Advertisement

Prokaryotic Life Cycles

  • Lawrence J. Shimkets

Abstract

While the normal consequence of bacterial growth is production of identical cells, many prokaryotes generate a cell with a different purpose than the parent. These new cell types have one of three specific functions, dormancy, nutrient acquisition, or dispersal. Quite surprisingly, no prokaryotic life cycles have been described that result in sexual reproduction. Analysis of prokaryotic life cycles has progressed to the point where many life cycles have been described, primarily in the domain Bacteria. Life cycles have been studied in rigorous detail to determine what environmental cues initiate the process or how the cellular transformation occurs. This chapter attempts to familiarize the reader with many of the wonderful systems that have been discovered. Space limitations do not permit comprehensive discussion of all the life cycles that have been described. This chapter also covers several model systems in detail to illustrate the relevant genetic and biochemical strategies.

Keywords

Fruiting Body Sigma Factor Aerial Hypha Asymmetric Cell Division Alginate Lyase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This work was supported by National Science Foundation Grant MCB0742976.

References

  1. Abdelrahman YM, Belland RJ (2005) The chlamydial developmental cycle. FEMS Microbiol Rev 29(5):949–959PubMedCrossRefGoogle Scholar
  2. Angert ER, Losick RM (1998) Propagation by sporulation in the guinea pig symbiont Metabacterium polyspora. Proc Natl Acad Sci USA 95(17):10218–10223PubMedCrossRefGoogle Scholar
  3. Angert ER, Brooks AE et al (1996) Phylogenetic analysis of Metabacterium polyspora: clues to the evolutionary origin of daughter cell production in Epulopiscium species, the largest bacteria. J Bacteriol 178(5):1451–1456PubMedGoogle Scholar
  4. Bagwell CE, Bhat S et al (2008) Survival in nuclear waste, extreme resistance, and potential applications gleaned from the genome sequence of Kineococcus radiotolerans SRS30216. PLoS One 3(12):e3878PubMedCrossRefGoogle Scholar
  5. Berleman JE, Bauer CE (2005) Involvement of a Che-like signal transduction cascade in regulating cyst cell development in Rhodospirillum centenum. Mol Microbiol 56(6):1457–1466PubMedCrossRefGoogle Scholar
  6. Brock TD, Madigan MT (1988) Biology of microorganisms, 5th edn. Prentice-Hall, Englewood Cliffs, 722Google Scholar
  7. Campbell EL, Summers ML et al (2007) Global gene expression patterns of Nostoc punctiforme in steady-state dinitrogen-grown heterocyst-containing cultures and at single time points during the differentiation of akinetes and hormogonia. J Bacteriol 189(14):5247–5256PubMedCrossRefGoogle Scholar
  8. Cano RJ, Borucki MK (1995) Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science 268(5213):1060–1064PubMedCrossRefGoogle Scholar
  9. Curtis PD, Brun YV (2010) Getting in the loop: regulation of development in Caulobacter crescentus. Microbiol Mol Biol Rev 74(1):13–41PubMedCrossRefGoogle Scholar
  10. Curtis PD, Taylor RG et al (2007) Spatial organization of Myxococcus xanthus during fruiting body formation. J Bacteriol 189(24):9126–9130PubMedCrossRefGoogle Scholar
  11. Cutlip RC (1970) Electron microscopy of cell cultures infected with a chlamydial agent causing polyarthritis of lambs. Infect Immun 1(5):499–502PubMedGoogle Scholar
  12. de Hoon MJ, Eichenberger P et al (2010) Hierarchical evolution of the bacterial sporulation network. Curr Biol 20(17):R735–R745PubMedCrossRefGoogle Scholar
  13. Dworkin M (1985) Developmental biology of the bacteria. Benjamin/Cummings, Menlo ParkGoogle Scholar
  14. Evans KJ, Lambert C et al (2007) Predation by Bdellovibrio bacteriovorus HD100 requires type IV pili. J Bacteriol 189(13):4850–4859PubMedCrossRefGoogle Scholar
  15. Gimmestad M, Ertesvag H et al (2009) Characterization of three new Azotobacter vinelandii alginate lyases, one of which is involved in cyst germination. J Bacteriol 191(15):4845–4853PubMedCrossRefGoogle Scholar
  16. Gode-Potratz CJ, Kustusch RJ et al (2011) Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence. Mol Microbiol 79(1):240–263Google Scholar
  17. Golden JW, Yoon HS (2003) Heterocyst development in Anabaena. Curr Opin Microbiol 6(6):557–563PubMedCrossRefGoogle Scholar
  18. Hitchins VM, Sadoff HL (1970) Morphogenesis of cysts in Azotobacter vinelandii. J Bacteriol 104(1):492–498PubMedGoogle Scholar
  19. Huntley S, Hamann N et al (2011) Comparative genomic analysis of fruiting body formation in myxococcales. Mol Biol Evol 28(2):1083–1097PubMedCrossRefGoogle Scholar
  20. Kumar K, Mella-Herrera RA et al (2010) Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2(4):a000315PubMedCrossRefGoogle Scholar
  21. McCormick JR (2009) Cell division is dispensable but not irrelevant in Streptomyces. Curr Opin Microbiol 12(6):689–698PubMedCrossRefGoogle Scholar
  22. Meeks JC, Elhai J (2002) Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev 66(1):94–121, Table of contentsPubMedCrossRefGoogle Scholar
  23. Moir A (2006) How do spores germinate? J Appl Microbiol 101(3):526–530PubMedCrossRefGoogle Scholar
  24. Nichols JM, Adams DG (1982) Akinetes. In: Carr NG, Whitton BA (eds) The biology of the cyanobacteria. University of California Press, Berkeley, pp 387–412Google Scholar
  25. Olsson-Francis K, de la Torre R et al (2009) Survival of Akinetes (resting-state cells of cyanobacteria) in low earth orbit and simulated extraterrestrial conditions. Orig Life Evol Biosph 39:565–579PubMedCrossRefGoogle Scholar
  26. Phillips RW, Wiegel J et al (2002) Kineococcus radiotolerans sp. nov., a radiation-resistant, gram-positive bacterium. Int J Syst Evol Microbiol 52(Pt 3):933–938PubMedCrossRefGoogle Scholar
  27. Poindexter JS (1964) Biological properties and classification of the Caulobacter group. Bacteriol Rev 28:231–295PubMedGoogle Scholar
  28. Popham DL (2002) Specialized peptidoglycan of the bacterial endospore: the inner wall of the lockbox. Cell Mol Life Sci 59(3):426–433PubMedCrossRefGoogle Scholar
  29. Radajewski S, Duxbury T (2001) Motility responses and desiccation survival of zoospores from the Actinomycete Kineosporia sp. Strain SR11. Microb Ecol 41(3):233–244PubMedGoogle Scholar
  30. Reed WM, Titus JA et al (1980) Structure of Methylosinus trichosporium exospores. J Bacteriol 141(2):908–913PubMedGoogle Scholar
  31. Rendulic S, Jagtap P et al (2004) A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303(5658):689–692PubMedCrossRefGoogle Scholar
  32. Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101(3):514–525PubMedCrossRefGoogle Scholar
  33. Setubal JC, dos Santos P et al (2009) Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 191(14):4534–4545PubMedCrossRefGoogle Scholar
  34. Sockett RE (2009) Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol 63:523–539PubMedCrossRefGoogle Scholar
  35. Vreeland RH, Rosenzweig WD et al (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407(6806):897–900PubMedCrossRefGoogle Scholar
  36. Waterbury JB, Stanier RY (1978) Patterns of growth and development in Pleurocapsalean cyanobacteria. Microbiol Rev 42(1):2–44PubMedGoogle Scholar
  37. Whittenbury R, Dow CS (1977) Morphogenesis and differentiation in Rhodomicrobium vannielii and other budding and prosthecate bacteria. Bacteriol Rev 41(3):754–808PubMedGoogle Scholar
  38. Whittenbury R, Davies SL et al (1970) Exospores and cysts formed by methane-utilizing bacteria. J Gen Microbiol 61(2):219–226PubMedGoogle Scholar
  39. Whitworth DE (2008) Myxobacteria: multicellularity and differentiation. American Society for Microbiology Press, Washington, DCGoogle Scholar
  40. Willey JM, Willems A et al (2006) Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor. Mol Microbiol 59(3):731–742PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of MicrobiologyThe University of GeorgiaAthensUSA

Personalised recommendations