The Family Promicromonosporaceae

  • Peter Schumann
  • Erko Stackebrandt
Reference work entry


The family Promicromonosporaceae, composed of 7 genera and 26 validly named species, is a family of the order Micrococcales. Morphologically, most members of the family form a primary mycelium; aerial hyphae are sparse and are formed only on certain media. Individual cells, often fragmentation products of vegetative mycelium, are nonmotile and short rods to coccoid in shape. Chemotaxonomically, members are defined by l-lysine at position 3 of the peptide subunit of the peptidoglycan and a dicarboxylic amino acid in its interpeptide bridge (peptidoglycan type A4α). Members are similar with respect to their polar lipids, major menaquinones, and principal fatty acids. Certain members of Cellulosimicrobium have been isolated in the clinical environment and should be considered as opportunistic pathogens. Several species are of industrial significance due to the presence of glucanases, cellulases, xylanases, and mannases. Culture and nonculture studies revealed their presence in diverse environmental samples but rarely in significant numbers.


Type Strain Substrate Mycelium Monospecific Genus Major Menaquinone Chemotaxonomic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Al-Awadhi H, Rasha HD, Sulaiman RH, Mahmoud HM, Radwan SS (2007) Alkaliphilic and halophilic hydrocarbon-utilizing bacteria from Kuwaiti coasts of the Arabian Gulf. Appl Microbiol Biotechnol 77:183–186PubMedGoogle Scholar
  2. Alonso-Vega P, Santamaría RI, Martínez-Molina E, Trujillo ME (2008) Promicromonospora kroppenstedtii sp. nov., isolated from sandy soil. Int J Syst Evol Microbiol 58:1476–1481PubMedGoogle Scholar
  3. Antony R, Krishnan KP, Thomas S, Abraham WP, Thamban M (2009) Phenotypic and molecular identification of Cellulosimicrobium cellulans isolated from Antarctic snow. Antonie Van Leeuwenhoek 96:627–634PubMedGoogle Scholar
  4. Antony R, Mahalinganathan K, Krishnan KP, Thamban M (2012) Microbial preference for different size classes of organic carbon: a study from Antarctic snow. Environ Monit Assess 184:5929–5943Google Scholar
  5. Bakalidou A, Kämpfer P, Berchtold M, Kuhnigk T, Wenzel M, König H (2002) Cellulosimicrobium variabile sp. nov., a cellulolytic bacterium from the hindgut of the termite Mastotermes darwiniensis. Int J Syst Evol Microbiol 52:1185–1192PubMedGoogle Scholar
  6. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens:reevaluation of a unique biological group. Microbiol Rev 43:260–296PubMedCentralPubMedGoogle Scholar
  7. Betancourt Castellanos L, Ponz Clemente E, Fontanals Aymerich D, Blasco Cabañas C, Marquina Parra D, Grau Pueyo C, García García M (2011) First case of peritoneal infection due to Oerskovia turbata (Cellulosimicrobium funkei). Nefrologia 31:223–225PubMedGoogle Scholar
  8. Bolin DC, Donahue JM, Vickers ML, Giles RC, Harrison L, Jackson C, Poonacha KB, Roberts JE, Sebastian MM, Sells SE, Tramontin R, Williams NM (2004) Equine abortion and premature birth associated with Cellulosimicrobium cellulans infection. J Vet Diagn Invest 16:333–336PubMedGoogle Scholar
  9. Brenner DJ, McWhorter AC, Knutson JK, Steigerwalt AG (1982) Escherichia vulneris: a new species of Enterobacteriaceae associated with human wounds. J Clin Microbiol 15:1133–1140PubMedCentralPubMedGoogle Scholar
  10. Brown JM, Steigerwalt AG, Morey RE, Daneshvar MI, Romero L-J, McNeil MM (2006) Characterization of clinical isolates previously identified as Oerskovia turbata: proposal of Cellulosimicrobium funkei sp. nov. and emended description of the genus Cellulosimicrobium. Int J Syst Evol Microbiol 56:801–804PubMedGoogle Scholar
  11. Busse HJ (2012) Order X. Micrococcales. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 5. Springer, New York, pp 569–570Google Scholar
  12. Busse HJ, Zlamala C, Buczolits S, Lubitz W, Kämpfer P, Takeuchi M (2003) Promicromonospora vindobonensis sp. nov. and Promicromonospora aerolata sp. nov., isolated from the air in the medieval ‘Virgilkapelle’ in Vienna. Int J Syst Evol Microbiol 53:1503–1507PubMedGoogle Scholar
  13. Casanova-Román M, Sanchez-Porto A, Gomar JL, Casanova-Bellido M (2010) Early-onset neonatal sepsis due to Cellulosimicrobium cellulans. Infection 38:321–323PubMedGoogle Scholar
  14. Cazemier AE, Verdoes JC, Reubsaet FA, Hackstein JH, van der Drift C, den Camp H (2003) Promicromonospora pachnodae sp. nov., a member of the (Hemi)cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata. Antonie Van Leeuwenhoek 83:135–48. List no 95. Int J Syst Evol Microbiol 54:1–2Google Scholar
  15. Cui X, Schumann P, Stackebrandt E, Kroppenstedt RM, Pukall R, Xu L, Rohde M, Jiang C (2004) Myceligenerans xiligouense gen. nov., sp. nov., a novel hyphae-forming member of the family Promicromonosporaceae. Int J Syst Evol Microbiol 54:1287–1293PubMedGoogle Scholar
  16. DSMZ—Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (2001) Catalogue of strains, 7th edn. DSMZ, BraunschweigGoogle Scholar
  17. Egert M, Wagner B, Lemke T, Brune A, Friedrich M (2003) Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata Coleoptera: Scarabaeidae. Appl Environ Microbiol 69:6659–6668PubMedCentralPubMedGoogle Scholar
  18. El-Nakeeb MA, Lechevalier HA (1963) Selective isolation of aerobic actinomycetes. Appl Microbiol 11:75–77PubMedCentralPubMedGoogle Scholar
  19. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229Google Scholar
  20. Ferrer P (2006) Revisiting the Cellulosimicrobium cellulans yeast-lytic beta-1,3-glucanases toolbox: a review. Microb Cell Fact 17:10. doi:10.1186/1475-2859-5-10Google Scholar
  21. Field EK, D‘Imperio S, Lee BD, Apel WA, Peyton BM (2010) Application of molecular techniques to elucidate the influence of cellulosic waste on the bacterial community structure at a simulated low-level-radioactive-waste site. Appl Environ Microbiol 76:3106–3115PubMedCentralPubMedGoogle Scholar
  22. Foster B, Pukall R, Abt B, Nolan M, Glavina Del Rio T, Chen F, Lucas S, Tice H, Pitluck S, Cheng JF, Chertkov O, Brettin T, Han C, Detter JC, Bruce D, Goodwin L, Ivanova N, Mavromatis K, Pati A, Mikhailova N, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Chain P, Rohde M, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A (2010) Complete genome sequence of Xylanimonas cellulosilytica type strain (XIL07). Stand Genomic Sci 2:1–8PubMedCentralPubMedGoogle Scholar
  23. Futamata H, Nagano Y, Watanabe K, Hiraishi A (2005) Unique kinetic properties of phenol-degrading variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture. Appl Environ Microbiol 71:904–911PubMedCentralPubMedGoogle Scholar
  24. Goodfellow M (2012) Phylum XXVI Actinobacteria phyl. nov. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 5. Springer, New York, pp 33–34Google Scholar
  25. Groth I, Schumann P, Schütze B, Gonzalez JH, Laiz L, Saiz-Jiminez C, Stackebrandt E (2005) Isoptericola hypogeus sp. nov., isolated from the Roman catacomb of Domitilla. Int J Syst Evol Microbiol 55:1715–1719PubMedGoogle Scholar
  26. Groth I, Schumann P, Schütze B, Gonzalez JH, Laiz L, Suihko M-L, Stackebrandt E (2006) Myceligenerans crystallogenes sp. nov., isolated from Roman catacombs. Int J Syst Evol Microbiol 56:283–287PubMedGoogle Scholar
  27. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509Google Scholar
  28. Heym B, Gehanno P, Friocourt V, Bougnoux ME, Le Moal M, Husson C, Leibowitch J, Nicolas-Chanoine MH (2005) Molecular detection of Cellulosimicrobium cellulans as the etiological agent of a chronic tongue ulcer in a human immunodeficiency virus-positive patient. J Clin Microbiol 43:4269–4271PubMedCentralPubMedGoogle Scholar
  29. Hiraishi A, Narihiro T, Yamanaka Y (2003) Microbial community dynamics during start-up operation of flowerpot-using fed-batch reactors for composting of household biowaste. Environ Microbiol 5:765–776PubMedGoogle Scholar
  30. Hong SW, Kim IS, Lee JS, Chung KS (2011) Culture-based and denaturing gradient gel electrophoresis analysis of the bacterial community structure from the intestinal tracts of earthworms (Eisenia fetida). J Microbiol Biotechnol 21:885–892PubMedGoogle Scholar
  31. Horikoshi K, Grant WD (eds) (1998) Extremophiles: microbial life in extreme environments. Wiley, New YorkGoogle Scholar
  32. Huang S, Sheng P, Zhang H (2012a) Isolation and Identification of cellulolytic bacteria from the gut of Holotrichia parallela Larvae (Coleoptera: Scarabaeidae). Int J Mol Sci 13:2563–2577PubMedCentralPubMedGoogle Scholar
  33. Huang Z, Sheng XF, Zhao F, He LY, Huang J, Wang Q (2012b) Isoptericola nanjingensis sp. nov., a mineral-weathering bacterium. Int J Syst Evol Microbiol 62:971–976PubMedGoogle Scholar
  34. Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192PubMedGoogle Scholar
  35. Izumikawa M, Takagi M, Shin-ya K (2011) Isolation of a novel macrocyclic dilactone-JBIR-101-from Promicromonospora sp. RL26. J Antibiot 64:689–691PubMedGoogle Scholar
  36. Jaru-ampornpan P, Agarwal A, Midha NK, Kim SJ (2011) Traumatic endophthalmitis due to Cellulosimicrobium cellulans. Case Rep Ophthalmol Med 2011, 469607. doi:10.1155/2011/469607PubMedCentralPubMedGoogle Scholar
  37. Jiang Y, Wiese J, Cao YR, Xu LH, Imhoff JF, Jiang CL (2009) Promicromonospora flava sp. nov., isolated from sediment of the Baltic Sea. Int J Syst Evol Microbio 59:1599–1602Google Scholar
  38. Joshi AA, Kanekar PP, Kelkar AS, Shouche YS, Vani AA, Borgave SB, Sarnaik SS (2008) Cultivable bacterial diversity of alkaline Lonar lake, India. Microb Ecol 55:163–172PubMedGoogle Scholar
  39. Kaewkla O, Franco CM (2012) Promicromonospora endophytica sp. nov., an endophytic actinobacterium isolated from the root of an Australian native Grey Box tree. Int J Syst Evol Microbiol 62:1687–1691Google Scholar
  40. Kailath EJ, Goldstein E, Wagner FH (1988) Meningitis caused by Oerskovia xanthineolytica. Am J Med Sci 295:216–217PubMedGoogle Scholar
  41. Kämpfer P, Steiof M, Dott W (1991) Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251PubMedGoogle Scholar
  42. Kim do Y, Han MK, Park DS, Lee JS, Oh HW, Shin DH, Jeong TS, Kim SU, Bae KS, Son KH, Park HY (2009) Novel GH10 xylanase, with a fibronectin type 3 domain, from Cellulosimicrobium sp. strain HY-13, a bacterium in the gut of Eisenia fetida. Appl Environ Microbiol 75:7275–7279PubMedCentralPubMedGoogle Scholar
  43. Kim do Y, Ham SJ, Lee HJ, Cho HY, Kim JH, Kim YJ, Shin DH, Rhee YH, Son KH, Park HY (2011a) Cloning and characterization of a modular GH5 β-1,4-mannanase with high specific activity from the fibrolytic bacterium Cellulosimicrobium sp. strain HY-13. Bioresour Technol 102:9185–9192PubMedGoogle Scholar
  44. Kim do Y, Ham SJ, Lee HJ, Kim YJ, Shin DH, Rhee YH, Son KH, Park HY (2011b) A highly active endo-β-1,4-mannanase produced by Cellulosimicrobium sp. strain HY-13, a hemicellulolytic bacterium in the gut of Eisenia fetida. Enzyme Microb Technol 48:365–370PubMedGoogle Scholar
  45. Kim do Y, Ham SJ, Kim HJ, Kim J, Lee MH, Cho HY, Shin DH, Rhee YH, Son KH, Park HY (2012) Novel modular endo-β-1,4-xylanase with transglycosylation activity from Cellulosimicrobium sp. strain HY-13 that is homologous to inverting GH family 6 enzymes. Bioresour Technol 107:25–32PubMedGoogle Scholar
  46. Kuhnigk T, Borst EM, Ritter A, Kämpfer P, Graf A, Hertel H, König H (1994) Degradation of lignin monomers by the hindgut flora of xylophagous termites. Syst Appl Microbiol 17:76–85Google Scholar
  47. Liu CH, Wu JY, Chang JS (2008) Diffusion characteristics and controlled release of bacterial fertilizers from modified calcium alginate capsules. Bioresour Technol 99:1904–1910PubMedGoogle Scholar
  48. Lo YC, Saratale GD, Chen WM, Bai MD, Chang JS (2009) Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production. Enzyme Microb Technol 44:417–425Google Scholar
  49. Ludwig W, Euzéby J, Schumann P, Busse H-J, Trujillo ME, Kämpfer P, Whitman WB (2012) Road map of the phylum Actinobacteria. In: Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Garrity G, Ludwig W, Suzuki K (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. Springer, New York, pp 1–28Google Scholar
  50. Lujan-Zilbermann J, Jones D, DeVincenzo J (1999) Oerskovia xanthineolytica peritonitis: case report and review. Pediatr Infect Dis J 18:738–739PubMedGoogle Scholar
  51. Lyons AJ Jr, Pridham TG, Hesseltine CW (1969) Survey of some Actinomycetales for alpha-galactosidase activity. Appl Microbiol 18:579–583PubMedCentralPubMedGoogle Scholar
  52. Magro-Checa C, Chaves-Chaparro L, Parra-Ruiz J, Peña-Monje A, Rosales-Alexander JL, Salvatierra J, Raya E (2011) Septic arthritis due to Cellulosimicrobium cellulans. J Clin Microbiol 49:4391–4393PubMedCentralPubMedGoogle Scholar
  53. Márialigeti K (1979) On the community structure of the gut-microbiota of Eisenia lucens (Annelida, Oligochaeta). Pedobiologia 19:213–220Google Scholar
  54. Martin E, Kämpfer P, Jäckel U (2010a) Quantification and identification of culturable airborne bacteria from duck houses. Ann Occup Hyg 54:217–227PubMedGoogle Scholar
  55. Martin K, Schäfer J, Kämpfer P (2010b) Promicromonospora umidemergens sp. nov., isolated from moisture from indoor wall material. Int J Syst Evol Microbiol 60:537–541PubMedGoogle Scholar
  56. McNeil MM, Brown JM, Carvalho ME, Hollis DG, Morey RE, Reller LB (2004) Molecular epidemiologic evaluation of endocarditis due to Oerskovia turbata and CDC group A-3 associated with contaminated homograft valves. J Clin Microbiol 42:2495–2500PubMedCentralPubMedGoogle Scholar
  57. Mendez MO, Neilson JW, Maier RM (2008) Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Appl Environ Microbiol 74:3899–3907PubMedCentralPubMedGoogle Scholar
  58. Metcalfe G, Brown M (1957) Nitrogen fixation by new species of Nocardia. J Gen Microbiol 17:567–572PubMedGoogle Scholar
  59. Morales-Jiménez J, Zúñiga G, Villa-Tanaca L, Hernández-Rodríguez C (2009) Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microb Ecol 58:879–891PubMedGoogle Scholar
  60. Morgavi DP, Beauchemin K, Nsereko VL, Rode LM, Iwaasa AD, Yang WZ, McAllister TA, Wang Y (2000) Synergy between ruminal fibrolytic enzymes and enzymes from Trichoderma longibrachiatum. J Dairy Sci 83:1310–1321PubMedGoogle Scholar
  61. Munoz R, Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Móra R (2011) Release LTPs104 of the All-Species Living Tree. Syst Appl Microbiol 34:169–170PubMedGoogle Scholar
  62. Murphy J, Devane ML, Robson B, Gilpin BJ (2005) Genotypic characterization of bacteria cultured from duck faeces. J Appl Microbiol 99:301–309PubMedGoogle Scholar
  63. Narihiro T, Takebayashi S, Hiraishi A (2004) Activity and phylogenetic composition of proteolytic bacteria in mesophilic fed-batch garbage composters. Microbes Environ 19:292–300Google Scholar
  64. Niamut SM, van der Vorm ER, van Luyn-Wiegers CG, Gokemeijer JD (2003) Oerskovia xanthineolytica bacteremia in an immunocompromised patient without a foreign body. Eur J Clin Microbiol Infect Dis 22:274–275PubMedGoogle Scholar
  65. Oh HW, Heo SY, Kim do Y, Park DS, Bae KS, Park HY (2008) Biochemical characterization and sequence analysis of a xylanase produced by an exo-symbiotic bacterium of Gryllotalpa orientalis, Cellulosimicrobium sp. HY-12. Antonie Van Leeuwenhoek 93:437–442PubMedGoogle Scholar
  66. Petkar H, Li A, Bunce N, Duffy K, Malnick H, Shah JJ (2011) Cellulosimicrobium funkei: first report of infection in a nonimmunocompromised patient and useful phenotypic tests for differentiation from Cellulosimicrobium cellulans and Cellulosimicrobium terreum. J Clin Microbiol 49:1175–1178PubMedCentralPubMedGoogle Scholar
  67. Prauser H (1986) The Cellulomonas, Oersovia, Promicromonospora complex. In: Szabó G, Biro S, Goodfellow M (eds) Biological, biochemical, and biomedical aspects of actinomycetes, part B. Akademiai Kiado, Budapest, pp 527–539Google Scholar
  68. Prauser H, Falta R (1968) Phage sensitivity, cell wall composition and taxonomy of actinomycetes. Z Allg Mikrobiol 8:39–46PubMedGoogle Scholar
  69. Qin S, Wang H-B, Chen H-H, Zhang Y-Q, Jiang C-L, Xu L-H, Li W-J (2008) Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. Int J Syst Evol Microbiol 58:2525–2528PubMedGoogle Scholar
  70. Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Isolation, diversity, and antimicrobial activity of rare Actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 75:6176–6186PubMedCentralPubMedGoogle Scholar
  71. Qin S, Jiang JH, Klenk HP, Zhu WY, Zhao GZ, Zhao LX, Tang SK, Xu LH, Li WJ (2012) Promicromonospora xylanilytica sp. nov., an endophytic actinomycete isolated from surface-sterilized leaves of the medicinal plant Maytenus austroyunnanensis. Int J Syst Evol Microbiol 62:84–89PubMedGoogle Scholar
  72. Radwan S, Mahmoud H, Khanafer M, Al-Habib A, Al-Hasan R (2010) Identities of epilithic hydrocarbon-utilizing diazotrophic bacteria from the Arabian Gulf Coasts, and their potential for oil bioremediation without nitrogen supplementation. Microb Ecol 60:354–363PubMedGoogle Scholar
  73. Rivas R, Sánchez M, Trujillo EM, Zurdo-Piñeiro LE, Mateos PF, Martínez-Molina E, Velázquez E (2003) Xylanimonas cellulosilytica gen. nov., sp. nov., a xylanolytic bacterium isolated from a decayed tree (Ulmus nigra). Int J Syst Evol Microbiol 53:99–103PubMedGoogle Scholar
  74. Rivas R, Trujillo ME, Schumann P, Kroppenstedt R, Sánchez M, Mateos PF, Martínez-Molina E, Velázquez E (2004) Xylanibacterium ulmi gen. nov., sp. nov., a novel xylanolytic member of the family Promicromonosporaceae. Int J Syst Evol Microbiol 54:557–561PubMedGoogle Scholar
  75. Rowlinson MC, Bruckner DA, Hinnebusch C, Nielsen K, Deville JG (2006) Clearance of Cellulosimicrobium cellulans bacteremia in a child without central venous catheter removal. J Clin Microbiol 44:2650–2654PubMedCentralPubMedGoogle Scholar
  76. Schäfer A, Konrad R, Kuhnigk T, Kämpfer P, Hertel H, König H (1996) Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol 80:471–478PubMedGoogle Scholar
  77. Schäfer J, Jäckel U, Kämpfer P (2010) Analysis of Actinobacteria from mould-colonized water damaged building material. Syst Appl Microbiol 33:260–268PubMedGoogle Scholar
  78. Schoenborn L, Yates PS, Grinton BE, Hugenholtz P, Janssen PH (2004) Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. Appl Environ Microbiol 70:4363–4366PubMedCentralPubMedGoogle Scholar
  79. Schumann P, Stackebrandt E (2012a) Family XII. Promicromonosporaceae. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 5. Springer, New York, pp 995–1002Google Scholar
  80. Schumann P, Stackebrandt E (2012b) Genus II Cellulosimicrobium. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 5. Springer, New York, pp 1002–1006Google Scholar
  81. Schumann P, Weiss N, Stackebrandt E (2001) Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int J Syst Evol Microbiol 51:1007–1010PubMedGoogle Scholar
  82. Seto A, Yoshijima H, Toyomasu K, Ogawa HO, Kakuta H, Hosono K, Ueda K, Beppu T (2004) Effective extracellular trehalose production by Cellulosimicrobium cellulans. Appl Microbiol Biotechnol 64:794–799PubMedGoogle Scholar
  83. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340Google Scholar
  84. Sottnek FO, Brown JM, Weaver RE, Caroll GF (1977) Recognition of Oerskovia species in the clinical laboratory: characterization of 35 isolates. Int J Syst Bacteriol 27:263–270Google Scholar
  85. Stackebrandt E, Kandler O (1980) Cellulomonas cartae sp. nov. Int J Syst Bacteriol 30:186–188Google Scholar
  86. Stackebrandt E, Keddie RM (1986) Genus Cellulomonas Bergey et al. 1923, 154, emend. mut. char. Clark 1952, 50AL. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. The Williams & Wilkins, Baltimore, pp 1325–1329Google Scholar
  87. Stackebrandt E, Prauser H (1991) The family Cellulomonadaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 1323–1345Google Scholar
  88. Stackebrandt E, Schumann P (2004) Reclassification of Promicromonospora pachnodae Cazemier et al. 2004 as Xylanimicrobium pachnodae gen. nov., comb. nov. Int J Syst Evol Microbiol 54:1383–1386PubMedGoogle Scholar
  89. Stackebrandt E, Rainey F, Ward-Rainey N (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491Google Scholar
  90. Stackebrandt E, Schumann P, Prauser H (2002) The family Cellulomonadaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, New York., release 3.10, 27 Sept 2002
  91. Stackebrandt E, Schumann P, Cui XL (2004) Reclassification of Cellulosimicrobium variabile Bakalidou et al. 2002 as Isoptericola variabilis gen. nov., comb. nov. Int J Syst Evol Microbiol 54:685–688PubMedGoogle Scholar
  92. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedGoogle Scholar
  93. Takahashi Y, Tanaka Y, Iwai Y, Omura S (1987) Promicromonospora sukumoe sp. nov., a new species of the Actinomycetales. J Gen Appl Microbiol 33:507–519Google Scholar
  94. Tamashiro T, Tanabe Y, Ikura T, Ito N, Oda M (2012) Critical roles of Asp270 and Trp273 in the α-repeat of the carbohydrate-binding module of endo-1,3-β-glucanase for laminarin-binding avidity. Glycoconj J 29:77–85PubMedGoogle Scholar
  95. Tanabe Y, Oda M (2011) Molecular characterization of endo-1,3-β-glucanase from Cellulosimicrobium cellulans: effects of carbohydrate-binding module on enzymatic function and stability. Biochim Biophys Acta 1814:1713–1719PubMedGoogle Scholar
  96. Tang S-K, Zhi X-Y, Wang Y, Wu J-Y, Lee J-C, Kim C-J, Lou K, Xu L-H, Li WJ (2010) Haloactinobacterium album gen. nov., sp. nov., a halophilic actinobacterium, and proposal of Ruaniaceae fam. nov. Int J Syst Evol Microbiol 60:2113–2119PubMedGoogle Scholar
  97. Ten LN, Im WT, Kim MK, Lee ST (2005) A plate assay for simultaneous screening of polysaccharide- and protein-degrading micro-organisms. Lett Appl Microbiol 40:92–98PubMedGoogle Scholar
  98. Thawai C, Kudo T (2012) Promicromonospora thailandica sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 62:2140–2144PubMedGoogle Scholar
  99. Thawai C, Tanasupawa S, Itoh T, Suwanborirux K, Suzuki K-I, Kudo T (2005) Micromonospora eburnea sp. nov., isolated from a Thai peat swamp forest. Int J Syst Evol Microbiol 55:417–422PubMedGoogle Scholar
  100. Tseng M, Liao HC, Chiang WP, Yuan GF (2011) Isoptericola chiayiensis sp. nov., isolated from mangrove soil. Int J Syst Evol Microbiol 61:1667–1670PubMedGoogle Scholar
  101. Tucker JD, Montecino R, Winograd JM, Ferraro M, Michelow IC (2008) Pyogenic flexor tenosynovitis associated with Cellulosimicrobium cellulans. J Clin Microbiol 46:4106–4108PubMedCentralPubMedGoogle Scholar
  102. Valenzuela-Encinas C, Neria-Gonzalez I, Alcantara-Hernandez RJ, Estrada-Alvarado I, Zavala-Diaz de la Serna FJ, Dendooven L, Marsch R (2009) Changes in the bacterial populations of the highly alkaline saline soil of the former lake Texcoco (Mexico) following flooding. Extremophiles 13:609–621PubMedGoogle Scholar
  103. Vishniac W, Santer M (1957) The Thiobacilli. Bacteriol Rev 57:195–213Google Scholar
  104. Wang Y, Tang SK, Li Z, Lou K, Mao PH, Jin X, Klenk HP, Zhang LX, Li WJ (2011) Myceligenerans halotolerans sp. nov., an actinomycete isolated from a salt lake, and emended description of the genus Myceligenerans. Int J Syst Evol Microbiol 61:974–978PubMedGoogle Scholar
  105. Wu Y, Li WJ, Tian W, Zhang LP, Xu L, Shen QR, Shen B (2010) Isoptericola jiangsuensis sp. nov., a chitin-degrading bacterium. Int J Syst Evol Microbiol 60:904–908PubMedGoogle Scholar
  106. Wu Y, Liu F, Liu YC, Zhang ZH, Zhou TT, Liu X, Shen QR, Shen B (2011) Identification of chitinases Is-chiA and Is-chiB from Isoptericola jiangsuensis CLG and their characterization. Appl Microbiol Biotechnol 89:705–713PubMedGoogle Scholar
  107. Xu S, Douglas Inglis G, Reuter T, Grant Clark O, Belosevic M, Leonard JJ, McAllister TA (2011) Biodegradation of specified risk material and characterization of actinobacterial communities in laboratory-scale composters. Biodegradation 22:1029–1043PubMedGoogle Scholar
  108. Yokota A, Takeuchi M, Sakane T, Weiss N (1993) Proposal of six new species of the genus Aureobacterium and transfer of Flavobacterium esteraromaticum Omelianski to the genus Aureobacterium as Aureobacterium esteraromaticum comb. nov. Int J Syst Bacteriol 43:555–564PubMedGoogle Scholar
  109. Yoon J-H, Schumann P, Kang S-J, Jung S-Y, Oh T-K (2006) Isoptericola dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:2893–2897PubMedGoogle Scholar
  110. Yoon J-H, Kang S-J, Schumann P, Oh T-K (2007) Cellulosimicrobium terreum sp. nov., isolated from soil. Int J Syst Evol Microbiol 57:2493–2497PubMedGoogle Scholar
  111. Zhang JL, Liu ZH (2006) Polyphasic evidence for the transfer of Promicromonospora yunnanensis to Cellulosimicrobium cellulans. Wei Sheng Wu Xue Bao 46:511–515 in ChinesePubMedGoogle Scholar
  112. Zhang Y-Q, Schumann P, Li W-J, Chen G-Z, Tian X-P, Stackebrandt E, Xu L-H, Jiang C-L (2005) Isoptericola halotolerans sp. nov., a novel actinobacterium isolated from saline soil from Qinghai Province, north-west China. Int J Syst Evol Microbiol 55:1867–1870PubMedGoogle Scholar
  113. Zhao K, Penttinen P, Guan T, Xiao J, Chen Q, Xu J, Lindström K, Zhang L, Zhang X, Strobel GA (2011) The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi plateau, China. Curr Microbiol 62:182–190PubMedGoogle Scholar
  114. Zhi X-Y, Li W-J, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608PubMedGoogle Scholar
  115. Zlamala C, Schumann P, Kämpfer P, Rosselló-Mora R, Lubitz W, Busse H-J (2002) Agrococcus baldri sp. nov., isolated from the air in the ‘Virgilkapelle’ in Vienna. Int J Syst Evol Microbiol 52:1211–1216PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweigGermany

Personalised recommendations