The Family Beutenbergiaceae

  • Moriyuki Hamada
Reference work entry


The family Beutenbergiaceae is a member of the order Micrococcales and comprises the monospecific genera Beutenbergia, Miniimonas, Salana, and Serinibacter. Cells of members of the family are irregular rods and cocci and may exhibit a rod–coccus life cycle. All the species are Gram-stain-positive, catalase-positive, non-motile, non-acid fast, and do not contain mycolic acids. Oxidase activity is variable, and endospores are not formed. Members of the family are defined by a wide range of chemotaxonomic properties. Cross-linkage of the peptidoglycan is of the A type with an l-serine residue at position 1 of the peptide subunit (with the exception of the genus Beutenbergia); the diagnostic diamino acids are either l-lysine (Beutenbergia and Serinibacter) or l-ornithine (Salana and Miniimonas). The interpeptide bridge contains l-glutamic acid. The predominant menaquinone is MK-8(H4). The cellular fatty acid profiles consist of iso- and anteiso-branched fatty acids. Saturated straight-chain fatty acids may be present as major components. The G + C content of the genomic DNA ranges between 71 mol% and 75 mol%. The phylogenetic neighbors are the families Bogoriellaceae, Ruaniaceae, Jonesiaceae, and Actinomycetaceae.


Mycolic Acid Leucine Arylamidase Esterase Lipase Muramic Acid Major Cellular Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J (1996) Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52CrossRefGoogle Scholar
  2. Altenburger P, Kämpfer P, Schumann P, Vybiral D, Lubitz W, Busse H-J (2002) Georgenia muralis gen. nov., sp. nov., a novel actinobacterium isolated from a medieval wall painting. Int J Syst Evol Microbiol 52:875–881PubMedCrossRefGoogle Scholar
  3. Busse H-J (2012) Order X. Micrococcales. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo M, Suzuki K, Ludwig W, Whitman W (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. Springer, New York, pp 569–570Google Scholar
  4. Cardinali-Rezende J, Debarry RB, Colturato LFDB, Carnerio EV, Chartone-Souza E, Nascimento AMA (2009) Molecular identification and dynamics of microbial communities in reactor treating organic household waste. Appl Microbial Biotech 84:777–789CrossRefGoogle Scholar
  5. Groth I, Schumann P, Schuetze B, Augsten K, Kramer I, Stackebrandt E (1999) Beutenbergia cavernae gen. nov., sp. nov., an l-lysine-containing actinomycete isolated from a cave. Int J Syst Bacteriol 49:1733–1740PubMedCrossRefGoogle Scholar
  6. Hamada M, Iino T, Tamura T, Iwami T, Harayama S, Suzuki K (2009) Serinibacter salmoneus gen. nov., sp. nov., an actinobacterium isolated from the intestinal tract of a fish, and emended descriptions of the families Beutenbergiaceae and Bogoriellaceae. Int J Syst Evol Microbiol 59:2809–2814PubMedCrossRefGoogle Scholar
  7. Iino T, Mori K, Tanaka K, Suzuki K, Harayama S (2007) Oscillibacter valericigenes gen. nov., sp. nov., a valerate-producing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam. Int J Syst Evol Microbiol 57:1840–1845PubMedCrossRefGoogle Scholar
  8. Land M, Pukall R, Abt B, Göker M, Rohde M et al (2009) Complete genome sequence of Beutenbergia cavernae type strain (HKI 0122T). Stand Genomic Sci 1:21–28PubMedCentralPubMedCrossRefGoogle Scholar
  9. Macy JM, Michel TA, Kirsch DG (1989) Selenate reduction by a Pseudomonas species: a new mode of anaerobic respiration. FEMS Microbiol Lett 52:195–198PubMedCrossRefGoogle Scholar
  10. Ramos-Padrón E, Bordenave S, Lin S, Bhaskar LM, Dong X, Sensen CW, Fournier J, Voordouw G, Gieg LM (2011) Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. Environ Sci Technol 45:439–446PubMedCrossRefGoogle Scholar
  11. Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491CrossRefGoogle Scholar
  12. Selent B (1999) Kombinierter anaerober und aerobe Abbau von Chlorbenzolen mit immobilisierten Mikroorganismen. PhD thesis, Technische Universität BerlinGoogle Scholar
  13. Shelton DR, Tiedje JM (1984) General method for determining anaerobic biodegradation potential. Appl Environ Microbiol 47:850–857PubMedCentralPubMedGoogle Scholar
  14. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  15. Ue H, Matsuo Y, Kasai H, Yokota A (2011) Miniimonas arenae gen. nov., sp. nov., an actinobacterium isolated from sea sand. Int J Syst Evol Microbiol 61:123–127PubMedCrossRefGoogle Scholar
  16. Ulrich K, Ulrich A, Ewald D (2008) Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbial Ecol 63:169–180CrossRefGoogle Scholar
  17. von Wintzingerode F, Göbel UB, Siddiqui RA, Rösick U, Schumann P, Frühling A, Rohde M, Pukall R, Stackebrandt E (2001) Salana multivorans gen. nov., sp. nov., a novel actinobacterium isolated from an anaerobic bioreactor and capable of selenate reduction. Int J Syst Evol Microbiol 51:1653–1661CrossRefGoogle Scholar
  18. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glöckner FO, Rossello-Mora R (2008) The all-species living tree project: A 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250PubMedCrossRefGoogle Scholar
  19. Yokota A, Takeuchi M, Sakane T, Weiss N (1993) Proposal of six new species in the genus Aureobacterium and transfer of Flavobacterium esteraromaticum Omelianski to the genus Aureobacterium as Aureobacterium esteraromaticum comb. nov. Int J Syst Evol Microbiol 43:555–564Google Scholar
  20. Zhi XY, Li WJ, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:2809–2814CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Biological Resource CenterNational Institute of Technology and Evaluation (NBRC)KisarazuJapan

Personalised recommendations