The Family Cryptosporangiaceae

Reference work entry

Abstract

Cryptosporangiaceae is a family within the order “Frankiales,” which includes the genera Cryptosporangium and Fodinicola. Members of this family are characterized by formation of aerial and substrate hyphae, meso-A2pm as a cell-wall diamino acid, iso-C16:0 as the major cellular fatty acid, phosphatidylethanolamine as a diagnostic polar lipid, and MK-9(H4), MK-9(H6), and MK-9(H8) as major isoprenoid quinones. However, regardless of the reliability of algorithms used to analyze 16S rRNA gene sequences for type strains of Cryptosporangium and Fodinicola, the position of the genus Fodinicola must be considered tentative. Members of this family are found in soil, on rocks, and in leaf litter.

Keywords

Type Strain Aerial Mycelium Muramic Acid Diamino Acid Uncultured Bacterium Clone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ara I, Tsetseg B, Daram D, Suto M, Ando K (2012) Cryptosporangium mongoliense sp. nov., isolated from soil. Int J Syst Evol Microbiol 62:2480–2484PubMedCrossRefGoogle Scholar
  2. Carlsohn MR, Groth I, Saluz HP, Schumann P, Stackebrandt E (2008) Fodinicola feengrottensis gen. nov., sp. nov., an actinomycete isolated from a medieval mine. Int J Syst Evol Microbiol 58:1529–1536PubMedCrossRefGoogle Scholar
  3. Collins MD, Faulkner M, Keddie RM (1984) Menaquinone composition of some spore forming actinomycetes. Syst Appl Microbiol 5:20–29CrossRefGoogle Scholar
  4. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509CrossRefGoogle Scholar
  5. Hayakawa M, Yamamura H, Sakuraki Y, Ishida Y, Hamada M, Otoguro M, Tamura T (2010) Diversity analysis of Actinomycetes assemblages isolated from soils in cool-temperate and subtropical areas of Japan. Actinomycetologica 24:1–11CrossRefGoogle Scholar
  6. Hayakawa M, Otoguro M, Takeuchi T, Yamazaki T, Iimura Y (2000) Application of a method incorporating differential centrifugation for selective isolation of motile actinomycetes in soil and plant litter. Antonie Van Leeuwenhoek 78:171–185PubMedCrossRefGoogle Scholar
  7. Hayakawa M, Tamura T, Nonomura H (1991) Selective isolation of Actinoplanes and Dactylosporangium from soil by using γ-collidine as the chemoattractant. J Ferment Bioeng 72:426–432CrossRefGoogle Scholar
  8. Hop DV, Sakiyama Y, Binh CTT, Otoguro M, Hang DT, Miyadoh S, Luong DT, Ando K (2011) Taxonomic and ecological studies of actinomycetes from Vietnam: isolation and genus-level diversity. J Antibiot (Tokyo) 64:599–606CrossRefGoogle Scholar
  9. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Nomicos E, Polley EC, Komarow HD, Murray PR, Turner ML, Segre JA (2012) Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 22:850–859PubMedCentralPubMedCrossRefGoogle Scholar
  10. Kroppenstedt RM (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic, London, pp 173–199Google Scholar
  11. Küster E, Williams ST (1964) Selection of media for isolation of Streptomyces. Nature 202:928–929CrossRefGoogle Scholar
  12. Lechevalier MP (1994) Taxonomy of the genus Frankia (Actinomycetales). Int J Syst Bacteriol 44:1–8CrossRefGoogle Scholar
  13. Lechevalier MP, Lechevalier HA (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443CrossRefGoogle Scholar
  14. Ludwig W, Euzéby J, Whitman WB (2012) Phylogenetic trees of the phylum Actinobacteria. In: Whitman EB, Goodfellow M, Kämpfer P, Busse HJ, Trujillo M, Garrity G, Ludwig W, Suzuki KI (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn, the Actinobacteria. Springer, New YorkGoogle Scholar
  15. Luedemann GM, Fonseca AF (1989) Genus Geodermatophilus Luedemann 1968, 1857AL. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams & Wilkins, Baltimore, pp 2406–2409Google Scholar
  16. Mevs U, Stackebrandt E, Schumann P, Gallikowski CA, Hirsch P (2000) Modestobacter multiseptatus gen. nov., sp. nov., a budding actinomycete from soils of the Asgard range (Transantarctic mountains). Int J Syst Evol Microbiol 50:337–346PubMedCrossRefGoogle Scholar
  17. Mirza MS, Janse JD, Hahn D, Akkermans ADL (1991) Identification of atypical Frankia strains by fatty acid analysis. FEMS Microbiol Lett 83:91–98CrossRefGoogle Scholar
  18. Mohagheghi A, Grohmann K, Himmel M, Leighton L, Updegraff DM (1986) Isolation and characterization of Acidothermus cellulolyticus gen. nov., sp. nov., a new genus of thermophilic, acidophilic, cellulolytic bacteria. Int J Syst Bacteriol 36:435–443CrossRefGoogle Scholar
  19. Prauser H, Falta R (1968) Phagensensibilita¨t, Zellwand-Zusammensetzung und Taxonomie von Actinomyceten. Z Allg Mikrobiol 8:39–46 (in German)PubMedCrossRefGoogle Scholar
  20. Rainey FA, Schumann P, Prauser H, Toalster R, Stackebrandt E (1993) Sporichthya polymorpha represents a novel line of descent within the order Actinomycetales. FEMS Microbiol Lett 109:263–268CrossRefGoogle Scholar
  21. Ruan J, Lechevalier MP, Jiang C, Lechevalier HA (1986) A new species of the genus Actinoplanes. Actinoplanes minutisporangius n. sp. Actinomycetes 19:163–175Google Scholar
  22. Ruan J, Zhang Y, Jiang C (1976) A taxonomic study of Actinoplanaceae. II. Four new species of Actinoplanes. Acta Microbiol Sinica 16:291–300 (in Chinese)Google Scholar
  23. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477PubMedCentralPubMedGoogle Scholar
  24. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  25. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690.PubMedCrossRefGoogle Scholar
  26. Tamura T, Hatano K (2001) Phylogenetic analysis of the genus Actinoplanes and transfer of Actinoplanes minutisporangius Ruan et al. 1986 and “Actinoplanes aurantiacus” to Cryptosporangium minutisporangium comb. nov. and Cryptosporangium aurantiacum sp. nov. Int J Syst Evol Microbiol 51:2119–2125PubMedCrossRefGoogle Scholar
  27. Tamura T, Hayakawa M, Hatano K (1998) A new genus of the order Actinomycetales, Cryptosporangium gen. nov., with descriptions of Cryptosporangium arvum sp. nov. and Cryptosporangium japonicum sp. nov. Int J Syst Bacteriol 48:995–1005PubMedCrossRefGoogle Scholar
  28. Tamura T, Hayakawa M, Hatano K (1999) Sporichthya brevicatena sp. nov. Int J Syst Bacteriol 49:1779–1784PubMedCrossRefGoogle Scholar
  29. Urzì C, Salamone P, Schumann P, Rhode M, Stackebrandt E (2004) Blastococcus saxobsidens sp. nov., and emended descriptions of the genus Blastococcus Ahrens and Moll 1970 and Blastococcus aggregatus Ahrens and Moll 1970. Int J Syst Evol Microbiol 54:253–259PubMedCrossRefGoogle Scholar
  30. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer K-H, Glockner FO, Rossello-Mora R (2010) Update of the All-Species Living-Tree Project based on 16S and 23S rRNA sequence analyses. System Appl Microbiol 33:291–299.CrossRefGoogle Scholar
  31. Yoon J-H, Kang S-J, Jung S-Y, Oh T-K (2007) Humicoccus flavidus gen. nov., sp. nov., isolated from soil. Int J Syst Evol Microbiol 57:56–59PubMedCrossRefGoogle Scholar
  32. Yoshimi Y, Hiraishi A, Nakamura K (1996) Isolation and characterization of Microsphaera multipartida gen. nov., sp. nov., a polysaccharide-accumulating Gram-positive bacterium from activated sludge. Int J Syst Bacteriol 46:519–525CrossRefGoogle Scholar
  33. Zhi XY, Li WJ, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Biological Resource Center (NBRC)National Institute of Technology and Evaluation (NITE)Kisarazu-shiJapan

Personalised recommendations