Skip to main content

The Chemolithotrophic Prokaryotes

  • Reference work entry
The Prokaryotes

Abstract

Such was Winogradsky’s (1887) description of the ability of certain bacteria to use energy from inorganic chemicals. Winogradsky’s (1887) name for such organisms was “Anorgoxydanten” (literally “inorganic oxidizers”). Today the term chemolithotrophy is used to describe the energy metabolism of bacteria that use the oxidation of inorganic substances, in the absence of light, as a source of energy for cell biosynthesis and maintenance (Rittenberg 1969; Brock and Schlegel 1989; Kelly 1990). Chemolithotrophs exhibit extraordinary diversity of substrates, modes of carbon nutrition, morphology, and habitat. Grouping chemolithotrophs into some kind of homogeneous taxonomic unit is thus at least as artificial as grouping by most taxonomic devices in that virtually every possible morphology and physiology among bacteria (including the archaebacteria) is represented. Such taxonomic “lumping” does have value because some fundamental aspects of carbon and energy metabolism unify many of the chemolithotrophs into groups that are useful for physiological comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baas Becking LGM, Parks GS (1927) Energy relations in the metabolism of autotrophic bacteria. Physiol Rev 7:85–106

    CAS  Google Scholar 

  • Badziong W, Thauer RK, Zeikus JG (1978) Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch Microbiol 116:41–49

    PubMed  CAS  Google Scholar 

  • Bak F, Cypionka H (1987) A novel type of energy metabolism involving fermentation of inorganic sulfur compounds. Nature 326:891–892

    PubMed  CAS  Google Scholar 

  • Bak F, Pfennig N (1987) Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147:184–189

    CAS  Google Scholar 

  • Barros MEC, Rawlings DE, Woods DR (1984) Mixotrophic growth of a Thiobacillus ferrooxidans strain. Appl Environ Microbiol 47:593–595

    PubMed  CAS  Google Scholar 

  • Beh M, Strauss G, Huber R, Stetter KO, Fuchs G (1993) Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex neutrophilus. Arch Microbiol 160:306–311

    CAS  Google Scholar 

  • Beudeker RF, Kerver JWM, Kuenen JG (1981a) Occurrence, structure, and function of intracellular polyglucose in the obligate chemolithotroph Thiobacillus neapolitanus. Arch Microbiol 129:221–226

    CAS  Google Scholar 

  • Beudeker RF, De Boer W, Kuenen JG (1981b) Heterolactic fermentation of intracellular polyglucose by the obligate chemolithotroph Thiobacillus neapolitanus under anaerobic conditions. FEMS Microbiol Lett 12:337–342

    CAS  Google Scholar 

  • Bock E (1976) Growth of Nitrobacter in the presence of organic matter. II. Chemoorganotrophic growth of Nitrobacter agilis. Arch Microbiol 108:305–312

    PubMed  CAS  Google Scholar 

  • Bock E, Wilderer PA, Freitag A (1988) Growth of Nitrobacter in the absence of dissolved oxygen. Water Res 22:245–250

    CAS  Google Scholar 

  • Bock E, Koops H-P, Möller UC, Rudert M (1990) A new facultatively nitrite-oxidizing bacterium, Nitrobacter vulgaris sp. nov. Arch Microbiol 153:105–110

    Google Scholar 

  • Brierley JA, Brierley CL (1968) Urea as a nitrogen source of thiobacilli. J Bacteriol 96:573–574

    PubMed  CAS  Google Scholar 

  • Brierley JA, Norris PR, Kelly DP, Le Roux NW (1978) Characteristics of a moderately thermophilic and acidophilic iron-oxidizing Thiobacillus. European J Appl Microbiol Biotechnol 5:291–299

    CAS  Google Scholar 

  • Brierley CL, Brierley JA, Norris PR, Kelly DP (1980) Metal-tolerant microorganisms of hot, acid environments. In: Gould GW, Corry JEL (eds) Microbial growth and survival in extremes of environment, vol 15, Society for applied bacteriology technical series. Academic, London, pp 39–51

    Google Scholar 

  • Brock TD, Gustafson J (1976) Ferric iron reduction by sulfur-and iron-oxidizing bacteria. Appl Environ Microbiol 32:567–571

    PubMed  CAS  Google Scholar 

  • Brock TD, Schlegel H (1989) Introduction. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer-Verlag/Science Tech Publishers, Berlin/Madison WI, pp 1–15

    Google Scholar 

  • Broda E (1977a) The position of nitrate respiration in evolution. Orig Life 8:173–174

    PubMed  CAS  Google Scholar 

  • Broda E (1977b) Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol 17:491–493

    PubMed  CAS  Google Scholar 

  • Burggraf S, Olse GJ, Stetter KO, Woese CR (1992) A phylogenetic analysis of Aquifex pyrophilus. Syst Appl Microbiol 15:352–356

    PubMed  CAS  Google Scholar 

  • Butlin KR, Adams ME (1947) Autotrophic growth of sulphate-reducing bacteria. Nature 160:154–155

    CAS  Google Scholar 

  • Caspi R, Haygood MG, Tebo BM (1996) Unusual ribulose-1, 5-biphosphate carboxylase/oxygenase genes from a marine manganese-oxidizing bacterium. Microbiology (UK) 142:2549–2559

    CAS  Google Scholar 

  • Chyba CF (1992) The violent environment of the origin of life. In: Tran Thanh Van J, Tran Thanh Van K, Mounlou JC, Schneider J, McKay C (eds) Frontiers of life. Editions Frontieres, Gif-sur-Yvette France, pp 97–104

    Google Scholar 

  • Clark DA, Norris PR (1996) Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed cultures ferrous iron. Microbiology (UK) 142:785–790

    CAS  Google Scholar 

  • Cypionka H, Smock AM, Bottcher ME (1998) A combined pathway of sulfur compound disproportionation in Desulfovibrio desulfuricans. FEMS Microbiol Lett 166:181–186

    CAS  Google Scholar 

  • Davis OH, Doudoroff M, Stanier RY (1969) Proposal to reject the genus Hydrogenomonas. Int J Syst Bacteriol 19:375–390

    Google Scholar 

  • Eccleston M, Kelly DP (1978) Oxidation kinetics and chemostat growth kinetics of Thiobacillus ferrooxidans on tetrathionate and thiosulfate. J Bacteriol 134:718–727

    PubMed  CAS  Google Scholar 

  • Edwards MR (1998) From a soup or a seed? Trends Ecol Evol 13:178–181

    PubMed  CAS  Google Scholar 

  • Eisenmann E, Beuerle J, Sulger K, Kroneck PMH, Schumacher W (1995) Lithotrophic growth of Sulfospirillum deleyianum with sulfide as electron donor coupled to respiratory reduction of nitrate to ammonia. Arch Microbiol 164:180–185

    CAS  Google Scholar 

  • Evans MCW, Buchanan BB, Arnon DI (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci USA 55:928–934

    PubMed  CAS  Google Scholar 

  • Freitag A, Rudert M, Bock E (1987) Growth of Nitrobacter by dissimilatory nitrate reduction. FEMS Microbiol Lett 48:105–109

    CAS  Google Scholar 

  • Friedrich C, Mitrenga G (1981) Oxidation of thiosulfate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiol Lett 10:209–212

    CAS  Google Scholar 

  • Fromageot C, Senez JC (1960) Aerobic and anaerobic reactions of inorganic substances. In: Florkin M, Mason HS (eds) Comparative biochemistry, vol 1. Academic, New York, pp 347–409

    Google Scholar 

  • Fuchs G (1989) Alternative pathways of autotrophic CO2 fixation. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer-Verlag\Science Tech Publishers, Berlin\Madison WI, pp 365–382

    Google Scholar 

  • Fuchs T, Huber H, Burggraf S, Stetter KO (1996) The 16 S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidanus ambivalens comb nov. Syst Appl Microbiol 19:56–60

    CAS  Google Scholar 

  • Galtier N, Tourasse N, Gouy M (1999) A nonhyperthermophilic common ancestor to extant life forms. Science 283:220–221

    PubMed  CAS  Google Scholar 

  • Gautier D (1992) Primitive planetary atmospheres: origin and evolution. In: Tran Thanh Van J, Tran Thanh Van K, Mounlou JC, Schneider J, McKay C (eds) Frontiers of life. Editions Frontieres, Gif-sur-Yvette France, pp 307–315

    Google Scholar 

  • Gogarten JP (1995) The early evolution of cellular life. Trends Ecol Evol 10:147–151

    PubMed  CAS  Google Scholar 

  • Gogarten JP, Taiz L (1992) Evolution of proton pumping ATPases rooting the tree of life. Photosynth Res 33:137–146

    CAS  Google Scholar 

  • Gogarten JP, Olendzenski L, Hilario E, Simon C, Holsinger KE (1996) Dating the cenancestor of organisms. Science 274:1750–1751

    PubMed  CAS  Google Scholar 

  • Gogarten-Boeckels M, Hilario E, Gogarten JP (1995) The effects of heavy meteroritic bombardment on the early evolution—the emergence of the three domains of life. Orig Life Evol Biosph 25:251–264

    Google Scholar 

  • Gommers PJF, Kuenen JG (1988) Thiobacillus strain Q, a chemolithoheterotrophic sulphur bacterium. Arch Microbiol 150:117–125

    CAS  Google Scholar 

  • Gottschal JC, de Vries S, Kuenen JG (1979) Competition between the facultatively chemolithotrophic Thiobacillus A2, an obligately chemolithotrophic Thiobacillus and a heterotrophic spirillum for inorganic and organic substrates. Arch Microbiol 121(3):241–249

    CAS  Google Scholar 

  • Grabovich MY, Dubinina GA, Lebedeva VY, Churikova VV (1998) Mixotrophic and lithoheterotrophic growth of the freshwater filamentous sulfur bacterium Beggiatoa leptomitiformis D-402. Microbiology (Moscow) 67:383–388

    CAS  Google Scholar 

  • Gribaldo S, Cammarano P (1998) The root of the universal tree of life inferred from anciently duplicated genes encoding components of the protein-targeting machinery. J Mol Evol 47:508–516

    PubMed  CAS  Google Scholar 

  • Güde H, Strohl WR, Larkin JM (1981) Mixotrophic and heterotrophic growth of Beggiatoaalba in continuous culture. Arch Microbiol 129:357–360

    PubMed  Google Scholar 

  • Gupta RS (1998a) Life’s third domain (Archaea): an established fact or an endangered paradigm? Theor Popul Biol 54:91–104

    PubMed  CAS  Google Scholar 

  • Gupta RS (1998b) What are archaebacteria: life’s third domain or modern prokaryotes related to Gram-positive bacteria? A new proposal for the classification of prokaryotic organisms. Mol Microbiol 29:695–707

    PubMed  CAS  Google Scholar 

  • Hagen KD, Nelson DC (1996) Organic carbon utilization by obligately and facultatively autotrophic Beggiatoa strains in homogeneous and gradient cultures. Appl Environ Microbiol 62:947–953

    PubMed  CAS  Google Scholar 

  • Hanert H (1981) The genus Gallionella. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, 1st edn. Springer, Berlin, pp 509–515

    Google Scholar 

  • Hempfling WP, Vishniac W (1967) Yield coefficients of Thiobacillus neapolitanus in continuous culture. J Bacteriol 93:874–878

    PubMed  CAS  Google Scholar 

  • Hipp WM, Pott AS, Thum-Schmirtz N, Faath I, Dahl C, Truper HG (1997) Towards a phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes. Microbiology (UK) 143:2891–2902

    CAS  Google Scholar 

  • Holmes AJ, Costello A, Lidstrom ME, Murrell JC (1995) Evidence that particulate methane monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208

    PubMed  CAS  Google Scholar 

  • Holo H (1989) Chloroflexus aurantiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of carbon dioxide and acetate. Arch Microbiol 151:252–256

    CAS  Google Scholar 

  • Horowitz NH (1945) On the evolution of biochemical synteses. Proc Natl Acad Sci USA 31:153–157

    PubMed  CAS  Google Scholar 

  • Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, Konig H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992) Aquifex pyrophilus, gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Bacteriol 15:340–351

    Google Scholar 

  • Ishii M, Miyake T, Satoh T, Sugiyama H, Oshima Y, Igarashi Y (1996) Autotrophic carbon dioxide fixation in Acidanus brierleyi. Arch Microbiol 166:368–371

    PubMed  CAS  Google Scholar 

  • Jannasch HW, Wirsen CO (1979) Chemosynthetic primary production at East Pacific sea floor spreading centres. Bioscience 29:592–598

    CAS  Google Scholar 

  • Jones CA, Kelly DP (1983) Growth of Thiobacillus ferrooxidans on ferrous iron in chemostat culture: influence of product and substrate inhibition. J Chem Tech Biotechnol 33B:241–261

    CAS  Google Scholar 

  • Justin P, Kelly DP (1978) Growth kinetics of Thiobacillus denitrificans in anaerobic and aerobic chemostat culture. J Gen Microbiol 107:123–130

    CAS  Google Scholar 

  • Katayama Y, Hiraishi A, Kuraishi H (1995) Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology (UK) 141:1469–1477

    CAS  Google Scholar 

  • Katayama-Fujimura Y, Kuraishi H (1983) Emendation of Thiobacillus perometabolis London and Rittenberg, 1967. Int J Syst Bacteriol 33:650–651

    Google Scholar 

  • Kawasumi T, Igarashi U, Kodama T, Minoda Y (1988) Isolation of strictly thermophilic and obligately autotrophic hydrogen bacteria. Agric Biol Chem 44:1985–1986

    Google Scholar 

  • Keil F (1912) Beiträge zur Physiologie der farblosen Schwefelbakterien. Beitr Biol Pfl 11:335–365

    Google Scholar 

  • Kelly DP (1967) Problems of the autotrophic microorganisms. Sci Prog 55:35–51

    PubMed  CAS  Google Scholar 

  • Kelly DP (1971) Autotrophy: concepts of lithotrophic bacteria and their organic metabolism. Ann Rev Microbiol 25:177–210

    CAS  Google Scholar 

  • Kelly DP (1978) Bioenergetics of chemolithotrophic bacteria. In: Bull AT, Meadow PM (eds) Companion to microbiology. Longman, London, pp 363–386

    Google Scholar 

  • Kelly DP (1981) Introduction to the chemolithotrophic bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, 1st edn. Springer, Berlin, pp 997–1004

    Google Scholar 

  • Kelly DP (1982) Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Phil Trans R Soc London B298:499–528

    Google Scholar 

  • Kelly DP (1985) Crossroads for archaebacteria. Nature 313:734

    PubMed  CAS  Google Scholar 

  • Kelly DP (1987) Sulphur bacteria first again. Nature 326:830–831

    Google Scholar 

  • Kelly DP (1988) Oxidation of sulphur compounds. Soc Gen Microbiol Symp 42:65–98

    Google Scholar 

  • Kelly DP (1989) Physiology and biochemistry of unicellular sulfur bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer-Verlag/Science Tech Publishers, Berlin/Madison WI, pp 193–217

    Google Scholar 

  • Kelly DP (1990) Energetics of chemolithotrophs. In: Krulwich TA (ed) Bacterial energetics, vol 12. Academic, San Diego, pp 478–503

    Google Scholar 

  • Kelly DP (1991) The chemolithotrophic prokaryotes. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 331–343

    Google Scholar 

  • Kelly DP (1999) Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria in relation to the sulfur oxidation pathways. Arch Microbiol 171:219–229

    CAS  Google Scholar 

  • Kelly DP, Harrison AP (1989) The genus Thiobacillus. In: Staley JT (ed) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 1842–1858

    Google Scholar 

  • Kelly DP, Kuenen JG (1984) Ecology of the colourless sulphur bacteria. In: Codd GA (ed) Aspects of microbial metabolism and ecology. Academic, London, pp 211–240

    Google Scholar 

  • Kelly DP, Smith NA (1990) Organic sulfur compounds in the environment. Adv Microbiol Ecol 11:345–385

    CAS  Google Scholar 

  • Kelly DP, Wood AP (1982) Autotrophic growth of Thiobacillus A2 on methanol. FEMS Microbiol Lett 15:229–233

    CAS  Google Scholar 

  • Kelly DP, Wood AP (1984) R. L. Crawford. In: Crawford RL, Hanson RS (eds) Microbial growth on C1-compounds. American Society for Microbiology, Washington D. C, pp 324–329

    Google Scholar 

  • Kelly DP, Wood AP (2000) The genus Thiobacillus Beijerinck. In: Krieg NR, Staley JT, Brenner DJ (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York NY, in press

    Google Scholar 

  • Kelly DP, Eccleston M, Jones CA (1977) Evaluation of continuous chemostat cultivation of Thiobacillus ferrooxidans on ferrous iron or tetrathionate. In: Schwartz W (ed) Bacterial leaching. Verlag Chemie, Weinheim, pp 1–7

    Google Scholar 

  • Kelly DP, Wood AP, Gottschal JC, Kuenen JG (1979) Autotrophic metabolism of formate by Thiobacillus strain A2. J Gen Microbiol 114:1–13

    CAS  Google Scholar 

  • Khmelenina VN, Gayazov RR, Suzina NE, Doronina VA, Mshenshii YN, Trotsenko YA (1992) Synthesis of polysaccharides by Methylococcus capsulatus under different growth conditions. Microbiology (Moscow) 61:277–282

    Google Scholar 

  • Kiesow L (1963) Über die Reduktion von Diphospho-pyridinnucleotid bei der Chemosynthese. Biochem Z 338:400–406

    PubMed  CAS  Google Scholar 

  • Kondratieva EN (1989) Chemolithotrophy of phototrophic bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer-Verlag/Science Tech Publishers, Berlin/Madison WI, pp 283–287

    Google Scholar 

  • Kondratieva EN, Zhukov VG, Ivanovsky RN, Petushkova Yu P, Monosov EZ (1976) The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Arch Microbiol 108:287–292

    PubMed  CAS  Google Scholar 

  • Krämer M, Cypionka H (1989) Sulfate formation via ATP sulfurylase in thiosulfate-and sulfite-disproportionating bacteria. Arch Microbiol 151:232–237

    Google Scholar 

  • Kristjansson JK, Ingason A, Alfredsson GA (1985) Isolation of thermophilic, obligately autotrophic hydrogen-oxidizing bacteria, similar to Hydrogenobacter thermophilus, from Icelandic hot springs. Arch Microbiol 140:321–325

    CAS  Google Scholar 

  • Lane DJ, Harrison AP, Stahl D, Pace B, Giovannoni SJ, Olsen GJ, Pace NP (1992) Evolutionary relationships among sulfur-and iron-oxidizing eubacteria. J Bacteriol 174:269–278

    PubMed  CAS  Google Scholar 

  • Lewis AJ, Miller DJD (1977) Stannous and cuprous iron oxidation by Thiobacillus ferrooxidans. Can J Microbiol 23:319–324

    PubMed  CAS  Google Scholar 

  • London J (1963) Thiobacillus intermedius nov. sp. A novel type of facultative autotroph. Arch Mikrobiol 46:329–337

    Google Scholar 

  • London J, Rittenberg SC (1967) Thiobacillus perometabolis nov. sp., a non-autotrophic Thiobacillus. Arch Mikrobiol 59:218–225

    PubMed  CAS  Google Scholar 

  • Lyalikova NN (1972) Oxidation of trivalent antimony up to higher oxides as a source of energy for the development of a new autotrophic organism, Stibiobacter gen. nov. Russian Doklady Akademii Nauk SSSR 205:1228–1229

    CAS  Google Scholar 

  • Maden BEH (1995) No soup for starters? Autotrophy and the origins of metabolism. Trends Biochem Sci 20:337–341

    PubMed  CAS  Google Scholar 

  • Mason J, Kelly DP (1988) Thiosulfate oxidation by obligately heterotrophic bacteria. Microb Ecol 15:123–134

    CAS  Google Scholar 

  • McDonald IR, Kelly DP, Murrell JC, Wood AP (1997) Taxonomic relationships of Thiobacillus halophilus, T. Aquaesulis, and other species of Thiobacillus, as determined using 16 S rRNA sequencing. Arch Microbiol 166:394–398

    Google Scholar 

  • McFadden BA, Denend AR (1972) Ribulose diphosphate carboxylase from autotrophic microorganisms. J Bacteriol 110:633–642

    PubMed  CAS  Google Scholar 

  • Mechalas BJ, Rittenberg SC (1960) Energy coupling in Desulfovibrio desulfuricans. J Bacteriol 80:501–507

    PubMed  CAS  Google Scholar 

  • Metzdorf N, Kaltwasser H (1988) Utilization of organic compounds as the sole source of nitrogen by Thiobacillus thiooxidans. Arch Microbiol 150:85–88

    CAS  Google Scholar 

  • Meyer O (1989) Aerobic carbon monoxide-oxidizing bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer/Science Tech Publishers, Berlin/Madison WI, pp 331–350

    Google Scholar 

  • Moreira D, Amils R (1997) Phylogeny of Thiobacillus cuprinus and other mixotrophic thiobacilli: proposal for Thiomonas gen nov. Int J Syst Bacteriol 47:522–528

    PubMed  CAS  Google Scholar 

  • Nelson DC, Hagen DC (1996) Organic carbon utilization by obligately and facultatively autotrophic Beggiatoa strains in homogeneous and gradient cultures. Appl Environ Microbiol 62:947–953

    PubMed  Google Scholar 

  • Nelson DC, Jannasch HW (1983) Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136:262–269

    CAS  Google Scholar 

  • Nelson DC, Revsbech NP, Jørgensen BB (1986a) Microoxic-anoxic niche of Beggiatoa spp. microelectrode survey of marine and freshwater strains. Appl Environ Microbiol 52:161–168

    PubMed  CAS  Google Scholar 

  • Nelson DC, Jørgensen BB, Revsbech NP (1986b) Growth pattern and yield of chemoautotrophic Beggiatoa sp. in oxygen-sulfide gradients. Appl Environ Microbiol 52:225–233

    PubMed  CAS  Google Scholar 

  • Nelson DC, Wirsen CO, Jannasch HW (1989a) Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin. Appl Environ Microbiol 55:2909–2917

    PubMed  CAS  Google Scholar 

  • Nelson DC, Williams CA, Farah BA, Shively JM (1989b) Occurrence and regulation of Calvin cycle enzymes in non-autotrophic Beggiatoa strains. Arch Microbiol 151:15–19

    CAS  Google Scholar 

  • Nishihara H, Igarashi Y, Kodawa T (1989) Isolation of an obligately chemolithoautotrophic, halophilic and aerobic hydrogen-oxidizing bacterium from marine environment. Arch Microbiol 152:39–43

    CAS  Google Scholar 

  • Nishihara H, Igarashi U, Kodawa T (1990) A new isolate of Hydrogenobacter, an obligately chemolithoautotrophic, thermophilic, halophilic and aerobic hydrogen-oxidizing bacterium from a seaside saline hot spring. Arch Microbiol 153:294–298

    CAS  Google Scholar 

  • Nishihara H, Igarashi Y, Kodama T (1991) Hydrogenovibrio marinus gen nov. sp. nov., a marine obligately chemolithotrophic hydrogen-oxidizing bacterium. Int J Syst Bacteriol 41:130–133

    Google Scholar 

  • Nishihara H, Toshiaki Y, Chung SY, Suzuki K-I, Yanagi M, Yamasata K, Kodama T, Igarashi Y (1998) Phylogenetic position of an obligately chemoautotrophic, marine hydrogen-oxidizing bacterium, Hydrogenovibrio marinus, on the basis of 16 S rRNA gene sequences and two form I RuBisCO gene sequences. Arch Microbiol 169:364–368

    PubMed  CAS  Google Scholar 

  • Odintsova EV, Wood AP, Kelly DP (1993) Chemolithoautotrophic growth of Thiothrix ramosa. Arch Microbiol 160:152–157

    CAS  Google Scholar 

  • Oparin A (1957) The origin of life on the Earth (trans. A. Synge). Oliver and Boyd, Edinburgh

    Google Scholar 

  • Postgate JR (1979) The sulphate-reducing bacteria. Cambridge University Press, Cambridge

    Google Scholar 

  • Rainey FA, Kelly DP, Stackebrandt E, Burghardt J, Hiraishi A, Katayama Y, Wood AP (1999) A reevaluation of the taxonomy of Paracoccus denitrificans and a proposal for the creation of Paracoccus pantotrophus comb nov. Int J Syst Bacteriol 49:645–651

    PubMed  Google Scholar 

  • Rittenberg SC (1969) The roles of exogenous organic matter in the physiology of chemolithotrophic bacteria. Adv Microbial Physiol 3:159–196

    CAS  Google Scholar 

  • Rittenberg SC (1972) The obligate autotroph—the demise of a concept. Antonie van Leeuwenhoek J Microbiol Serol 38:457–478

    CAS  Google Scholar 

  • Robertson LA, Kuenen JG (1983) Thiosphaera pantotropha gen nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium. J Gen Microbiol 129:2847–2855

    CAS  Google Scholar 

  • Robertson LA, Kuenen JG (1991) The colorless sulfur bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 385–413

    Google Scholar 

  • Ruby EG, Wirsen CO, Jannasch HW (1981) Chemolithotrophic sulfur-oxidizing bacteria from the Galapagos rift hydrothermal vents. Appl Environ Microbiol 42:317–324

    PubMed  CAS  Google Scholar 

  • Schauder R, Widdel F, Fuchs G (1987) Carbon assimilation pathways in sulfate-reducing bacteria 2 Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus. Arch Microbiol 167:218–225

    Google Scholar 

  • Schlegel HG (1975) Mechanisms of chemoautotrophy. In: Kinne O (ed) Marine ecology, vol 2, part 1. Wiley, London, pp 9–60

    Google Scholar 

  • Schmidt I, Bock E (1997) Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch Microbiol 167:106–111

    CAS  Google Scholar 

  • Schönheit P, Schäfer T (1995) Metabolism of hyperthermophiles. World J Microbiol Biotechnol 11:26–57

    Google Scholar 

  • Segerer A, Stetter KO, Klink F (1985) Two contrary modes of chemolithotrophy in the same bacterium. Nature 313:787–789

    PubMed  CAS  Google Scholar 

  • Segerer A, Neuner A, Kristjansson JK, Stetter KO (1986) Acidianus infernus gen. nov. sp. nov., and Acidianus brierleyi comb. nov. facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 36:559–564

    Google Scholar 

  • Shima S, Suzuki KI (1993) Hydrogenobacter acidophilus sp. nov., a thermoacidophilic, aerobic, hydrogen-oxidizing bacterium requiring elemental sulfur for growth. Int J Syst Bacteriol 43:703–708

    Google Scholar 

  • Smith AJ, Hoare DS (1968) Acetate assimilation by Nitrobacteragilis in relation to its “obligateautotrophy”. J Bacteriol 95:844–855

    PubMed  CAS  Google Scholar 

  • Smith AJ, Hoare DS (1977) Specialist phototrophs, lithotrophs, and methylotrophs: a unity among a diversity of prokaryotes? Bacteriol Rev 41:419–448

    PubMed  CAS  Google Scholar 

  • Smock AM, Bottcher ME, Cypionka H (1998) Fractionation of sulfur isotopes during thiosulfate reduction by Desulfovibrio desulfuricans. Arch Microbiol 169:460–463

    PubMed  CAS  Google Scholar 

  • Stanley SH, Dalton H (1982) Role of ribulose-1,5-biphosphate carboxylase/oxygenase in Methylococcus capsulatus. J Gen Microbiol 128:2927–2935

    CAS  Google Scholar 

  • Stetter KO (1992) Life at the upper temperature border. In: Tran Thanh Van J, Tran Thanh Van K, Mounlou HC, Schneider J, McKay C (eds) Frontiers of life. Editions Frontieres, Gif-sur-Yvette France, pp 195–219

    Google Scholar 

  • Taylor S (1977) Evidence for the presence of ribulose 1,5-bisphosphate carboxylase and phosphoribulokinase in Methylococcuscapsulatus (Bath). FEMS Microbiol Lett 2:305–307

    CAS  Google Scholar 

  • Teske A, Ramsing NB, Kuever J, Fossing H (1996) Phylogeny of Thioploca and related filamentous sulfide-oxidizing bacteria. Syst Appl Microbiol 18:517–526

    CAS  Google Scholar 

  • Thauer RK (1989) Energy metabolism of sulfate-reducing bacteria. In: Schlegel HG, Bowien B (eds) Autotrophicbacteria. Springer-Verlag/Science Tech Publishers, Berlin/Madison WI, pp 397–413

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  • Timmer-ten-Hoor A (1976) Energetic aspects of the metabolism of reduced sulphur compounds in Thiobacillus denitrificans. Antonie van Leeuwenhoek J Microbiol Serol 42:483–492

    CAS  Google Scholar 

  • Umbreit WW (1947) Problems of autotrophy. Bacteriol Rev 11:157–182

    PubMed  CAS  Google Scholar 

  • van der Graaf AA, de Bruijn P, Robertson LA, Jetten MSM, Kuenen JG (1996) Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology (UK) 142:2187–2196

    Google Scholar 

  • van der Graaf AA, de Bruijn P, Robertson LA, Jetten MSM, Kuenen JG (1997) Metabolic pathway of anaerobic ammonium oxidation on the basis of 15 N studies in a fluidized bed reactor. Microbiology (UK) 143:2415–2421

    Google Scholar 

  • van Gool A, Tobback PP, Fischer I (1971) Autotrophic growth and synthesis of reserve polymers in Nitrobacter winogradskyi. Arch Mikrobiol 76:252–264

    PubMed  Google Scholar 

  • van Niel CB (1943) Biochemical problems of the chemoautotrophic bacteria. Physiol Rev 23:338–364

    Google Scholar 

  • Volkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic Archaeum. Appl Environ Microbiol 59:2918–2926

    PubMed  CAS  Google Scholar 

  • Wachtershauser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484

    PubMed  CAS  Google Scholar 

  • Wachtershauser G (1990a) The case for the chemo-autotrophic origin of life in an iron-sulfur world. Orig Life Evol Biosph 20:173–176

    Google Scholar 

  • Wachtershauser G (1990b) Evolution of the first metabolic cycles. Proc Natl Acad Sci USA 87:200–204

    PubMed  CAS  Google Scholar 

  • Wachtershauser G (1992) Order out of order. In: Tran Thanh Van J, Tran Thanh Van K, Mounlou JC, Schneider J, McKay C (eds) Frontiers of life. Editions Frontieres, Gif-sur-Yvette France, pp 21–39

    Google Scholar 

  • Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982

    PubMed  CAS  Google Scholar 

  • Watson GMF, Yu J-P, Tabita FR (1999) Unusual ribulose 1,5-biphosphate carboxylase/oxygenase of anoxic Archaea. J Bacteriol 181:1569–1575

    PubMed  CAS  Google Scholar 

  • Whittenbury R, Kelly DP (1977) Autotrophy: a conceptual phoenix. Symp Soc Gen Microbiol 27:121–149

    CAS  Google Scholar 

  • Winogradsky S (1887) Über Schwefelbacterien. Bot Z 45(489–600):606–616

    Google Scholar 

  • Winogradsky S (1922) Eisenbakterien als Anorgoxydanten. Centralbl Bakteriol Parasitenk Abt 2, 57:1–21

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Woese CR (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859

    PubMed  CAS  Google Scholar 

  • Wood AP, Kelly DP (1983) Autotrophic and mixotrophic growth of three thermoacidophilic iron-oxidizing bacteria. FEMS Microbiol Lett 20:107–112

    CAS  Google Scholar 

  • Wood AP, Kelly DP, Norris PR (1987) Autotrophic growth of four Sulfolobus strains on tetrathionate and the effect of organic nutrients. Arch Microbiol 146:382–389

    CAS  Google Scholar 

  • Zavarzin GA (1989) Sergei N. Winogradsky and the discovery of chemosynthesis. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer-Verlag/Science Tech Publishers, Berlin/Madison WI, pp 17–32

    Google Scholar 

  • Zillig W, Yeats S, Holz I, Böck A, Gropp F, Rettenberger M, Lutz S (1985) Plasmid-related anaerobic autotrophy of the novel archaebacterium Sulfolobus ambivalens. Nature 313:789–791

    PubMed  CAS  Google Scholar 

  • Zillig W, Yeats S, Holz I, Böck A, Rettenberger M, Gropp F, Simon G (1986) Desulfurolobus ambivalens gen nov., sp. nov., an autotrophic archaebacterium, facultatively oxidizing or reducing sulfur. Syst Appl Microbiol 8:197–203

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kelly, D.P., Wood, A.P. (2013). The Chemolithotrophic Prokaryotes. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30123-0_63

Download citation

Publish with us

Policies and ethics