP (2002) DNA sequence and genetic characterization of plasmid pFQ11 from Frankia alni strain CpI1. FEMS Microbiol Lett 207:103–107

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Bokhorst S, Kang S, Zhou J, Greer CW, Aerts R, Kowalchuk GA (2012) Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. Isme J 6:692–702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao K, Penttinen P, Guan T, Xiao J, Chen Q, Xu J et al (2011) The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi plateau, China. Curr Microbiol 62:182–190

    Article  CAS  PubMed  Google Scholar 

  • Zhong C, Zhang Y, Chen Y, Jiang Q, Chen Z, Liang J et al (2010) Casuarina research and applications in China. Symbiosis 50:107–114

    Article  Google Scholar 

  • Zhong C, Zhang Y, Chen Y, Jiang Q, Chen Z, Wu C et al (2011) Casuarina research and development in China. In: Zhong C, Pinyopusarerk K, Kalinganire A, Franche C (eds) Improving smallholder livelihoods through improved Casuarina productivity: Proceeding of the 4th international Casuarina workshop, Haikou, China. China Forestry Publishing House, Beijing, China, pp 5–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Normand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Normand, P., Benson, D.R., Berry, A.M., Tisa, L.S. (2014). The Family Frankiaceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30138-4_183

Download citation

Publish with us

Policies and ethics