Advertisement

Life at High Salt Concentrations

  • Aharon Oren

Abstract

A great diversity of prokaryotes, Bacteria as well as Archaea, can be found in saline and hypersaline environments. These microorganisms are adapted to life at high salt concentrations and to the high osmotic pressure of their environment. Halophilic prokaryotes are highly diverse not only with respect to their phylogenetic affiliation and metabolic properties but also with respect to the mechanisms they have developed to cope with salt and osmotic stress.

Keywords

High Salt Concentration Glycine Betaine Great Salt Lake Hypersaline Environment Halophilic Microorganism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel extreme halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491PubMedGoogle Scholar
  2. Antunes A, Rainey FA, Wanner G, Patzold J, Nobre MF, da Costa MS, Huber R (2007) A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled deep of the Red Sea. J Bacteriol 190:3580–3587CrossRefGoogle Scholar
  3. Arahal DR, Ventosa A (2006) The family Halomonadaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 6, 3rd edn. Springer, New York, pp 811–835Google Scholar
  4. Baliga NS, Bonneau R, Facciotti MT, Pan M, Glusman G, Deutsch EW, Shannon P, Chiu Y, Weng RS, Gan RR, Hung P, Date SV, Marcotte E, Hood L, Ng WV (2004) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14:2221–2234PubMedCrossRefGoogle Scholar
  5. Benlloch S, López-López A, Casamajor EO, Øvreås L, Goddard V, Dane L, Smerdon G, Massana R, Joint I, Thingstad F, Pedrós-Alió C, Rodríguez-Valera F (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349–360PubMedCrossRefGoogle Scholar
  6. Bertrand JC, Almallah M, Aquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett Appl Microbiol 11:260–263CrossRefGoogle Scholar
  7. Bodaker I, Sharon I, Suzuki MT, Reingersch R, Shmoish M, Andreishcheva F, Sogin ML, Rosenberg M, Belkin S, Oren A, Béjà O (2010) Comparative community genomics in the Dead Sea: an increasingly extreme environment. ISME J 4:399–407PubMedCrossRefGoogle Scholar
  8. Boetius A, Joye S (2009) Thriving in salt. Science 324:1523–1525PubMedCrossRefGoogle Scholar
  9. Bolhuis H, te Poele EM, Rodríguez-Valera F (2004) Isolation and cultivation of Walsby’s square archaeon. Environ Microbiol 6:1287–1291PubMedCrossRefGoogle Scholar
  10. Bolhuis H, Palm P, Wende A, Farb M, Rampp M, Rodriguez-Valera F, Pfeiffer F, Oesterhelt D (2006) The genome of the square archaeon “Haloquadratum walsbyi”: life at the limits of water activity. BMC Genomics 7:169PubMedCrossRefGoogle Scholar
  11. Boone DR, Mathrani IM, Liu Y, Menaia JAGF, Mah RA, Boone JE (1993) Isolation and characterization of Methanohalophilus portucalensis sp. nov. and DNA-reassociation study of the genus Methanohalophilus. Int J Syst Bacteriol 43:430–437CrossRefGoogle Scholar
  12. Borowitzka LJ (1981) The microflora. Adaptations to life in extremely saline lakes. Hydrobiologia 81:33–46CrossRefGoogle Scholar
  13. Bowers KJ, Mesbah NM, Wiegel J (2009) Biodiversity of poly-extremophilic bacteria: does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Sal Syst 5:9CrossRefGoogle Scholar
  14. Brandt KK, Ingvorsen K (1997) Desulfobacter halotolerans sp. nov., a halotolerant acetate-oxidizing sulfate-reducing bacterium isolated from sediments of Great Salt Lake. Utah Syst Appl Microbiol 20:366–373CrossRefGoogle Scholar
  15. Brito-Echeverría J, López-López A, Yarza P, Antón J, Rosselló-Móra R (2009) Occurrence of Halococcus spp. in the nostrils salt glands of the seabird Calonectris diomedea. Extremophiles 13:557–565PubMedCrossRefGoogle Scholar
  16. Britton KL, Stillman TJ, Yip KSP, Forterre P, Engel PC, Rice DW (1998) Insights into the molecular basis of salt tolerance from the study of glutamate dehydrogenase from Halobacterium salinarum. J Biol Chem 273:9023–9030PubMedCrossRefGoogle Scholar
  17. Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846PubMedGoogle Scholar
  18. Brown AD (1990) Microbial water stress physiology. Principles and perspectives. Wiley, ChichesterGoogle Scholar
  19. Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004a) Cultivation of Walsby’s square haloarchaeon. FEMS Microbiol Lett 238:469–473PubMedGoogle Scholar
  20. Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004b) Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70:5258–5265PubMedCrossRefGoogle Scholar
  21. Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodríguez-Valera F, Bolhuis H, Dyall-Smith ML (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392PubMedCrossRefGoogle Scholar
  22. Caumette P (1993) Ecology and physiology of phototrophic bacteria and sulfate-reducing bacteria in marine salterns. Experientia 49:473–481CrossRefGoogle Scholar
  23. Cayol JL, Ollivier B, Patel BKC, Prensier G, Guezennec J, Garcia J-L (1994) Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a halophilic, thermophilic, fermentative strictly anaerobic bacterium. Int J Syst Bacteriol 44:534–540PubMedCrossRefGoogle Scholar
  24. Christian JHB, Waltho JA (1962) Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim Biophys Acta 65:506–508PubMedCrossRefGoogle Scholar
  25. Conrad R, Frenzel P, Cohen Y (1995) Methane emission from hypersaline microbial mats: lack of aerobic methane oxidation activity. FEMS Microbiol Ecol 16:297–305CrossRefGoogle Scholar
  26. Csonka LN (1989) Physiological and genetic response of bacteria to osmotic stress. Microbiol Rev 53:121–147PubMedGoogle Scholar
  27. Csonka LN, O’Connor K, Larimer F, Richardson P, Lapidus A, Ewing AD, Goodner BW, Oren A (2005) What we can deduce about metabolism in the moderate halophile Chromohalobacter salexigens from its genomic sequence. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, pp 267–285CrossRefGoogle Scholar
  28. Daffonchio D, Borin S, Brusa T, Brusetti L, van der Wielen PWJJ, Bolhuis H, Yakimov MM, D'Auria G, Giulianio L, Marty D, Tamburini C, McGenity TJ, Hallsworth JE, Sass AM, Timmis KN, Tselepides A, de Lange GJ, Hubner A, Thomson J, Varnavas SP, Gasparoni F, Gerber HW, Malinverno E, Corselli C, Biodeep Scientific Party (2006) Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline. Nature 440:203–207PubMedCrossRefGoogle Scholar
  29. Dennis PP, Shimmin LC (1997) Evolutionary divergence and salinity-mediated selection in halophilic archaea. Microbiol Mol Biol Rev 61:90–104PubMedGoogle Scholar
  30. Desmarais D, Jablonski PE, Fedarko NS, Roberts MF (1997) 2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic archaea. J Bacteriol 179:3146–3153PubMedGoogle Scholar
  31. Detkova EN, Boltyanskaya YV (2006) Relationships between the osmoadaptation strategy, amino acid composition of bulk protein, and properties of certain enzymes of haloalkaliphilic bacteria. Microbiologia (Russ) 75:259–265Google Scholar
  32. Duschl A, Wagner G (1986) Primary and secondary chloride transport in Halobacterium halobium. J Bacteriol 168:548–552PubMedGoogle Scholar
  33. Dym O, Mevarech M, Sussman JL (1995) Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium. Science 267:1344–1346PubMedCrossRefGoogle Scholar
  34. Ebel C, Faou P, Franzetti B, Kernel B, Madern D, Pascu M, Pfister C, Richard S, Zaccai G (1999) Molecular interactions in extreme halophiles – the solvation-stabilization hypothesis for halophilic proteins. In: Oren A (ed) Microbiology and biogeochemistry of hypersaline environments. CRC Press, Boca Raton, pp 227–237Google Scholar
  35. Edgerton ME, Brimblecombe P (1981) Thermodynamics of halobacterial environments. Can J Microbiol 27:899–909PubMedCrossRefGoogle Scholar
  36. Eisenberg H, Wachtel EJ (1987) Structural studies of halophilic proteins, ribosomes, and organelles of bacteria adapted to extreme salt concentrations. Ann Rev Biophys Biophys Chem 16:69–92CrossRefGoogle Scholar
  37. Eisenberg H, Mevarech M, Zaccai G (1992) Biochemical, structural, and molecular genetic aspects of halophilism. Adv Prot Chem 43:1–62CrossRefGoogle Scholar
  38. Elcock AH, McCammon JA (1998) Electrostatic contribution to the stability of halophilic proteins. J Mol Biol 280:731–748PubMedCrossRefGoogle Scholar
  39. Ellis DG, Bizzoco RW, Kelley ST (2008) Halophilic archaea isolated from geothermal steam vent aerosols. Environ Microbiol 10:1582–1590PubMedCrossRefGoogle Scholar
  40. Elshahed MS, Najar FZ, Roe BA, Oren A, Dewers TA, Krumholz LR (2004a) Survey of archaeal diversity reveals abundance of halophilic Archaea in a low-salt, sulfide- and sulfur-rich spring. Appl Environ Microbiol 70:2230–2239PubMedCrossRefGoogle Scholar
  41. Elshahed MS, Savage KN, Oren A, Gutierrez MC, Ventosa A, Krumholz LR (2004b) Haloferax sulfurifontis sp. nov., a halophilic archaeon isolated from a sulfide and sulfur-rich spring. Int J Syst Evol Microbiol 54:2275–2279PubMedCrossRefGoogle Scholar
  42. Falb M, Pfeiffer F, Palm P, Rodewald K, Hickmann V, Tittor J, Oesterhelt D (2005) Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Res 15:1336–1343PubMedCrossRefGoogle Scholar
  43. Falb M, Müller K, Königsmaier L, Oberwinkler T, Horn P, von Gronau S, Gonzalez O, Pfeiffer F, Bornberg-Bauer E, Oesterhelt D (2008) Metabolism of halophilic archaea. Extremophiles 12:177–196PubMedCrossRefGoogle Scholar
  44. Franzmann PD (1991) The microbiota of saline lakes of the Vestvold Hills, Antarctica. In: Rodriguez-Valera F (ed) General and applied aspects of halophilic microorganisms. Plenum, New York, pp 9–14CrossRefGoogle Scholar
  45. Franzmann PD, Stackebrandt E, Sanderson K, Volkman JK, Cameron DE, Stevenson PL, McMeekin TA, Burton HR (1988) Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake Antarctica. Syst Appl Microbiol 11:20–27CrossRefGoogle Scholar
  46. Frolow F, Harel M, Sussman JL, Mevarech M, Shoham M (1996) Insights into protein adaptation to a saturated salt environment from the crystal structure of a halophilic 2Fe-2S ferredoxin. Nat Struct Biol 3:452–457PubMedCrossRefGoogle Scholar
  47. Galinski EA (1993) Compatible solutes of halophilic eubacteria: molecular principles, water-solute interactions, stress protection. Experientia 49:487–496CrossRefGoogle Scholar
  48. Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:273–328CrossRefGoogle Scholar
  49. Galinski EA, Louis P (1999) Compatible solutes: ectoine production and gene expression. In: Oren A (ed) Microbiology and biogeochemistry of hypersaline environments. CRC Press, Boca Raton, pp 187–202Google Scholar
  50. Galinski EA, Trüper HG (1994) Microbial behaviour in salt stressed ecosystems. FEMS Microbiol Rev 15:95–108CrossRefGoogle Scholar
  51. Garcia-Pichel F, Nübel U, Muyzer G (1998) The phylogeny of unicellular, extremely halotolerant cyanobacteria. Arch Microbiol 169:469–482PubMedCrossRefGoogle Scholar
  52. Giani D, Giani L, Cohen Y, Krumbein WE (1984) Methanogenesis in the hypersaline Solar Lake (Sinai). FEMS Microbiol Lett 25:219–224CrossRefGoogle Scholar
  53. Ginzburg M, Sachs L, Ginzburg BZ (1970) Ion metabolism in a Halobacterium.I. Influence of age of culture on intracellular concentrations. J Gen Physiol 55:187–207PubMedCrossRefGoogle Scholar
  54. Grant WD (2004) Life at low water activity. Phil Trans R Soc B 359:1249–1267PubMedCrossRefGoogle Scholar
  55. Grant WD, Tindall BJ (1986) The alkaline saline environment. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. Academic, London, pp 25–54Google Scholar
  56. Grant WD, Gemmell RT, McGenity TJ (1998a) Halophiles. In: Horikoshi K, Grant WD (eds) Extremophiles. Microbial life in extreme environments. Wiley-Liss, New York, pp 93–132Google Scholar
  57. Grant WD, Gemmell RT, McGenity TJ (1998b) Halobacteria: the evidence for longevity. Extremophiles 2:279–287PubMedCrossRefGoogle Scholar
  58. Graur D, Pupko T (2001) The Permian bacterium that isn’t. Mol Biol Evol 18:1143–1146PubMedCrossRefGoogle Scholar
  59. Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123PubMedCrossRefGoogle Scholar
  60. Hagemann M, Schoor A, Mikkat S, Effmert U, Zuther E, Marin K, Fulda S, Vinnemeyer J, Kunert A, Milkowski C, Probst C, Erdmann N (1999) The biochemistry and genetics of the synthesis of osmoprotective compounds in cyanobacteria. In: Oren A (ed) Microbiology and biogeochemistry of hypersaline environments. CRC Press, Boca Raton, pp 177–186Google Scholar
  61. Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JLM, D'Auria G, de Lima Alves F, La Cono V, Genovese M, Kew BA, Hayes SL, Harris G, Giuliano L, Timmis KN, McGenity TJ (2007) Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol 9:801–813PubMedCrossRefGoogle Scholar
  62. Hamaide F, Kushner DJ, Sprott GD (1983) Proton motive force and Na+/H+ antiport in a moderate halophile. J Bacteriol 156:537–544PubMedGoogle Scholar
  63. Hartman AL, Norais C, Badger JH, Delmas S, Haldenby S, Madupu R, Robinson J, Khouri H, Ren Q, Lowe TM, Maupin-Furlow J, Pohlschröder M, Daniels C, Pfeiffer F, Allers T, Eisen JA (2010) The complete genome sequence of Haloferax volcanii DS2, a model archaeon. PLoS One 5:e9605PubMedCrossRefGoogle Scholar
  64. Hartmann R, Sickinger H-D, Oesterhelt D (1980) Anaerobic growth of halobacteria. Proc Natl Acad Sci USA 77:3821–3825PubMedCrossRefGoogle Scholar
  65. Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J Syst Evol Microbiol 55:1817–1826PubMedCrossRefGoogle Scholar
  66. Imhoff JF (1993) Osmotic adaptation in halophilic and halotolerant microorganisms. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC Press, Boca Raton, pp 211–253Google Scholar
  67. Imhoff JF, Hashwa F, Trüper HG (1978) Isolation of extremely halophilic phototrophic bacteria from the alkaline Wadi Natrun, Egypt. Arch Hydrobiol 84:381–388Google Scholar
  68. Imhoff JF, Sahl HG, Soliman GSH, Trüper HG (1979) The Wadi Natrun: chemical composition and microbial mass development in alkaline brines of eutrophic desert lakes. Geomicrobiol J 1:219–234CrossRefGoogle Scholar
  69. Jannasch HW (1957) Die bakterielle Rotfärbung der Salzseen des Wadi Natrun (Ägypten). Arch Hydrobiol 53:425–433Google Scholar
  70. Javor BJ (1989) Hypersaline environments. Microbiology and biogeochemistry. Springer, BerlinCrossRefGoogle Scholar
  71. Javor BJ (2002) Industrial microbiology of solar salt production. J Indust Microbiol Biotechnol 28:42–47Google Scholar
  72. Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330PubMedCrossRefGoogle Scholar
  73. Kevbrin VV, Zhilina TN, Zavarzin GA (1995) Physiology of homoacetic bacteria Acetohalobium arabaticum. Microbiologiya 64:165–170 (in Russian)Google Scholar
  74. Khmelenina VN, Kalyuzhneya MG, Starostina NG, Suzina NE, Trotsenko YA (1997) Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva soda lakes. Curr Microbiol 35:257–261CrossRefGoogle Scholar
  75. Koops H-P, Böttcher B, Möller U, Pommerening-Röser A, Stehr G (1990) Description of a new species of Nitrosococcus. Arch Microbiol 154:244–248CrossRefGoogle Scholar
  76. Krekeler D, Sigalevich P, Teske A, Cypionka H, Cohen Y (1997) A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai) Desulfovibrio oxyclinae sp. nov. Arch Microbiol 167:369–375CrossRefGoogle Scholar
  77. Kunin V, Raes J, Harris JK, Spear JR, Walker JJ, Ivanova N, von Mering C, Bebout BM, Pace NR, Bork P, Hugenholtz P (2008) Millimeter scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat. Mol Systems Biol 4:198Google Scholar
  78. Kushner DJ (1978) Life in high salt and solute concentrations: halophilic bacteria. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 317–368Google Scholar
  79. Kushner DJ (1985) The Halobacteriaceae. In: Woese CR, Wolfe RS (eds) The bacteria. A treatise on structure and function, vol VIII, Archaebacteria. Academic, Orlando, pp 171–214Google Scholar
  80. Lai M-C, Gunsalus RP (1992) Glycine betaine and potassium ions are the major compatible solutes in the extremely halophilic methanogen Methanohalophilus strain Z7302. J Bacteriol 174:7474–7477PubMedGoogle Scholar
  81. Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38:272–290PubMedGoogle Scholar
  82. Lanyi JK (1986) Halorhodopsin: a light-driven chloride ion pump. Ann Rev Biophys Biophys Chem 15:11–28CrossRefGoogle Scholar
  83. Lanyi JK (2003) Bacteriorhodopsin. Ann Rev Physiol 66:665–688CrossRefGoogle Scholar
  84. Lanyi JK, MacDonald RE (1976) Existence of electrogenic hydrogen/sodium transport in Halobacterium cell envelope vesicles. Biochemistry 15:4608–4614PubMedCrossRefGoogle Scholar
  85. Lanyi JK, Silverman MP (1972) The state of binding of intracellular K+ in Halobacterium cutirubrum. Can J Microbiol 18:993–995PubMedCrossRefGoogle Scholar
  86. Lanyi JK, Silverman MP (1979) Gating effects in Halobacterium halobium membrane transport. J Biol Chem 254:4750–4755PubMedGoogle Scholar
  87. Lanyi JK, Stevenson J (1970) Studies of the electron transport chain of extremely halophilic bacteria IV. Role of hydrophobic forces in the structure of menadione reductase. J Biol Chem 245:4074–4080PubMedGoogle Scholar
  88. Larsen H (1973) The halobacteria’s confusion to biology. Antonie Van Leeuwenhoek 39:383–396PubMedCrossRefGoogle Scholar
  89. Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72:623–634PubMedCrossRefGoogle Scholar
  90. Lowe SE, Jain MK, Zeikus JG (1993) Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol Rev 57:451–509PubMedGoogle Scholar
  91. Luisi BF, Lanyi JK, Weber HJ (1980) Na+ transport via Na+/H+ antiport in Halobacterium halobium envelope vesicles. FEBS Lett 117:354–358PubMedCrossRefGoogle Scholar
  92. Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Meeting review. Halophiles 2010: life in saline environments. Appl Environ Microbiol 76:6971–6981PubMedCrossRefGoogle Scholar
  93. Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98PubMedCrossRefGoogle Scholar
  94. Mancinelli RL, Hochstein LI (1986) The occurrence of denitrification in extremely halophilic bacteria. FEMS Microbiol Lett 35:55–58PubMedCrossRefGoogle Scholar
  95. Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83PubMedCrossRefGoogle Scholar
  96. Martin DD, Ciulla RA, Roberts MF (1999) Osmoadaptation in Archaea. Appl Environ Microbiol 65:1815–1825PubMedGoogle Scholar
  97. Masui M, Wada S (1973) Intracellular concentrations of Na+, K+ and Cl of a moderately halophilic bacterium. Can J Microbiol 19:1181–1186PubMedCrossRefGoogle Scholar
  98. Matheson AT, Sprott GD, McDonald IJ, Tessier H (1976) Some properties of an unidentified halophile: growth characteristics, internal salt concentrations, and morphology. Can J Microbiol 22:780–786PubMedCrossRefGoogle Scholar
  99. Mavromatis K, Ivanova N, Anderson I, Lykidis A, Hooper SD, Sun H, Kunin V, Lapidus A, Hugenholtz P, Patel B, Kyrpides NC (2009) Genome analysis of the anaerobic thermohalophilic bacterium Halothermothrix orenii. PLoS One 4:e4192PubMedCrossRefGoogle Scholar
  100. McGenity TJ (2010) Halophilic hydrocarbon degraders. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1939–1951CrossRefGoogle Scholar
  101. McMeekin TA, Nichols PD, Nichols SD, Jugasz A, Franzmann PD (1993) Biology and biotechnological potential of halotolerant bacteria from Antarctic saline lakes. Experientia 49:1042–1046CrossRefGoogle Scholar
  102. Mermelstein LD, Zeikus JG (1998) Anaerobic nonmethanogenic extremophiles. In: Horikoshi K, Grant WD (eds) Extremophiles. Microbial life in extreme environments. Wiley-Liss, New York, pp 255–284Google Scholar
  103. Mesbah NM, Wiegel J (2008) Life at extreme limits. The anaerobic halophilic alkalithermophiles. Ann NY Acad Sci 1125:44–57PubMedCrossRefGoogle Scholar
  104. Mesbah NM, Wiegel J (2009) Natronovirga wadinatrunensis gen. nov., sp. nov. and Natranaerobius trueperi sp. nov., halophilic alkalithermophilic micro-organisms from soda lakes of the Wadi An Natrun, Egypt. Int J Syst Evol Microbiol 59:2042–2048PubMedCrossRefGoogle Scholar
  105. Meury J, Kohiyama M (1989) ATP is required for K+ active transport in the archaebacterium Haloferax volcanii. Arch Microbiol 151:530–536CrossRefGoogle Scholar
  106. Mevarech M, Neumann E (1977) Malate dehydrogenase isolated from extremely halophilic bacteria of the Dead Sea. 2. Effect of salt on the catalytic activity and structure. Biochemistry 16:3786–3792PubMedCrossRefGoogle Scholar
  107. Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86:155–164PubMedCrossRefGoogle Scholar
  108. Mongodin MEF, Nelson KE, Duagherty S, DeBoy RT, Wister J, Khouri H, Weidman J, Balsh DA, Papke RT, Sanchez Perez G, Sharma AK, Nesbø CL, MacLeod D, Bapteste E, Doolittle WF, Charlebois RL, Legault B, Rodríguez-Valera F (2005) The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci USA 102:18147–18152PubMedCrossRefGoogle Scholar
  109. Mullakhanbhai MF, Larsen H (1975) Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Arch Microbiol 104:207–214PubMedCrossRefGoogle Scholar
  110. Müller V, Oren A (2003) Metabolism of chloride in halophilic prokaryotes. Extremophiles 7:261–266PubMedCrossRefGoogle Scholar
  111. Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, Hall J, Dahl TA, Welti R, Goo YA, Leithausen B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE, Krebs MP, Angevine GM, Dale H, Isenbarger TA, Peck RF, Pohlschröder M, Spudich JL, Jung K-H, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L, DasSarma S (2000) Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci USA 97:12176–12181PubMedCrossRefGoogle Scholar
  112. Nickle DC, Learn GH, Rain MW, Mullins JI, Miller JE (2002) Curiously modern DNA for a “250 million-year-old” bacterium. J Mol Evol 54:134–137PubMedCrossRefGoogle Scholar
  113. Norton CF, McGenity TJ, Grant WD (1993) Archaeal halophiles (halobacteria) from two British salt mines. J Gen Microbiol 139:1077–1081Google Scholar
  114. Novitsky TJ, Kushner DJ (1975) Influence of temperature and salt concentration on the growth of a facultatively halophilic “Micrococcus” sp. Can J Microbiol 21:107–110PubMedCrossRefGoogle Scholar
  115. Ollivier B, Fardeau M-L, Cayol J-L, Magot M, Patel BKC, Prensier G, Garcia J-L (1998) Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int J Syst Bacteriol 48:821–828PubMedCrossRefGoogle Scholar
  116. Ollivier B, Hatchikian CE, Prensier G, Guezennec J, Garcia J-L (1991) Desulfohalobium retbaense gen. nov. sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int J Syst Bacteriol 41:74–81CrossRefGoogle Scholar
  117. Ollivier B, Caumette P, Garcia J-L, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38PubMedGoogle Scholar
  118. Oremland RS, King GM (1989) Methanogenesis in hypersaline environments. In: Cohen Y, Rosenberg E (eds) Microbial mats. Physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, DC, pp 180–190Google Scholar
  119. Oren A (1986) Intracellular salt concentration of the anaerobic halophilic eubacteria Haloanaerobium praevalens and Halobacteroides halobius. Can J Microbiol 32:4–9CrossRefGoogle Scholar
  120. Oren A (1988a) The microbial ecology of the Dead Sea. In: Marshall KC (ed) Advances in microbial ecology, vol 10. Plenum, New York, pp 193–229CrossRefGoogle Scholar
  121. Oren A (1988b) Anaerobic degradation of organic compounds at high salt concentrations. Antonie van Leeuwenhoek 54:267–277PubMedCrossRefGoogle Scholar
  122. Oren A (1993) Ecology of extremely halophilic microorganisms. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC Press, Boca Raton, pp 25–53Google Scholar
  123. Oren A (1994) The ecology of the extremely halophilic archaea. FEMS Microbiol Rev 13:415–440CrossRefGoogle Scholar
  124. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348PubMedGoogle Scholar
  125. Oren A (2000) Salts and brines. In: Whitton BA, Potts M (eds) Ecology of cyanobacteria: their diversity in time and space. Kluwer, Dordrecht, pp 281–306Google Scholar
  126. Oren A (2001) The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystems. Hydrobiologia 466:61–72CrossRefGoogle Scholar
  127. Oren A (2002a) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Indust Microbiol Biotechnol 28:56–63Google Scholar
  128. Oren A (2002b) Halophilic microorganisms and their environments. Kluwer Scientific, DordrechtCrossRefGoogle Scholar
  129. Oren A (2006a) The order halobacteriales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 3. Springer, New York, pp 113–164Google Scholar
  130. Oren A (2006b) The order haloanaerobiales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 4. Springer, New York, pp 804–817Google Scholar
  131. Oren A (2006c) The genera Rhodothermus, Thermonema, Hymenobacter and Salinibacter. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 4. Springer, New York, pp 712–740Google Scholar
  132. Oren A (2007) Biodiversity in highly saline environments. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 223–231Google Scholar
  133. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Sal Syst 4:2CrossRefGoogle Scholar
  134. Oren A (2009) Saltern evaporation ponds as model systems for the study of primary production processes under hypersaline conditions. Aquat Microb Ecol 56:193–204CrossRefGoogle Scholar
  135. Oren A (2010a) Diversity of halophiles. In: Horikoshi K, Bull A, Robb F, Stetter K, Antranikian G (eds) Extremophiles handbook. Springer, TokyoGoogle Scholar
  136. Oren A (2010b) Ecology of halophiles. In: Horikoshi K, Bull A, Robb F, Stetter K, Antranikian G (eds) Extremophiles handbook. Springer, TokyoGoogle Scholar
  137. Oren A (2010c) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834PubMedCrossRefGoogle Scholar
  138. Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13:1908–1923Google Scholar
  139. Oren A, Gurevich P (1993) The fatty acid synthetase of Haloanaerobium praevalens is not inhibited by salt. FEMS Microbiol Lett 108:287–290CrossRefGoogle Scholar
  140. Oren A, Rodríguez-Valera F (2001) The contribution of Salinibacter species to the red coloration of saltern crystallizer ponds. FEMS Microbiol Ecol 36:123–130PubMedGoogle Scholar
  141. Oren A, Gurevich P, Azachi M, Henis Y (1992) Microbial degradation of pollutants at high salt concentrations. Biodegradation 3:387–398CrossRefGoogle Scholar
  142. Oren A, Heldal M, Norland S (1997) X-ray microanalysis of intracellular ions in the anaerobic halophilic eubacterium Haloanaerobium praevalens. Can J Microbiol 43:588–592CrossRefGoogle Scholar
  143. Oren A, Rodríguez-Valera F, Antón J, Benlloch S, Rosselló-Mora R, Amann R, Coleman J, Russell NJ (2004) Red, extremely halophilic, but not archaeal: the physiology and ecology of Salinibacter ruber, a bacterium isolated from saltern crystallizer ponds. A. Ventosa. Halophilic microorganisms. Springer, Berlin, pp 63–76Google Scholar
  144. Oren A, Larimer F, Richardson P, Lapidus A, Csonka LN (2005) How to be moderately halophilic with a broad salt tolerance: clues from the genome of Chromohalobacter salexigens. Extremophiles 9:275–279PubMedCrossRefGoogle Scholar
  145. Oxley APA, Lanfranconi MP, Wurdemann D, Ott S, Schreiber S, McGenity TJ, Timmis KN, Nogales B (2010) Halophilic archaea in the human intestinal mucosa. Environ Microbiol 12:2398–2410PubMedCrossRefGoogle Scholar
  146. Parnell JJ, Rompato G, Latta LC IV, Pfender ME, Van Nostrand JD, He Z, Zhou J, Andersen G, Champine P, Ganesan B, Weimer BC (2010) Functional biogeography as evidence of gene transfer in hypersaline microbial communities. PLoS One 5:e12919PubMedCrossRefGoogle Scholar
  147. Pieper U, Kapadia G, Mevarech M, Herzberg O (1998) Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea archaeon, Haloferax volcanii. Structure 6:75–88PubMedCrossRefGoogle Scholar
  148. Post FJ (1977) The microbial ecology of the Great Salt Lake. Microb Ecol 3:143–165CrossRefGoogle Scholar
  149. Pundak S, Eisenberg H (1981) Structure and activity of malate dehydrogenase of the extreme halophilic bacteria of the Dead Sea. 1. Conformation and interaction with water and salt between 5 M and 1 M NaCl concentration. Eur J Biochem 118:463–470PubMedCrossRefGoogle Scholar
  150. Pundak S, Aloni S, Eisenberg H (1981) Structure and activity of malate dehydrogenase of the extreme halophilic bacteria of the Dead Sea. 2. Inactivation, dissociation and unfolding at NaCl concentrations below 2 M. Salt, salt concentration and temperature dependence of enzyme stability. Eur J Biochem 118:471–477PubMedCrossRefGoogle Scholar
  151. Purdy KJ, Cresswell-Maynard TD, Nedwell DB, McGenity TJ, Grant WD, Timmis KN, Embley TM (2004) Isolation of haloarchaea that grow at low salinities. Environ Microbiol 6:591–595PubMedCrossRefGoogle Scholar
  152. Rainey FA, Zhilina TN, Boulygina ES, Stackebrandt E, Tourova TP, Zavarzin GA (1995) The taxonomic status of the fermentative anaerobic bacteria: description of Haloanaerobiales ord. nov., Halobacteroidaceae fam. nov., Orenia gen. nov. and further taxonomic rearrangements at the genus and species level. Anaerobe 1:185–199PubMedCrossRefGoogle Scholar
  153. Reed RH (1986) Halotolerant and halophilic microbes. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. Academic, London, pp 55–81Google Scholar
  154. Reistad R (1970) On the composition and nature of the bulk protein of extremely halophilic bacteria. Arch Microbiol 71:353–360Google Scholar
  155. Rengpipat S, Lowe SE, Zeikus JG (1988) Effect of extreme salt concentrations on the physiology and biochemistry of Halobacteroides acetoethylicus. J Bacteriol 170:3065–3071PubMedGoogle Scholar
  156. Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Sal Syst 1:5CrossRefGoogle Scholar
  157. Roberts MF (2006) Characterization of organic compatible solutes of halotolerant and halophilic microorganisms. In: Rainey FA, Oren A (eds) Extremophiles, vol 35, Methods in microbiolog. lsevier/Academic, Amsterdam, pp 615–647Google Scholar
  158. Rodriguez-Valera F (1988) Characteristics and microbial ecology of hypersaline environments. In: Rodriguez-Valera F (ed) Halophilic bacteria, vol 1. CRC Press, Boca Raton, pp 3–30Google Scholar
  159. Rodriguez-Valera F (1993) Introduction to saline environments. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC Press, Boca Raton, pp 1–23Google Scholar
  160. Roeßler M, Müller V (2002) Chloride, a new environmental signal molecule involved in gene regulation in a moderately halophilic bacterium, Halobacillus halophilus. J Bacteriol 184:6207–6215PubMedCrossRefGoogle Scholar
  161. Rubentschik L (1929) Zur Nitrifikation bei hohen Salzkonzentrationen. Zentralbl Bakteriol Abt II 77:1–18Google Scholar
  162. Saiz-Jimenez C, Laiz L (2000) Occurrence of halotolerant/halophilic bacterial communities in deteriorated monuments. Int Biodeter Biodegr 46:319–326CrossRefGoogle Scholar
  163. Savage KN, Krumholz LR, Oren A, Elshahed MS (2007) Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, high-sulfide spring. Int J Syst Evol Microbiol 57:19–24PubMedCrossRefGoogle Scholar
  164. Savage KN, Krumholz LR, Oren A, Elshahed MS (2008) Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 58:856–860PubMedCrossRefGoogle Scholar
  165. Schäfer G, Engelhard M, Müller V (1999) Bioenergetics of the Archaea. Microbiol Mol Biol Rev 63:570–620PubMedGoogle Scholar
  166. Schwibbert K, Marin-Sanguino M, Bagyan I, Heidrich G, Seitz H, Rampp M, Schuster SC, Klenk H-P, Pfeiffer F, Oesterhelt D, Kunte HJ (2010) A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581T. Environ Microbiol. DOI:10.1111/j.1462-2920.2010.02336.xGoogle Scholar
  167. Shindler DB, Wydro RM, Kushner DJ (1977) Cell-bound cations of the moderately halophilic bacterium Vibrio costicola. J Bacteriol 130:698–703PubMedGoogle Scholar
  168. Sokolov AP, Trotsenko YA (1995) Methane consumption in (hyper)saline habitats of Crimea. FEMS Microbiol Ecol 18:299–304CrossRefGoogle Scholar
  169. Soliman GSH, Trüper HG (1982) Halobacterium pharaonis sp. nov., a new, extremely haloalkaliphilic archaebacterium with low magnesium requirement. Zbl Bakt Hyg, I Abt Orig C 3:318–329Google Scholar
  170. Strahl H, Greie JC (2008) The extremely halophilic archaeon Halobacterium salinarum R1 responds to potassium limitation by expression of the K+-transporting KdpFABC P-type ATPase and by a decrease in intracellular K+. Extremophiles 12:741–752PubMedCrossRefGoogle Scholar
  171. Tadeo X, López-Méndez B, Trigueros T, Laín A, Castaño D, Millet O (2009) Structural basis for the amino acid composition of proteins from halophilic Archaea. PLoS Biol 7:e1000257PubMedCrossRefGoogle Scholar
  172. Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand J-C, Cuny P (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14:225–231PubMedCrossRefGoogle Scholar
  173. Tindall BJ, Trüper HG (1986) Ecophysiology of the aerobic halophilic archaebacteria. Syst Appl Microbiol 7:202–212CrossRefGoogle Scholar
  174. Tindall BJ, Mills AA, Grant WD (1980) An alkaliphilic red halophilic bacterium with a low magnesium requirement from a Kenyan soda lake. J Gen Microbiol 116:257–260Google Scholar
  175. Tindall BJ, Ross HNM, Grant WD (1984) Natronobacterium gen. nov. and Natronococcus gen. nov., two new genera of haloalkaliphilic archaebacteria. Syst Appl Microbiol 5:41–57CrossRefGoogle Scholar
  176. Trüper HG, Galinski EA (1990) Biosynthesis and fate of compatible solutes in extremely halophilic phototrophic eubacteria. FEMS Microbiol Rev 75:247–254Google Scholar
  177. Trüper HG, Severin J, Wohlfarth A, Müller E, Galinski EA (1991) Halophily, taxonomy, phylogeny and nomenclature. In: Rodriguez-Valera F (ed) General and applied aspects of halophilic microorganisms. Plenum, New York, pp 3–7CrossRefGoogle Scholar
  178. van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, de Lange GJ, Huebner A, Varnavas SP, Thomson J, Tamburini C, Marty D, McGenity TJ, Timmis KN, BioDeep Scientific Party (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123PubMedCrossRefGoogle Scholar
  179. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544PubMedGoogle Scholar
  180. Vreeland RH (1987) Mechanisms of halotolerance in microorganisms. CRC Crit Rev Microbiol 14:311–356CrossRefGoogle Scholar
  181. Vreeland RH, Litchfield CD, Martin EL, Elliot E (1980) Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495CrossRefGoogle Scholar
  182. Vreeland RH, Mierau BD, Litchfield CD, Martin EL (1983) Relationship of the internal solute composition to the salt tolerance of Halomonas elongata. Can J Microbiol 29:407–414CrossRefGoogle Scholar
  183. Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900PubMedCrossRefGoogle Scholar
  184. Wagner G, Hartmann R, Oesterhelt D (1978) Potassium uniport and ATP synthesis in Halobacterium halobium. Eur J Biochem 89:169–179PubMedCrossRefGoogle Scholar
  185. Walsby AE (1980) A square bacterium. Nature 283:69–71CrossRefGoogle Scholar
  186. Walsby AE (2005) Archaea with square cells. Trends Microbiol 13:193–195PubMedCrossRefGoogle Scholar
  187. Ward DM, Brock TD (1978) Hydrocarbon degradation in hypersaline environments. Appl Environ Microbiol 35:353–359PubMedGoogle Scholar
  188. Welsh DT, Lindsay YE, Caumette P, Herbert RA, Hannan J (1996) Identification of trehalose and glycine betaine as compatible solutes in the moderately halophilic sulfate reducing bacterium Desulfovibrio halophilus. FEMS Microbiol Lett 140:203–207CrossRefGoogle Scholar
  189. Wohlfarth A, Severin J, Galinski EA (1990) The spectrum of compatible solutes in heterotrophic halophilic eubacteria of the family Halomonadaceae. J Gen Microbiol 136:705–712Google Scholar
  190. Wolfe-Simon F, Switzer Blum J, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J, Stolz JF, Webb SM, Webb PK, Davies PCW, Anbar AD, Oremland RS (2011) A bacterium that can grow by using arsenic instead of phosphorus. Science 332:1163–1166Google Scholar
  191. Wood AP, Kelly DP (1991) Isolation and characterisation of Thiobacillus halophilus sp. nov., a sulphur-oxidising autotrophic eubacterium from a Western Australian hypersaline lake. Arch Microbiol 156:277–280CrossRefGoogle Scholar
  192. Zaccai G, Eisenberg H (1991) A model for the stabilization of a halophilic protein. G. di Prisco. Life under extreme conditions. Springer, Berlin, pp 125–137CrossRefGoogle Scholar
  193. Zavarzin GA, Zhilina TN, Pusheva MA (1994) Halophilic acetogenic bacteria. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 432–444CrossRefGoogle Scholar
  194. Zhilina TN, Zavarzin GA (1987) Methanohalobium evestigatum gen. nov., sp. nov., extremely halophilic methane-producing archaebacteria. Dokl Akad Nauk SSSR 293:464–468, in RussianGoogle Scholar
  195. Zhilina TN, Zavarzin GA (1990) Extremely halophilic, methylotrophic, anaerobic bacteria. FEMS Microbiol Rev 87:315–322CrossRefGoogle Scholar
  196. Zhilina TN, Zavarzin GA (1994) Alkaliphilic anaerobic community at pH 10. Curr Microbiol 29:109–112CrossRefGoogle Scholar
  197. Zhilina TN, Zavarzin GA, Detkova EN, Rainey FA (1996) Natroniella acetigena gen. nov. sp. nov., an extremely haloalkaliphilic, homoacetic bacterium: a new member of Haloanaerobiales. Curr Microbiol 32:320–326PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Division of Microbial and Molecular Ecology, The Institute of Life Sciences, and The Moshe Shilo Minerva Center for Marine BiogeochemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations