Advertisement

Bacterial Behavior

  • Judith P. Armitage
  • Kathryn A. Scott

Abstract

A wide variety of bacteria have the ability to change their pattern of swimming behavior in response to changes in environmental conditions and thus move toward favorable growth conditions. It has become apparent that the response to such diverse stimuli as light, temperature, and concentrations of nutrients is coordinated through the same network of cytoplasmic proteins and that the core components of this network are conserved among bacterial species. Here we outline the mechanism through which swimming is effected, the range of receptor proteins used to detect external signals, and how these signals are coordinated through cytoplasmic proteins to elicit a change in swimming behavior.

Keywords

Periplasmic Binding Protein Swarmer Cell Flagellar Motor Histidine Protein Kinase Periplasmic Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Research on R. sphaeroides in the Armitage lab is funded by the UK BBSRC.

References

  1. Adler J (1969) Chemoreceptors in bacteria. Science 166:1588PubMedGoogle Scholar
  2. Adler J, Epstein W (1974) Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis. Proc Natl Acad Sci USA 71:2895–2899PubMedGoogle Scholar
  3. Airola MV, Watts KJ, Bilwes AM, Crane BR (2010) Structure of concatenated HAMP domains provides a mechanism for signal transduction. Structure 18:436–448PubMedGoogle Scholar
  4. Alexander RP, Zhulin IB (2007) Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors. Proc Natl Acad Sci USA 104:2885–2890PubMedGoogle Scholar
  5. Alley MRK, Maddock JR, Shapiro L (1992) Polar localization of a bacterial chemoreceptor. Genes Dev 6:825–836PubMedGoogle Scholar
  6. Allison C, Coleman N, Jones PL, Hughes C (1992) Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation. Infect Immun 60:4740–4746PubMedGoogle Scholar
  7. Amin DN, Hazelbauer GL (2010) The chemoreceptor dimer is the unit of conformational coupling and transmembrane signaling. J Bacteriol 192:1193–1200PubMedGoogle Scholar
  8. Amin DN, Taylor BL, Johnson MS (2006) Topology and boundaries of the aerotaxis receptor Aer in the membrane of Escherichia coli. J Bacteriol 188:894–901PubMedGoogle Scholar
  9. Antunez-Lamas M, Cabrera-Ordonez E, Lopez-Solanilla E, Raposo R, Trelles-Salazar O, Rodriguez-Moreno A, Rodriguez-Palenzuela P (2009) Role of motility and chemotaxis in the pathogenesis of Dickeya dadantii 3937 (ex Erwinia chrysanthemi 3937). Microbiology-Sgm 155:434–442Google Scholar
  10. Aravind L, Ponting CP (1999) The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol Lett 176:111–116PubMedGoogle Scholar
  11. Arkhipov A, Freddolino PL, Imada K, Namba K, Schulten K (2006) Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum. Biophys J 91:4589–4597PubMedGoogle Scholar
  12. Armitage JP (1997) Behavioural responses of bacteria to light and oxygen. Arch Microbiol 168:249–261PubMedGoogle Scholar
  13. Armitage J (2006) Bacterial behavior. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 102–139Google Scholar
  14. Armitage JP, Macnab RM (1987) Unidirectional, intermittent rotation of the flagellum of Rhodobacter sphaeroides. J Bacteriol 169:514–518PubMedGoogle Scholar
  15. Armitage JP, Pitta TP, Vigeant MA, Packer HL, Ford RM (1999) Transformations in flagellar structure of Rhodobacter sphaeroides and possible relationship to changes in swimming speed. J Bacteriol 181:4825–4833PubMedGoogle Scholar
  16. Asai Y, Kojima S, Kato H, Nishioka N, Kawagishi I, Homma M (1997) Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium. J Bacteriol 179:5104–5110PubMedGoogle Scholar
  17. Asai Y, Kawagishi I, Sockett ER, Homma M (2000) Hybrid motor with the H + and Na + -driven components can rotate of vibrio polar flagella using sodium ions. J Bacteriol 181:6332–6338Google Scholar
  18. Atsumi T, McCartert L, Imae Y (1992) Polar and lateral flagellar motors of marine vibrio are driven by different ion-motive forces. Nature 355:182–184PubMedGoogle Scholar
  19. Barak R, Eisenbach M (1992) Correlation between phosphorylation of the chemotaxis protein-chey and its activity at the flagellar motor. Biochemistry 31:1821–1826PubMedGoogle Scholar
  20. Barak R, Eisenbach M (2001) Acetylation of the response regulator, CheY, is involved in bacterial chemotaxis. Mol Microbiol 40:731–743PubMedGoogle Scholar
  21. Barak R, Prasad K, Shainskaya A, Wolfe AJ, Eisenbach M (2004) Acetylation of the chemotaxis response regulator CheY by acetyl-CoA synthetase purified from Escherichia coli. J Mol Biol 342:383–401PubMedGoogle Scholar
  22. Barak R, Yan J, Shainskaya A, Eisenbach M (2006) The chemotaxis response regulator CheY can catalyze its own acetylation. J Mol Biol 359:251–265PubMedGoogle Scholar
  23. Bardy S, Ng SYM, Jarrell KF (2004) Recent advances in the structure and assembly of the archaeal flagellum. J Mol Microbiol Biotechnol 7:41–51PubMedGoogle Scholar
  24. Barnakov AN, Barnakova LA, Hazelbauer GL (1998) Comparison in vitro of a high- and a low-abundance chemoreceptor of Escherichia coli: similar kinase activation but different methyl-accepting activities. J Bacteriol 180:6713–6718PubMedGoogle Scholar
  25. Beel BD, Hazelbauer GL (2001) Signalling substitutions in the periplasmic domain of chemoreceptor Trg induce or reduce helical sliding in the transmembrane domain. Mol Microbiol 40:824–834PubMedGoogle Scholar
  26. Berg HC (1976) How spirochetes may swim. J Theor Biol 56:269–273PubMedGoogle Scholar
  27. Berg HC (1993) Random walks in biology. Princeton University Press, PrincetonGoogle Scholar
  28. Berg HC, Anderson RA (1973) Bacteria swim by rotating their flagellar filaments. Nature 245:380–382PubMedGoogle Scholar
  29. Berg HC, Brown DA (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500–504PubMedGoogle Scholar
  30. Berg HC, Turner L (1995) Cells of Escherichia coli swim either end forward. Proc Natl Acad Sci USA 92:477–479PubMedGoogle Scholar
  31. Berry RM, Armitage JP (2000) Response kinetics of tethered Rhodobacter sphaeroides to changes in light intensity. Biophys J 78:1207–1215PubMedGoogle Scholar
  32. Bhatnagar J, Borbat PP, Pollard AM, Bilwes AM, Freed JH, Crane BR (2010) Structure of the ternary complex formed by a chemotaxis receptor signaling domain, the CheA histidine kinase, and the coupling protein CheW as determined by pulsed dipolar ESR spectroscopy. Biochemistry 49:3824–3841PubMedGoogle Scholar
  33. Bibikov SI, Biran R, Rudd KE, Parkinson JS (1997) A signal transducer for aerotaxis in Escherichia coli. J Bacteriol 179:4075–4079PubMedGoogle Scholar
  34. Bibikov SI, Barnes LA, Gitin Y, Parkinson JS (2000) Domain organization and flavin adenine dinucleotide-binding determinants in the aerotaxis signal transducer Aer of Escherichia coli. Proc Natl Acad Sci USA 97:5830–5835PubMedGoogle Scholar
  35. Bibikov SI, Miller AC, Gosink KK, Parkinson JS (2004) Methylation-independent aerotaxis mediated by the Escherichia coli aer protein. J Bacteriol 186:3730–3737PubMedGoogle Scholar
  36. Bilwes AM, Alex LA, Crane BR, Simon MI (1999) Structure of CheA, a signal-transducing histidine kinase. Cell 96:131–141PubMedGoogle Scholar
  37. Bischoff DS, Ordal GW (1992) Bacillus subtilis chemotaxis: a deviation from the Escherichia coli paradigm. Mol Microbiol 6:23–28PubMedGoogle Scholar
  38. Blair DF, Berg HC (1990) The Mota protein of Escherichia coli Is a proton-conducting component of the flagellar motor. Cell 60:439–449PubMedGoogle Scholar
  39. Blair DF, Berg HC (1991) Mutations in the Mota protein of Escherichia coli reveal domains critical for proton conduction. J Mol Bio 221:1433–1442Google Scholar
  40. Blat Y, Eisenbach M (1994) Phosphorylation-dependent binding of the chemotaxis signal molecule CheY to its phosphatase, CheZ. Biochemistry 33:902–906PubMedGoogle Scholar
  41. Block SM, Berg HC (1984) Successive incorporation of force-generating units in the bacterial rotary motor. Nature 309:470–472PubMedGoogle Scholar
  42. Block SM, Segall JE, Berg HC (1982) Impulse responses in bacterial chemotaxis. Cell 31:215–226PubMedGoogle Scholar
  43. Block SM, Blair DF, Berg HC (1989) Compliance of bacterial flagella measured with optical tweezers. Nature 338:514–518PubMedGoogle Scholar
  44. Block SM, Blair DF, Berg HC (1991) Compliance of bacterial polyhooks measured with optical tweezers. Cytometry 12:492–496PubMedGoogle Scholar
  45. Boukhvalova M, VanBruggen R, Stewart RC (2002) CheA kinase and chemoreceptor interaction surfaces on CheW. J Biol Chem 277:23596–23603PubMedGoogle Scholar
  46. Bourret RB, Davagnino J, Simon MI (1993) The carboxy-terminal portion of the CheA kinase mediates regulation of autophosphorylation by transducer and CheW. J Bacteriol 175:2097–2101PubMedGoogle Scholar
  47. Braun TF, Al-Mawsawi LQ, Kojima S, Blair DF (2003) Arrangement of core membrane segments in the MotA/MotB proton-channel complex of Escherichia coli. Biochemistry 43:35–45Google Scholar
  48. Bren A, Eisenbach M (1998) The N-terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator CheY. J Mol Biol 278:507–514PubMedGoogle Scholar
  49. Briegel A, Ding HJ, Li Z, Werner J, Gitai Z, Dias DP, Jensen RB, Jensen GJ (2008) Location and architecture of the Caulobacter crescentus chemoreceptor array. Mol Microbiol 69:30–41PubMedGoogle Scholar
  50. Briegel A, Ortega DR, Tocheva EI, Wuichet K, Li Z, Chen S, Muller A, Iancu CV, Murphy GE, Dobro MJ, Zhulin IB, Jensen GJ (2009) Universal architecture of bacterial chemoreceptor arrays. Proc Natl Acad Sci USA 106:17181–17186PubMedGoogle Scholar
  51. Brown DA, Berg HC (1974) Temporal stimulation of chemotaxis in Escherichia coli. Proc Natl Acad Sci USA 71:1388–1392PubMedGoogle Scholar
  52. Brown MT, Delalez NJ, Armitage JP (2011) Protein dynamics and mechanisms controlling the rotational behaviour of the bacterial flagellar motor. Curr Opin Microbiol 14:734–740PubMedGoogle Scholar
  53. Campbell AJ, Watts KJ, Johnson MS, Taylor BL (2010) Gain-of-function mutations cluster in distinct regions associated with the signalling pathway in the PAS domain of the aerotaxis receptor. Aer Mol Microiol 77:575–586Google Scholar
  54. Cantwell BJ, Manson MD (2009) Protein domains and residues involved in the CheZ/CheAS interaction. J Bacteriol 191:5838–5841PubMedGoogle Scholar
  55. Chadsey MS, Karlinsey JE, Hughes KT (1998) The flagellar anti-σ factor FlgM actively dissociates Salmonella typhimurium σ28 RNA polymerase holoenzyme. Genes Dev 12:3123–3136PubMedGoogle Scholar
  56. Chao X, Muff TJ, Park SY, Zhang S, Pollard AM, Ordal GW, Bilwes AM, Crane BR (2006) A receptor-modifying deamidase in complex with a signaling phosphatase reveals reciprocal regulation. Cell 124:561–571PubMedGoogle Scholar
  57. Charon NW, Goldstein SF (2002) Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annu Rev Genet 36:47–73PubMedGoogle Scholar
  58. Chen S, Beeby M, Murphy GE, Leadbetter JR, Hendrixson DR, Briegel A, Li Z, Shi J, Tocheva EI, Muller A, Dobro MJ, Jensen GJ (2011) Structural diversity of bacterial flagellar motors. EMBO J 30:2972–2981PubMedGoogle Scholar
  59. Chervitz SA, Falke JJ (1995) Lock on/off disulfides identify the transmembrane signaling helix of the aspartate receptor. J Biol Chem 270:24043–24053PubMedGoogle Scholar
  60. Chevance FFV, Hughes KT (2008) Coordinating assembly of a bacterial macromolecular machine. Nat Rev Micro 6:455–465Google Scholar
  61. Cho HS, Lee SY, Yan D, Pan X, Parkinson JS, Kustu S, Wemmer DE, Pelton JG (2000) NMR structure of activated CheY. J Mol Biol 297:543–551PubMedGoogle Scholar
  62. Choudhary M, Fu YX, Mackenzie C, Kaplan S (2004) DNA sequence duplication in Rhodobacter sphaeroides 2.4.1: evidence of an ancient partnership between chromosomes I and II. J Bacteriol 186:2019–2027PubMedGoogle Scholar
  63. Chun SY, Parkinson JS (1988) Bacterial motility: membrane topology of the Escherichia coli MotB protein. Science 239:276–278PubMedGoogle Scholar
  64. Cohen-Ben-Lulu GN, Francis NR, Shimoni E, Noy D, Davidov Y, Prasad K, Sagi Y, Cecchini G, Johnstone RM, Eisenbach M (2008) The bacterial flagellar switch complex is getting more complex. EMBO J 27:1134–1144PubMedGoogle Scholar
  65. Conley MP, Wolfe AJ, Blair DF, Berg HC (1989) Both chea and chew are required for reconstitution of chemotactic signaling in Escherichia coli. J Bacteriol 171:5190–5193PubMedGoogle Scholar
  66. Croxen MA, Sisson G, Melano R, Hoffman PS (2006) The Helicobacter pylori chemotaxis receptor TlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa. J Bacteriol 188:2656–2665PubMedGoogle Scholar
  67. De Mot R, Vanderleyden J (1994) The C-terminal sequence conservation between OmpA-related outer membrane proteins and MotB suggests a common function in both Gram-positive and Gram-negative bacteria, possibly in the interaction of these domains with peptidoglycan. Mol Microiol 12:333–334Google Scholar
  68. Ditty JL, Harwood CS (1999) Conserved cytoplasmic loops are important for both the transport and chemotaxis functions of PcaK, a protein from Pseudomonas putida with 12 membrane-spanning regions. J Bacteriol 181:5068–5074PubMedGoogle Scholar
  69. Djordjevic S, Stock AM (1998) Chemotaxis receptor recognition by protein methyltransferase CheR. Nat Struct Biol 5:446–450PubMedGoogle Scholar
  70. Domian IJ, Quon KC, Shapiro L (1997) Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell 90:415–424PubMedGoogle Scholar
  71. Donato GM, Kawula TH (1998) Enhanced binding of altered H-NS protein to flagellar rotor protein FliG causes increased flagellar rotational speed and hypermotility in Escherichia coli. J Biol Chem 273:24030–24036PubMedGoogle Scholar
  72. Draheim RR, Bormans AF, Lai RZ, Manson MD (2006) Tuning a bacterial chemoreceptor with protein−membrane interactions. Biochemistry 45:14655–14664PubMedGoogle Scholar
  73. Dubbs JM, Bird TH, Bauer CE, Tabita FR (2000) Interaction of CbbR and RegA* transcription regulators with the Rhodobacter sphaeroides cbb(I) promoter-operator region. J Biol Chem 275:19224–19230PubMedGoogle Scholar
  74. Duke TAJ, Bray D (1999) Heightened sensitivity of a lattice of membrane receptors. Proc Natl Acad Sci USA 96:10104–10108PubMedGoogle Scholar
  75. Edwards JC, Johnson MS, Taylor BL (2006) Differentiation between electron transport sensing and proton motive force sensing by the Aer and Tsr receptors for aerotaxis. Mol Microbiol 62:823–837PubMedGoogle Scholar
  76. Ely B, Ely TW, Crymes WB, Minnich SA (2000) A family of six flagellin genes contributes to the caulobacter crescentus flagellar filament. J Bacteriol 182:5001–5004PubMedGoogle Scholar
  77. Endres RG, Oleksiuk O, Hansen CH, Meir Y, Sourjik V, Wingreen NS (2008) Variable sizes of Escherichia coli chemoreceptor signaling teams. Mol Syst Biol 4:211PubMedGoogle Scholar
  78. Engelmann TW (1883) Bacterium photometricum. Ein beitrag zur vergleichenden physiologie des Licht- und Farensinnes. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 95–124Google Scholar
  79. Eraso JM, Kaplan S (2000) From redox flow to gene regulation: role of the PrrC protein of Rhodobacter sphaeroides 2.4.1. Biochemistry 39:2052–2062PubMedGoogle Scholar
  80. Erbse AH, Berlinberg AJ, Cheung CY, Leung WY, Falke JJ (2011) OS-FRET: a new one-sample method for improved FRET measurements. Biochemistry 50:451–457PubMedGoogle Scholar
  81. Fahrner KA, Block SM, Krishnaswamy S, Parkinson JS, Berg HC (1994) A mutant hook-associated protein (Hap3) facilitates torsionally induced transformations of the flagellar filament of Escherichia coli. J Mol Biol 238:173–186PubMedGoogle Scholar
  82. Falke JJ, Hazelbauer GL (2001) Transmembrane signaling in bacterial chemoreceptors. Trends Biochem Sci 26:257–265PubMedGoogle Scholar
  83. Fedorov OV, Khechinashvili NN, Kamiya R, Asakura S (1984) Multidomain of flagellin. J Mol Biol 175:83–87PubMedGoogle Scholar
  84. Feng XH, Lilly AA, Hazelbauer GL (1999) Enhanced function conferred on low-abundance chemoreceptor Trg by a methyltransferase-docking site. J Bacteriol 181:3164–3171PubMedGoogle Scholar
  85. Francis NR, Irikura VM, Yamaguchi S, DeRosier DJ, Macnab RM (1992) Localization of the Salmonella-Typhimurium flagellar switch protein flig to the cytoplasmic M-ring face of the basal body. Proc Natl Acad Sci USA 89:6304–6308PubMedGoogle Scholar
  86. Francke C, Kormelink TG, Hagemeijer Y, Overmars L, Sluijter V, Moezelaar R, Siezen RJ (2011) Comparative analyses imply that the enigmatic sigma factor 54 is a central controller of the bacterial exterior. Bmc Genomics 12:385Google Scholar
  87. Fredrick KL, Helmann JD (1994) Dual chemotaxis signaling pathways in Bacillus subtilis: a sigma D-dependent gene encodes a novel protein with both CheW and CheY homologous domains. J Bacteriol 176:2727–2735PubMedGoogle Scholar
  88. Fu R, Wall JD, Voordouw G (1994) DcrA, a c-type heme-containing methyl-accepting protein from Desulfovibrio vulgaris Hildenborough, senses the oxygen concentration or redox potential of the environment. J Bacteriol 176:344–350PubMedGoogle Scholar
  89. Fukuoka H, Wada T, Kojima S, Ishijima A, Homma M (2009) Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors. Mol Microiol 71:825–835Google Scholar
  90. Fukuoka H, Inoue Y, Terasawa S, Takahashi H, Ishijima A (2010) Exchange of rotor components in functioning bacterial flagellar motor. Biochem Biophys Res Comm 394:130–135PubMedGoogle Scholar
  91. Galibert F, Finan TM, Long SR, Phler A, Abola P, Ampe DRF, Barloy-Hubler DRF, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Drano SP, Federspiel NA, Fisher RF, Gloux SP, Godrie TRS, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure VR, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, VorÂlter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672PubMedGoogle Scholar
  92. Galkin VE, Yu X, Bielnicki J, Heuser J, Ewing CP, Guerry P, Egelman EH (2008) Divergence of quaternary structures among bacterial flagellar filaments. Science 320:382–385PubMedGoogle Scholar
  93. Gardina PJ, Bormans AF, Hawkins MA, Meeker JW, Manson MD (1997) Maltose-binding protein interacts simultaneously and asymmetrically with both subunits of the Tar chemoreceptor. Mol Microiol 23:1181–1191Google Scholar
  94. Gardina PJ, Bormans AF, Manson MD (1998) A mechanism for simultaneous sensing of aspartate and maltose by the Tar chemoreceptor of Escherichia coli. Mol Microiol 29:1147–1154Google Scholar
  95. Garrity LF, Schiel SL, Merrill R, Reizer J, Saier MH, Ordal GW (1998) Unique regulation of carbohydrate chemotaxis in Bacillus subtilis by the phosphoenolpyruvate-dependent phosphotransferase system and the methyl-accepting chemotaxis protein McpC. J Bacteriol 180:4475–4480PubMedGoogle Scholar
  96. Garza AG, Harrishaller LW, Stoebner RA, Manson MD (1995) Motility protein interactions in the bacterial flagellar motor. Proc Natl Acad Sci USA 92:1970–1974PubMedGoogle Scholar
  97. Gauden DE, Armitage JP (1995) Electron transport-dependent taxis in Rhodobacter sphaeroides. J Bacteriol 177:5853–5859PubMedGoogle Scholar
  98. Gegner JA, Graham DR, Roth AF, Dahlquist FW (1992) Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell 70:975–982PubMedGoogle Scholar
  99. Geis G, Suerbaum S, Forsthoff B, Leying H, Opferkuch W (1993) Ultrastructure and biochemical-studies of the flagellar sheath of Helicobacter-pylori. J Med Micro 38:371–377Google Scholar
  100. Goldman JP, Levin MD, Bray D (2009) Signal amplification in a lattice of coupled protein kinases. Mol Biosyst 5:1853–1859PubMedGoogle Scholar
  101. Goy MF, Springer MS, Adler J (1977) Sensory transduction in Escherichia coli: role of a protein methylation reaction in sensory adaptation. Proc Natl Acad Sci USA 74:4964–4968PubMedGoogle Scholar
  102. Goy MF, Springer MS, Adler J (1978) Failure of sensory adaptation in bacterial mutants that are defective in a protein methylation reaction. Cell 15:1231–1240PubMedGoogle Scholar
  103. Greek M, Platzer J, Sourjik V, Schmitt R (1995) Analysis of a chemotaxis operon in Rhizobium meliloti. Mol Microbiol 15:989–1000Google Scholar
  104. Greenfield D, McEvoy AL, Shroff H, Crooks GE, Wingreen NS, Betzig E, Liphardt J (2009) Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol 7:e1000137PubMedGoogle Scholar
  105. Grishanin RN, Gauden DE, Armitage JP (1997) Photoresponses in Rhodobacter sphaeroides: role of photosynthetic electron transport. J Bacteriol 179:24–30PubMedGoogle Scholar
  106. Griswold IJ, Dahlquist FW (2002) The dynamic behavior of CheW from Thermotoga maritima in solution, as determined by nuclear magnetic resonance: implications for potential protein-protein interaction sites. Biophys Chem 101:359–373PubMedGoogle Scholar
  107. Griswold IJ, Zhou HJ, Matison M, Swanson RV, McIntosh LP, Simon MI, Dahlquist FW (2002) The solution structure and interactions of CheW from Thermotoga maritima. Nat Struct Biol 9:121–125PubMedGoogle Scholar
  108. Grubl G, Vogler AP, Lengeler JW (1990) Involvement of the histidine protein (Hpr) of the phosphotransferase system in chemotactic signaling of Escherichia coli K-12. J Bacteriol 172:5871–5876PubMedGoogle Scholar
  109. Halkides CJ, McEvoy MM, Casper E, Matsumura P, Volz K, Dahlquist FW (2000) The 1.9 Å resolution crystal structure of phosphono-CheY, an analogue of the active form of the response regulator, CheY. Biochemistry 39:5280–5286PubMedGoogle Scholar
  110. Hall BA, Armitage JP, Sansom MSP (2011) Transmembrane helix dynamics of bacterial chemoreceptors supports a piston model of signalling. Plos Comput Biol 7:e1002204Google Scholar
  111. Hao S, Hamel D, Zhou H, Dahlquist FW (2009) Structural basis for the localization of the chemotaxis phosphatase CheZ by CheAS. J Bacteriol 191:5842–5844PubMedGoogle Scholar
  112. Harighi B (2009) Genetic evidence for CheB- and CheR-dependent chemotaxis system in A. tumefaciens toward acetosyringone. Microbiol Res 164:634–641PubMedGoogle Scholar
  113. Harrison DM, Skidmore J, Armitage JP, Maddock JR (1999) Localization and environmental regulation of MCP-like proteins in Rhodobacter sphaeroides. Mol Microbiol 31:885–892PubMedGoogle Scholar
  114. Harshey RM (1994) Bees aren't the only ones – swarming in gram-negative bacteria. Mol Microiol 13:389–394Google Scholar
  115. Harshey RM (2003) Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57:249–273PubMedGoogle Scholar
  116. Harshey RM, Matsuyama T (1994) Dimorphic transition in Escherichia coli and Salmonella-Typhimurium– Surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci USA 91:8631–8635PubMedGoogle Scholar
  117. Harwood CS, Nichols NN, Kim MK, Ditty JL, Parales RE (1994) Identification of the Pcarkf gene-cluster from Pseudomonas-Putida – involvement in chemotaxis, biodegradation, and transport of 4-Hydroxybenzoate. J Bacteriol 176:6479–6488PubMedGoogle Scholar
  118. Hazelbauer GL, Lai WC (2010) Bacterial chemoreceptors: providing enhanced features to two-component signaling. Curr Opin Microbiol 13:124–132PubMedGoogle Scholar
  119. Hazelbauer GL, Falke JJ, Parkinson JS (2008) Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33:9–19PubMedGoogle Scholar
  120. Hess JF, Oosawa K, Kaplan N, Simon MI (1988) Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell 53:79–87PubMedGoogle Scholar
  121. Holt SC (1978) Anatomy and chemistry of spirochetes. Microbiol Rev 42:114–160PubMedGoogle Scholar
  122. Hou SB, Larsen RW, Boudko D, Riley CW, Karatan E, Zimmer M, Ordal GW, Alam M (2000) Myoglobin-like aerotaxis transducers in Archaea and Bacteria. Nature 403:540–544PubMedGoogle Scholar
  123. Hwang W, Lee KE, Lee JK, Park BC, Kim KS (2008) Genes of Rhodobacter sphaeroides 2.4.1 regulated by innate quorum-sensing signal, 7,8-cis-N-(tetradecenoyl) homoserine lactone. J Microbiol Biotech 18:219–227Google Scholar
  124. Iino T (1969) Polarity of flagellar growth in Salmonella. J Gen Microbiol 56:227PubMedGoogle Scholar
  125. Ikebe T, Iyoda S, Kutsukake K (1999) Promoter analysis of the class 2 flagellar operons of Salmonella. Genes Genet Syst 74:179–183PubMedGoogle Scholar
  126. Imada K, Minamino T, Tahara A, Namba K (2007) Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits. Proc Natl Acad Sci USA 104:485–490PubMedGoogle Scholar
  127. Jahreis K, Morrison TB, Garzon A, Parkinson JS (2004) Chemotactic signaling by an Escherichia coli CheA mutant that lacks the binding domain for phosphoacceptor partners. J Bacteriol 186:2664–2672PubMedGoogle Scholar
  128. Jeziore-Sassoon Y, Hamblin PA, Bootle WC, Poole PS, Armitage JP (1998) Metabolism is required for chemotaxis to sugars in Rhodobacter sphaeroides. Microbiology 144:229–239PubMedGoogle Scholar
  129. Jiang ZY, Gest H, Bauer CE (1997) Chemosensory and photosensory perception in purple photosynthetic bacteria utilize common signal transduction components. J Bacteriol 179:5720–5727PubMedGoogle Scholar
  130. Jiang Z, Rushing BG, Bai Y, Gest H, Bauer CE (1998) Isolation of Rhodospirillum centenum mutants defective in phototactic colony motility by transposon mutagenesis. J Bacteriol 180:1248–1255PubMedGoogle Scholar
  131. Jiang ZY, Swem LR, Rushing BG, Devanathan S, Tollin G, Bauer CE (1999) Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes. Science 285:406–409PubMedGoogle Scholar
  132. Jones BV, Young R, Mahenthiralingam E, Stickler DJ (2004) Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter-associated urinary tract infection. Infect Immun 72:3941–3950PubMedGoogle Scholar
  133. Kaiser GE, Doetsch RN (1975) Enhanced translational motion of Leptospira in viscous environments. Nature 255:656–657PubMedGoogle Scholar
  134. Karatan E, Saulmon MM, Bunn MW, Ordal GW (2001) Phosphorylation of the response regulator CheV is required for adaptation to attractants during Bacillus subtilis chemotaxis. J Biol Chem 276:43618–43626PubMedGoogle Scholar
  135. Karlinsey JE, Tanaka S, Bettenworth V, Yamaguchi S, Boos W, Aizawa SI, Hughes KT (2000) Completion of the hook-basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol Microiol 37:1220–1231Google Scholar
  136. Kawagishi I, Imagawa M, Imae Y, McCarter L, Homma M (1996) The sodium-driven polar flagellar motor of marine vibrio as the mechanosensor that regulates lateral flagellar expression. Mol Microiol 20:693–699Google Scholar
  137. Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8:634–644PubMedGoogle Scholar
  138. Kehry MR, Dahlquist FW (1982) The methyl-accepting chemotaxis proteins of Escherichia coli. Identification of the multiple methylation sites on methyl-accepting chemotaxis protein I. J Biol Chem 257:10378–10386PubMedGoogle Scholar
  139. Kehry MR, Bond MW, Hunkapiller MW, Dahlquist FW (1983) Enzymatic deamidation of methyl-accepting chemotaxis proteins in Escherichia coli catalyzed by the cheB gene product. Proc Natl Acad Sci USA 80:3599–3603PubMedGoogle Scholar
  140. Kentner D, Thiem S, Hildenbeutel M, Sourjik V (2006) Determinants of chemoreceptor cluster formation in Escherichia coli. Mol Microbiol 61:407–417PubMedGoogle Scholar
  141. Khan S, Macnab RM (1980) The steady-state counterclockwise-clockwise ratio of bacterial flagellar motors is regulated by protonmotive force. J Mol Biol 138:563–597PubMedGoogle Scholar
  142. Kho DH, Jang JH, Kim HS, Kim KS, Lee JK (2003) Quorum sensing of Rhodobacter sphaeroides negatively regulates cellular poly-beta-hydroxybutyrate content under aerobic growth conditions. J Microbiol Biotech 13:477–481Google Scholar
  143. Khursigara CM, Wu X, Subramaniam S (2008) Chemoreceptors in Caulobacter crescentus: trimers of receptor dimers in a partially ordered hexagonally packed array. J Bacteriol 190:6805–6810PubMedGoogle Scholar
  144. Kim KK, Yokota H, Kim SH (1999) Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400:787–792PubMedGoogle Scholar
  145. Kirby JR, Saulmon MM, Kristich CJ, Ordal GW (1999) CheY-dependent methylation of the asparagine receptor, McpB, during chemotaxis in Bacillus subtilis. J Biol Chem 274:11092–11100PubMedGoogle Scholar
  146. Kirkpatrick CL, Viollier PH (2012) Decoding Caulobacter development. FEMS Microbiol Rev 36:193–205PubMedGoogle Scholar
  147. Kitao A, Yonekura K, Maki-Yonekura S, Samatey FA, Imada K, Namba K, Go N (2006) Switch interactions control energy frustration and multiple flagellar filament structures. Proc Natl Acad Sci USA 103:4894–4899PubMedGoogle Scholar
  148. Ko M, Park C (2000) Two novel flagellar components and H-NS are involved in the motor function of Escherichia coli. J Mol Biol 303:371–382PubMedGoogle Scholar
  149. Komeili A (2012) Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol Rev 36:232–255PubMedGoogle Scholar
  150. Kort R, Crielaard W, Spudich JL, Hellingwerf KJ (2000) Color-sensitive motility and methanol release responses in Rhodobacter sphaeroides. J Bacteriol 182:3017–3021PubMedGoogle Scholar
  151. Kreutel S, Kuhn A, Kiefer D (2010) The photosensor protein Ppr of Rhodocista centenaria is linked to the chemotaxis signalling pathway. Bmc Microbiol 10:281Google Scholar
  152. Kristich CJ, Ordal GW (2002) Bacillus subtilis CheD is a chemoreceptor modification enzyme required for chemotaxis. J Biol Chem 277:25356–25362PubMedGoogle Scholar
  153. Kubori T, Matsushima Y, Nakamura D, Uralil J, Lara-Tejero M, Sukhan A, Galan JE, Aizawa S (1998) Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280:602–605PubMedGoogle Scholar
  154. Kutsukake K, Ohya Y, Iino T (1990) Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J Bacteriol 172:741–747PubMedGoogle Scholar
  155. Kutsukake K, Nakashima H, Tominaga A, Abo T (2006) Two DNA invertases contribute to flagellar phase variation in Salmonella enterica Serovar Typhimurium Strain LT2. J Bacteriol 188:950–957PubMedGoogle Scholar
  156. Laszlo DJ, Taylor BL (1981) Aerotaxis in Salmonella-Typhimurium – role of electron-transport. J Bacteriol 145:990–1001PubMedGoogle Scholar
  157. Laszlo DJ, Fandrich BL, Sivaram A, Chance B, Taylor BL (1984) Cytochrome-O as a terminal oxidase and receptor for aerotaxis in Salmonella-Typhimurium. J Bacteriol 159:663–667PubMedGoogle Scholar
  158. Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, Armitage JP (2006) Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443:355–358PubMedGoogle Scholar
  159. Lee AG, Fitzsimons JTR (1976) Motility in normal and filamentous forms of Rhodospirillum-rubrum. J Gen Microbiol 93:346–354PubMedGoogle Scholar
  160. Lee SY, Cho H, Pelton JG, Yan D, Berry EA, Wemmer DE (2001) Crystal structure of activated CheY. J Biol Chem 276:16425–16431PubMedGoogle Scholar
  161. Lee LK, Ginsburg MA, Crovace C, Donohoe M, Stock D (2010) Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching. Nature 466:996–1000PubMedGoogle Scholar
  162. LeMoual H, Koshland DE (1996) Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis. J Mol Biol 261:568–585Google Scholar
  163. Li M, Hazelbauer GL (2005) Adaptational assistance in clusters of bacterial chemoreceptors. Mol Microbiol 56:1617–1626PubMedGoogle Scholar
  164. Liarzi O, Barak R, Bronner V, Dines M, Sagi Y, Shainskaya A, Eisenbach M (2010) Acetylation represses the binding of CheY to its target proteins. Mol Microbiol 77:1606Google Scholar
  165. Lipkow K, Andrews SS, Bray D (2004) Simulated diffusion of phosphorylated CheY through the cytoplasm of E. coli. J Bacteriol 187:45–53Google Scholar
  166. Liu JD, Parkinson JS (1989) Role of Chew protein in coupling membrane-receptors to the intracellular signaling system of bacterial chemotaxis. Proc Natl Acad Sci USA 86:8703–8707PubMedGoogle Scholar
  167. Liu JD, Parkinson JS (1991) Genetic-evidence for interaction between the Chew and Tsr proteins during chemoreceptor signaling by Escherichia coli. J Bacteriol 173:4941–4951PubMedGoogle Scholar
  168. Lloyd SA, Blair DF (1997) Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J Mol Biol 266:733–744PubMedGoogle Scholar
  169. Luke CJ, Kubiak E, Cockayne A, Elliott TS, Penn CW (1990) Identification of flagellar and associated polypeptides of Helicobacter (formerly Campylobacter) pylori. FEMS Microbiol Lett 59:225–230PubMedGoogle Scholar
  170. Lupas A, Stock J (1989) Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis. J Biol Chem 264:17337–17342PubMedGoogle Scholar
  171. Lux R, Jahreis K, Bettenbrock K, Parkinson JS, Lengeler JW (1995) Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. Proc Natl Acad Sci USA 92:11583–11587PubMedGoogle Scholar
  172. Lux R, Munasinghe VRN, Castellano F, Lengeler JW, Corrie JET, Khan S (1999) Elucidation of a PTS-carbohydrate chemotactic signal pathway in Escherichia coli using a time-resolved behavioral assay. Mol Biol Cell 10:1133–1146PubMedGoogle Scholar
  173. Mackenzie C (2001) The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosynth Res 70:19–41PubMedGoogle Scholar
  174. Macnab RM (1976) Examination of bacterial flagellation by dark-field microscopy. J Clin Microbiol 4:258–265PubMedGoogle Scholar
  175. Macnab RM (1977) Bacterial flagella rotating in bundles – study in helical geometry. Proc Natl Acad Sci USA 74:221–225PubMedGoogle Scholar
  176. Macnab RM (1999) The bacterial flagellum: reversible rotary propeller and type III export apparatus. J Bacteriol 181:7149–7153PubMedGoogle Scholar
  177. Macnab RM (2004) Type III flagellar protein export and flagellar assembly. BBA-Mol Cell Res 1694:207–217Google Scholar
  178. Macnab RM, DeRosier DJ (1988) Bacterial flagellar structure and function. Can J Microbiol 34:442–451PubMedGoogle Scholar
  179. Macnab R, Koshland DE (1974) Bacterial motility and chemotaxis - light-induced tumbling response and visualization of individual flagella. J Mol Biol 84:399–406PubMedGoogle Scholar
  180. Maddock JR, Shapiro L (1993) Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259:1717–1723PubMedGoogle Scholar
  181. Maeda K, Imae Y (1979) Thermosensory transduction in Escherichia coli – inhibition of the thermoresponse by L-serine. Proc Natl Acad Sci USA 76:91–95PubMedGoogle Scholar
  182. Maeda K, Imae Y, Shioi JI, Oosawa F (1976) Effect of temperature on motility and chemotaxis of Escherichia coli. J Bacteriol 127:1039–1046PubMedGoogle Scholar
  183. Magariyama Y, Ichiba M, Nakata K, Baba K, Ohtani T, Kudo S, Goto T (2005) Difference in bacterial motion between forward and backward swimming caused by the wall effect. Biophys J 88:3648–3658PubMedGoogle Scholar
  184. Manson MD, Blank V, Brade G, Higgins CF (1986) Peptide chemotaxis in escherichia coli involves the Tap signal transducer and the dipeptide permease. Nature 321:253–256PubMedGoogle Scholar
  185. Massazza DA, Izzo SA, Gasperotti AF, Herrera Seitz MK, Studdert CA (2012) Functional and structural effects of seven-residue deletions on the coiled-coil cytoplasmic domain of a chemoreceptor. Mol Microiol 83:224–239Google Scholar
  186. McCarter LL (1994a) MotX, the channel component of the sodium-type flagellar motor. J Bacteriol 176:5988–5998PubMedGoogle Scholar
  187. McCarter LL (1994b) Mot Y, A component of the sodium-type flagellar motor. J Bacteriol 176:4219–4225PubMedGoogle Scholar
  188. McCarter LL (2004) Dual flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol 7:18–29PubMedGoogle Scholar
  189. Meister M, Lowe G, Berg HC (1987) The proton flux through the bacterial flagellar motor. Cell 49:643–650PubMedGoogle Scholar
  190. Meier VM, Muschler P, Scharf BE (2007) Functional analysis of nine putative chemoreceptor proteins in Sinorhizobium meliloti. J Bacteriol 189:1816–1826PubMedGoogle Scholar
  191. Meier VM, Scharf BE (2009) Cellular localization of predicted transmembrane and soluble chemoreceptors in Sinorhizobium meliloti. J Bacteriol 191:5724–5733PubMedGoogle Scholar
  192. Milburn MV, Prive GG, Milligan DL, Scott WG, Yeh J, Jancarik J, Koshland DE, Kim SH (1991) Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand. Science 254:1342–1347PubMedGoogle Scholar
  193. Miller AS, Falke JJ (2004) Side chains at the membrane-water interface modulate the signaling state of a transmembrane receptor. Biochemistry 43:1763–1770PubMedGoogle Scholar
  194. Miller AS, Kohout SC, Gilman KA, Falke JJ (2006) CheA kinase of bacterial chemotaxis: chemical mapping of four essential docking sites. Biochemistry 45:8699–8711PubMedGoogle Scholar
  195. Milligan DL, Koshland DE (1988) Site-directed cross-linking. Establishing the dimeric structure of the aspartate receptor of bacterial chemotaxis J Biol Chem 263:6268–6275Google Scholar
  196. MimoriKiyosue Y, Vonderviszt F, Namba K (1997) Locations of terminal segments of flagellin in the filament structure and their roles in polymerization and polymorphism. J Mol Biol 270:222–237Google Scholar
  197. Minamino T, Macnab RM (2000a) Interactions among components of the Salmonella flagellar export apparatus and its substrates. Mol Microiol 35:1052–1064Google Scholar
  198. Minamino T, Macnab RM (2000b) FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity. Mol Microiol 37:1494–1503Google Scholar
  199. Minamino T, Namba K (2008) Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature 451:485–488PubMedGoogle Scholar
  200. Minamino T, Chu R, Yamaguchi S, Macnab RM (2000) Role of FliJ in flagellar protein export in Salmonella. J Bacteriol 182:4207–4215PubMedGoogle Scholar
  201. Minamino T, Kazetani KI, Tahara A, Suzuki H, Furukawa Y, Kihara M, Namba K (2006) Oligomerization of the bacterial flagellar ATPase FliI is controlled by its extreme N-terminal region. J Mol Biol 360:510–519PubMedGoogle Scholar
  202. Minamino T, Imada K, Kinoshita M, Nakamura S, Morimoto YV, Namba K (2011) Structural insight into the rotational switching mechanism of the bacterial flagellar motor. Plos Biol 9:e1000616Google Scholar
  203. Mitchell JG, Pearson L, Bonazinga A, Dillon S, Khouri H, Paxinos R (1995) Long lag times and high velocities in the motility of natural assemblages of marine-bacteria. Appl Environ Microb 61:877–882Google Scholar
  204. Mizuno T, Imae Y (1984) Conditional inversion of the thermoresponse in Escherichia coli. J Bacteriol 159:360–367PubMedGoogle Scholar
  205. Mobley HLT, Belas R (1995) Swarming and pathogenicity of Proteus-Mirabilis in the urinary-tract. Trends Microbiol 3:280–284PubMedGoogle Scholar
  206. Morgan DG, Baumgartner JW, Hazelbauer GL (1993) Proteins antigenically related to methyl-accepting chemotaxis proteins of Escherichia coli detected in a wide-range of bacterial species. J Bacteriol 175:133–140PubMedGoogle Scholar
  207. Morgan DG, Owen C, Melanson LA, DeRosier DJ (1995) Structure of bacterial flagellar filaments at 11 Ångstrom resolution – packing of the alpha-helices. J Mol Biol 249:88–110PubMedGoogle Scholar
  208. Morrison TB, Parkinson JS (1997) A fragment liberated from the Escherichia coli CheA kinase that blocks stimulatory, but not inhibitory, chemoreceptor signaling. J Bacteriol 179:5543–5550PubMedGoogle Scholar
  209. Mowbray SL (1999) Bacterial chemoreceptors: recent progress in structure and function. Mol Cells 9:115–118PubMedGoogle Scholar
  210. Mowbray SL, Koshland DE (1987) Additive and independent responses in a single receptor – aspartate and maltose stimuli on the Tar Protein. Cell 50:171–180PubMedGoogle Scholar
  211. Muff TJ, Ordal GW (2007) The CheC phosphatase regulates chemotactic adaptation through CheD. J Biol Chem 282:34120–34128PubMedGoogle Scholar
  212. Muff TJ, Ordal GW (2008) The diverse CheC-type phosphatases: chemotaxis and beyond. Mol Microbiol 70:1054–1061Google Scholar
  213. Muppirala UK, Desensi S, Lybrand TP, Hazelbauer GL, Li ZJ (2009) Molecular modeling of flexible arm-mediated interactions between bacterial chemoreceptors and their modification enzyme. Protein Sci 18:1702–1714PubMedGoogle Scholar
  214. Muramoto K, Sugiyama S, Cragoe EJ, Imae Y (1994) Successive inactivation of the force-generating units of sodium-driven bacterial flagellar motors by a photoreactive amiloride analog. J Biol Chem 269:3374–3380PubMedGoogle Scholar
  215. Namba K, Vonderviszt F (1997) Molecular architecture of bacterial flagellum. Q Rev Biophys 30:1–65PubMedGoogle Scholar
  216. Namba K, Yamashita I, Vonderviszt F (1989) Structure of the core and central channel of bacterial flagella. Nature 342:648–654PubMedGoogle Scholar
  217. Nara T, Kawagishi I, Nishiyama S, Homma M, Imae Y (1996) Modulation of the thermosensing profile of the Escherichia coli aspartate receptor Tar by covalent modification of its methyl-accepting sites. J Biol Chem 271:17932–17936PubMedGoogle Scholar
  218. Ng SYM, Chaban B, Jarrell KF (2006) Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications. J Mol Microbiol Biotech 11:167–191Google Scholar
  219. Nikaido H, Saier MH (1992) Transport proteins in bacteria - common themes in their design. Science 258:936–942PubMedGoogle Scholar
  220. Nishiyama SI, Nara T, Homma M, Imae Y, Kawagishi I (1997) Thermosensing properties of mutant aspartate chemoreceptors with methyl-accepting sites replaced singly or multiply by alanine. J Bacteriol 179:6573–6580PubMedGoogle Scholar
  221. Nishiyama S, Umemura T, Nara T, Homma M, Kawagishi I (1999) Conversion of a bacterial warm sensor to a cold sensor by methylation of a single residue in the presence of an attractant. Mol Microiol 32:357–365Google Scholar
  222. O'Connor C, Matsumura P, Campos A (2009) The CheZ binding interface of CheAS is located in alpha-helix E. J Bacteriol 191:5845–5848PubMedGoogle Scholar
  223. Oh JI, Kaplan S (2000) Redox signaling: globalization of gene expression. EMBO J 19:4237–4247PubMedGoogle Scholar
  224. Ohnishi K, Kutsukake K, Suzuki H, Iino T (1990) Gene flia encodes an alternative sigma factor specific for flagellar operons in Salmonella-typhimurium. Mol Gen Genet 221:139–147PubMedGoogle Scholar
  225. O'Toole R, von Hofsten J, Rosqvist R, Olsson PE, Wolf-Watz H (2004) Visualisation of zebrafish infection by GFP-labelled Vibrio anguillarum. Microb Pathogenesis 37:41–46Google Scholar
  226. Overmann J (2010) The phototrophic consortium “Chlorochromatium aggregatum” – A model for bacterial heterologous multicellularity. Adv Exp Med Biol 675:15–29Google Scholar
  227. Overmann J, Schubert K (2002) Phototrophic consortia: model systems for symbiotic interrelations between prokaryotes. Arch Microbiol 177:201–208PubMedGoogle Scholar
  228. Packer HL, Gauden DE, Armitage JP (1996) The behavioural response of anaerobic Rhodobacter sphaeroides to temporal stimuli. Microbiology 142:593–599PubMedGoogle Scholar
  229. Park SY, Chao X, Gonzalez-Bonet G, Beel BD, Bilwes AM, Crane BR (2004) Structure and function of an unusual family of protein phosphatases: the bacterial chemotaxis proteins CheC and CheX. Mol Cell 16:563–574PubMedGoogle Scholar
  230. Park SY, Borbat PP, Gonzalez-Bonet G, Bhatnagar J, Pollard AM, Freed JH, Bilwes AM, Crane BR (2006a) Reconstruction of the chemotaxis receptor-kinase assembly. Nat Struct Mol Biol 13:400–407PubMedGoogle Scholar
  231. Park SY, Lowder B, Bilwes AM, Blair DF, Crane BR (2006b) Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor. Proc Natl Acad Sci USA 103:11886–11891PubMedGoogle Scholar
  232. Parkinson JS (1977) Behavioral genetics in bacteria. Annu Rev Genet 11:397–414PubMedGoogle Scholar
  233. Parkinson JS (2010) Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases. Annu Rev Microbiol 64:101–122PubMedGoogle Scholar
  234. Parkinson JS, Ames P, Studdert CA (2005) Collaborative signaling by bacterial chemoreceptors. Curr Opin Microbiol 8:116–121PubMedGoogle Scholar
  235. Paster E, Ryu WS (2008) The thermal impulse response of Escherichia coli. Proc Natl Acad Sci USA 105:5373–5377PubMedGoogle Scholar
  236. Patrick JE, Kearns DB (2012) Swarming motility and the control of master regulators of flagellar biosynthesis. Mol Microiol 83:14–23Google Scholar
  237. Paul K, Gonzalez-Bonet G, Bilwes AM, Crane BR, Blair D (2011) Architecture of the flagellar rotor. EMBO J 30:2962–2971PubMedGoogle Scholar
  238. Paulick A, Koerdt A, Lassak J, Huntley S, Wilms I, Narberhaus F, Thormann KM (2009) Two different stator systems drive a single polar flagellum in Shewanella oneidensis MR-1. Mol Microiol 71:836–850Google Scholar
  239. Platzer J, Sterr W, Hausmann M, Schmitt R (1997) Three genes of a motility operon and their role in flagellar rotary speed variation in Rhizobium meliloti. J Bacteriol 179:6391–6399PubMedGoogle Scholar
  240. Poggio S, Abreu-Goodger C, Fabela S, Osorio A, Dreyfus G, Vinuesa P, Camarena L (2007) A complete set of flagellar genes acquired by horizontal transfer coexists with the endogenous flagellar system in Rhodobacter sphaeroides. J Bacteriol 189:3208–3216PubMedGoogle Scholar
  241. Poole PS, Armitage JP (1989) Role of metabolism in the chemotactic response of Rhodobacter sphaeroides to ammonia. J Bacteriol 171:2900–2902PubMedGoogle Scholar
  242. Porter SL, Warren AV, Martin AC, Armitage JP (2002) The third chemotaxis locus of Rhodobacter sphaeroides is essential for chemotaxis. Mol Microbiol 46:1081–1094PubMedGoogle Scholar
  243. Porter SL, Wadhams GH, Martin AC, Byles ED, Lancaster DE, Armitage JP (2006) The CheYs of Rhodobacter sphaeroides. J Biol Chem 281:32694–32704PubMedGoogle Scholar
  244. Porter SL, Roberts MAJ, Manning CS, Armitage JP (2008) A bifunctional kinase-phosphatase in bacterial chemotaxis. Proc Natl Acad SciUSA 105:18531–18536Google Scholar
  245. Puskas A, Greenberg EP, Kaplan S, Schaeffer AL (1997) A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J Bacteriol 179:7530–7537PubMedGoogle Scholar
  246. Ragatz L, Jiang ZY, Bauer CE, Gest H (1995) Macroscopic phototactic behavior of the purple photosynthetic bacterium Rhodospirillum-Centenum. Arch Microbiol 163:1–6PubMedGoogle Scholar
  247. Rao CV, Glekas GD, Ordal GW (2008) The three adaptation systems of Bacillus subtilis chemotaxis. Trends Microbiol 16:480–487PubMedGoogle Scholar
  248. Rebbapragada A (1997) The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior. Proc Natl Acad Sci USA 94:10541–10546PubMedGoogle Scholar
  249. Reid SW, Leake MC, Chandler JH, Lo CJ, Armitage JP, Berry RM (2006) The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc Natl Acad Sci USA 103:8066–8071PubMedGoogle Scholar
  250. Riepl H, Maurer T, Kalbitzer HR, Meier VM, Haslbeck M, Schmitt R, Scharf B (2008) Interaction of CheY2 and CheY2-P with the cognate CheA kinase in the chemosensory-signalling chain of Sinorhizobium meliloti. Mol Microbiol 69:1373–1384PubMedGoogle Scholar
  251. Ringgaard S, Schirner K, Davis BM, Waldor MK (2011) A family of ParA-like ATPases promotes cell pole maturation by facilitating polar localization of chemotaxis proteins. Gene Dev 25:1544–1555PubMedGoogle Scholar
  252. Romagnoli S, Armitage JP (1999) Roles of chemosensory pathways in transient changes in swimming speed of Rhodobacter sphaeroides induced by changes in photosynthetic electron transport. J Bacteriol 181:34–39PubMedGoogle Scholar
  253. Romagnoli S, Hochkoeppler A, Damgaard L, Zannoni D (1997) The effect of respiration on the phototactic behavior of the purple nonsulfur bacterium Rhodospirillum centenum. Arch Microb 167:99–105Google Scholar
  254. Romagnoli S, Packer HL, Armitage JP (2002) Tactic responses to oxygen in the phototrophic bacterium Rhodobacter sphaeroides WS8N. J Bacteriol 184:5590–5598PubMedGoogle Scholar
  255. Rosario MM, Fredrick KL, Ordal GW, Helmann JD (1994) Chemotaxis in Bacillus subtilis requires either of two functionally redundant CheW homologs. J Bacteriol 176:2736–2739PubMedGoogle Scholar
  256. Rosario MM, Kirby JR, Bochar DA, Ordal GW (1995) Chemotactic methylation and behavior in Bacillus subtilis: role of two unique proteins, CheC and CheD. Biochemistry 34:3823–3831PubMedGoogle Scholar
  257. Sackett MJ, Armitage JP, Sherwood EE, Pitta TP (1997) Photoresponses of the purple nonsulfur bacteria Rhodospirillum centenum and Rhodobacter sphaeroides. J Bacteriol 179:6764–6768PubMedGoogle Scholar
  258. Salman H, Libchaber A (2007) A concentration-dependent switch in the bacterial response to temperature. Nat Cell Biol 9:1098–1100PubMedGoogle Scholar
  259. Samatey FA, Imada K, Nagashima S, Vonderviszt F, Kumasaka T, Yamamoto M, Namba K (2001) Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410:331–337PubMedGoogle Scholar
  260. Sanders DA, Mendez B, Koshland DE (1989) Role of the Chew protein in bacterial chemotaxis – overexpression is equivalent to absence. J Bacteriol 171:6271–6278PubMedGoogle Scholar
  261. Sarkar MK, Paul K, Blair DF (2010) Subunit organization and reversal-associated movements in the flagellar switch of Escherichia coli. J Biol Chem 285:675–684PubMedGoogle Scholar
  262. Scharf BE, Fahrner KA, Turner L, Berg HC (1998) Control of direction of flagellar rotation in bacterial chemotaxis. Proc Natl Acad Sci USA 95:201–206PubMedGoogle Scholar
  263. Scharf B, Schuster-Wolff-Buhring H, Rachel R, Schmitt R (2001) Mutational analysis of the Rhizobium lupini H13-3 and Sinorhizobium meliloti flagellin genes: Importance of flagellin a for flagellar filament structure and transcriptional regulation. J Bacteriol 183:5334–5342PubMedGoogle Scholar
  264. Schuster SC, Swanson RV, Alex LA, Bourret RB, Simon MI (1993) Assembly and function of a quaternary signal-transduction complex monitored by surface-plasmon resonance. Nature 365:343–347PubMedGoogle Scholar
  265. Scott WG, Milligan DL, Milburn MV, Prive GG, Yeh J, Koshland DE, Kim SH (1993) Refined structures of the ligand-binding domain of the aspartate receptor from Salmonella-typhimurium. J Mol Biol 232:555–573PubMedGoogle Scholar
  266. Segall JE, Block SM, Berg HC (1986) Temporal comparisons in bacterial chemotaxis. Proc Natl Acad Sci USA 83:9486–9493Google Scholar
  267. Seidler RJ, Starr MP (1968) Structure of flagellum of Bdellovibrio bacteriovorus. J Bacteriol 95:1952PubMedGoogle Scholar
  268. Seymour JR, Simo R, Ahmed T, Stocker R (2010) Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329:342–345PubMedGoogle Scholar
  269. Shaw AK, Halpern AL, Beeson K, Tran B, Venter JC, Martiny JBH (2008) It's all relative: ranking the diversity of aquatic bacterial communities. Environ Microbiol 10:2200–2210PubMedGoogle Scholar
  270. Shimizu TS, Le Novere N, Levin MD, Beavil AJ, Sutton BJ, Bray D (2000) Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis. Nat Cell Biol 2:792–796PubMedGoogle Scholar
  271. Shimizu TS, Aksenov SV, Bray D (2003) A spatially extended stochastic model of the bacterial chemotaxis signalling pathway. J Mol Biol 329:291–309PubMedGoogle Scholar
  272. Shinoda S, Okamoto K (1977) Formation and function of Vibrio-parahaemolyticus lateral flagella. J Bacteriol 129:1266–1271PubMedGoogle Scholar
  273. Silversmith RE (2010) Auxiliary phosphatases in two-component signal transduction. Curr Opin Microbiol 13:177–183PubMedGoogle Scholar
  274. Smith TG, Hoover TR (2009) Deciphering bacterial flagellar gene regulatory networks in the genomic era. In: Allen IL (ed) Advances in applied microbiology. Academic, New York, pp 257–295, Chapter 8Google Scholar
  275. Sourjik V, Schmitt R (1996) Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti. Mol Microbiol 22:427–436PubMedGoogle Scholar
  276. Sourjik V, Schmitt R (1998) Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti. Biochemistry 37:2327–2335PubMedGoogle Scholar
  277. Sourjik V, Sterr W, Platzer J, Bos I, Haslbeck M, Schmitt R (1998) Mapping of 41 chemotaxis, flagellar and motility genes to a single region of the Sinorhizobium meliloti chromosome. Gene 223:283–290PubMedGoogle Scholar
  278. Sowa Y, Berry RM (2008) Bacterial flagellar motor. Q Rev Biophys 41:103–132Google Scholar
  279. Sowa Y, Rowe AD, Leake MC, Yakushi T, Homma M, Ishijima A, Berry RM (2005) Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437:916–919PubMedGoogle Scholar
  280. Sprenger WW, Hoff WD, Armitage JP, Hellingwerf KJ (1993) The eubacterium Ectothiorhodospira-halophila is negatively phototactic, with a wavelength dependence that fits the absorption-spectrum of the photoactive yellow protein. J Bacteriol 175:3096–3104PubMedGoogle Scholar
  281. Springer WR, Koshland DE (1977) Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system. Proc Natl Acad Sci USA 74:533–537PubMedGoogle Scholar
  282. Starrett DJ, Falke JJ (2005) Adaptation mechanism of the aspartate receptor: electrostatics of the adaptation subdomain play a key role in modulating kinase activity. Biochemistry 44:1550–1560PubMedGoogle Scholar
  283. Stewart RC (1997) Kinetic characterization of phosphotransfer between CheA and CheY in the bacterial chemotaxis signal transduction pathway. Biochemistry 36:2030–2040PubMedGoogle Scholar
  284. Stewart RC, Dahlquist FW (1988) N-terminal half of Cheb is involved in methylesterase response to negative chemotactic stimuli in Escherichia coli. J Bacteriol 170:5728–5738PubMedGoogle Scholar
  285. Stewart RC, Roth AF, Dahlquist FW (1990) Mutations that affect control of the methylesterase activity of Cheb, a component of the chemotaxis adaptation system in Escherichia coli. J Bacteriol 172:3388–3399PubMedGoogle Scholar
  286. Stewart RC, Jahreis K, Parkinson JS (2000) Rapid phosphotransfer to CheY from a CheA protein lacking the CheY-binding domain. Biochemistry 39:13157–13165PubMedGoogle Scholar
  287. Stock JB, Koshland DE (1978) A protein methylesterase involved in bacterial sensing. Proc Natl Acad SciUSA 75:3659–3663Google Scholar
  288. Stock JB, Surette MG (1996) Chemotaxis. In: Neidhardt FC, Curtiss RI, Ingraham JL, Lin EEC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, DC, pp 1103–1129Google Scholar
  289. Stock AM, Mottonen JM, Stock JB, Schutt CE (1989) Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis. Nature 337:745–749PubMedGoogle Scholar
  290. Stock AM, Martinezhackert E, Rasmussen BF, West AH, Stock JB, Ringe D, Petsko GA (1993) Structure of the Mg2+ bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis. Biochemistry 32:13375–13380PubMedGoogle Scholar
  291. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215PubMedGoogle Scholar
  292. Stocker R, Seymour JR, Samadani A, Hunt DE, Polz MF (2008) Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc Natl Acad Sci USA 105:4209–4214PubMedGoogle Scholar
  293. Streif S, Staudinger WF, Marwan W, Oesterhelt D (2008) Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP. J Mol Biol 384:1–8PubMedGoogle Scholar
  294. Surette MG, Levit M, Liu Y, Lukat G, Ninfa EG, Ninfa A, Stock JB (1996) Dimerization is required for the activity of the protein histidine kinase CheA that mediates signal transduction in bacterial chemotaxis. J Biol Chem 271:939–945PubMedGoogle Scholar
  295. Suzuki H, Yonekura K, Murata K, Hirai T, Oosawa K, Namba K (1998) A structural feature in the central channel of the bacterial flagellar FliF ring complex is implicated in type III protein export. J Struct Biol 124:104–114PubMedGoogle Scholar
  296. Swain KE, Gonzalez MA, Falke JJ (2009) Engineered socket study of signaling through a four-helix bundle: evidence for a yin−yang mechanism in the kinase control module of the aspartate receptor. Biochemistry 48:9266–9277PubMedGoogle Scholar
  297. Swaney KF, Huang CH, Devreotes PN (2010) Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu Rev Biophys 39:265–289PubMedGoogle Scholar
  298. Swanson RV, Schuster SC, Simon MI (1993) Expression of CheA fragments which define domains encoding kinase, phosphotransfer, and CheY binding activities. Biochemistry 32:7623–7629PubMedGoogle Scholar
  299. Szurmant H, Bunn MW, Cannistraro VJ, Ordal GW (2003) Bacillus subtilis hydrolyzes CheY-P at the location of its action: the flagellar switch. J Biol Chem 278:48611–48616PubMedGoogle Scholar
  300. Szurmant H, Muff TJ, Ordal GW (2004) Bacillus subtilis CheC and FliY are members of a novel class of CheY-P-hydrolyzing proteins in the chemotactic signal transduction cascade. J Biol Chem 279:21787–21792PubMedGoogle Scholar
  301. Tang H, Braun TF, Blair DF (1996) Motility protein complexes in the bacterial flagellar motor. J Mol Biol 261:209–221PubMedGoogle Scholar
  302. Taylor BL, Koshland DE (1974) Reversal of flagellar rotation in monotrichous and peritrichous bacteria – Generation of changes in direction. J Bacteriol 119:640–642PubMedGoogle Scholar
  303. Taylor BL, Miller JB, Warrick HM, Koshland DE (1979) Electron-acceptor taxis and blue-light effect on bacterial chemotaxis. J Bacteriol 140:567–573PubMedGoogle Scholar
  304. Taylor BL, Zhulin IB, Johnson MS (1999) Aerotaxis and other energy-sensing behavior in bacteria. Annu Rev Microbiol 53:103–128PubMedGoogle Scholar
  305. Terwilliger TC, Koshland DE (1984) Sites of methyl esterification and deamination on the aspartate receptor involved in chemotaxis. J Biol Chem 259:7719–7725PubMedGoogle Scholar
  306. Thiem S, Sourjik V (2008) Stochastic assembly of chemoreceptor clusters in Escherichia coli. Mol Microbiol 68:1228–1236PubMedGoogle Scholar
  307. Thiem S, Kentner D, Sourjik V (2007) Positioning of chemosensory clusters in E. coli and its relation to cell division. EMBO J 26:1615–1623PubMedGoogle Scholar
  308. Thomas NA, Bardy SL, Jarrell KF (2001) The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS Microbiol Rev 25:147–174PubMedGoogle Scholar
  309. Thomashow LS, Rittenberg SC (1985) Isolation and composition of sheathed flagella from Bdellovibrio-bacteriovorus-109 J. J Bacteriol 163:1047–1054PubMedGoogle Scholar
  310. Thompson SR, Wadhams GH, Armitage JP (2006) The positioning of cytoplasmic protein clusters in bacteria. Proc Natl Acad Sci USA 103:8209–8214PubMedGoogle Scholar
  311. Tindall MJ, Porter SL, Maini PK, Armitage JP (2010a) Modeling chemotaxis reveals the role of reversed phosphotransfer and a bi-functional kinase-phosphatase. PLoS Comput Biol 6:e1000896PubMedGoogle Scholar
  312. Toews ML, Goy MF, Springer MS, Adler J (1979) Attractants and repellents control demethylation of methylated chemotaxis proteins in Escherichia coli. Proc Natl Acad Sci USA 76:5544–5548PubMedGoogle Scholar
  313. Trachtenberg S, DeRosier DJ (1987) 3-Dimensional structure of the frozen hydrated flagellar filament – the left-handed filament of Salmonella typhimurium. J Mol Biol 195:581–601PubMedGoogle Scholar
  314. Trachtenberg S, DeRosier DJ (1991) A molecular switch – subunit rotations involved in the right-handed to left-handed transitions of Salmonella typhimurium flagellar filaments. J Mol Biol 220:67–77PubMedGoogle Scholar
  315. Trachtenberg S, DeRosier DJ (1992) Conformational switching in the flagellar filament of Salmonella typhimurium. J Mol Biol 226:447–454PubMedGoogle Scholar
  316. Trachtenberg S, DeRosier DJ, Macnab RM (1987) Three-dimensional structure of the complex flagellar filament of Rhizobium lupini and its relation to the structure of the plain filament. J Mol Biol 195:603–620PubMedGoogle Scholar
  317. Turner L, Ryu WS, Berg HC (2000) Real-time imaging of fluorescent flagellar filaments. J Bacteriol 182:2793–2801PubMedGoogle Scholar
  318. Uedaira H, Morii H, Ishimura M, Taniguchi H, Namba K, Vonderviszt F (1999) Domain organization of flagellar hook protein from Salmonella typhimurium. FEBS Lett 445:126–130PubMedGoogle Scholar
  319. Ueno T, Oosawa K, Aizawa SI (1992) M ring, S ring and proximal rod of the flagellar basal body of Salmonella typhimurium are composed of subunits of a single protein FliF. J Biol Chem 227:672–677Google Scholar
  320. Umemura T, Matsumoto Y, Ohnishi K, Homma M, Kawagishi I (2002) Sensing of cytoplasmic pH by bacterial chemoreceptors involves the linker region that connects the membrane-spanning and the signal-modulating helices. J Biol Chem 277:1593–1598PubMedGoogle Scholar
  321. Underbakke ES, Zhu YM, Kiessling LL (2011) Protein footprinting in a complex milieu: identifying the interaction surfaces of the chemotaxis adaptor protein CheW. J Mol Biol 409:483–495PubMedGoogle Scholar
  322. Vladimirov N, Sourjik V (2009) Chemotaxis: how bacteria use memory. Biol Chem 390:1097–1104PubMedGoogle Scholar
  323. Volz K, Matsumura P (1991) Crystal structure of Escherichia coli CheY refined at 1.7-A resolution. J Biol Chem 266:15511–15519PubMedGoogle Scholar
  324. Vonderviszt F, Aizawa SI, Namba K (1991) Role of the disordered terminal regions of flagellin in filament formation and stability. J Mol Biol 221:1461–1474PubMedGoogle Scholar
  325. Wadhams GH, Martin AC, Armitage JP (2000) Identification and localization of a methyl-accepting chemotaxis protein in Rhodobacter sphaeroides. Mol Microbiol 36:1222–1233PubMedGoogle Scholar
  326. Wadhams GH, Warren AV, Martin AC, Armitage JP (2003) Targeting of two signal transduction pathways to different regions of the bacterial cell. Mol Microbiol 50:763–770PubMedGoogle Scholar
  327. Wagenknecht T, DeRosier DJ, Aizawa S, Macnab RM (1982) Flagellar hook structures of Caulobacter and Salmonella and their relationship to filament structure. J Mol Biol 162:69–87PubMedGoogle Scholar
  328. Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144PubMedGoogle Scholar
  329. Wang H, Matsumura P (1996) Characterization of the CheA(S)/CheZ complex: a specific interaction resulting in enhanced dephosphorylating activity on CheY-phosphate. Mol Microiol 19:695–703Google Scholar
  330. Watts KJ, Ma QH, Johnson MS, Taylor BL (2004) Interactions between the PAS and HAMP domains of the Escherichia coli aerotaxis receptor Aer. J Bacteriol 186:7440–7449PubMedGoogle Scholar
  331. Watts KJ, Johnson MS, Taylor BL (2011) Different conformations of the kinase-on and kinase-off signaling states in the Aer HAMP domain. J Bacteriol 193:4095–4103PubMedGoogle Scholar
  332. Welch M, Chinardet N, Mourey L, Birck C, Samara JP (1998) Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY. Nat Struct Biol 5:25–29PubMedGoogle Scholar
  333. Wilkinson DA, Chacko SJ, Vénien-Bryan C, Wadhams GH, Armitage JP (2011) Regulation of flagellum number by FliA and FlgM and role in biofilm formation by Rhodobacter sphaeroides. J Bacteriol 193:4010–4014Google Scholar
  334. Wolgemuth CW, Charon NW (2005) The kinky propulsion of spiroplasma. Cell 122:827–828PubMedGoogle Scholar
  335. Wolgemuth CW, Charon NW, Goldstein SF, Goldstein RE (2006) The flagellar cytoskeleton of the spirochetes. J Mol Microbiol Biotechnol 11:221–227PubMedGoogle Scholar
  336. Wuichet K, Alexander RP, Zhulin IB (2007) Comparative genomic and protein sequence analyses of a complex system controlling bacterial chemotaxis. Methods Enzymol 422:1–31PubMedGoogle Scholar
  337. Wuichet K, Zhulin IB (2010) Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 3:ra50Google Scholar
  338. Yamaguchi S, Aizawa SI, Kihara M, Isomura M, Jones CJ, Macnab RM (1986) Genetic-evidence for a switching and energy-transducing complex in the flagellar motor of Salmonella Typhimurium. J Bacteriol 168:1172–1179PubMedGoogle Scholar
  339. Yamamoto K, Imae Y (1993) Cloning and characterization of the Salmonella typhimurium-specific chemoreceptor Tcp for taxis to citrate and from phenol. Proc Natl Acad Sci USA 90:217–221PubMedGoogle Scholar
  340. Yang HJ, Inokuchi H, Adler J (1995) Phototaxis away from blue-light by An Escherichia coli mutant accumulating protoporphyrin-Ix. Proc Natl Acad Sci USA 92:7332–7336PubMedGoogle Scholar
  341. Yang HJ, Sasarman A, Inokuchi H, Adler J (1996) Non-iron porphyrins cause tumbling to blue light by an Escherichia coli mutant defective in hemG. Proc Natl Acad Sci USA 93:2459–2463PubMedGoogle Scholar
  342. Young GM, Smith MJ, Minnich SA, Miller VL (1999) The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility, and swarming motility. J Bacteriol 181:2823–2833PubMedGoogle Scholar
  343. Zhang YH, Gardina PJ, Kuebler AS, Kang HS, Christopher JA, Manson MD (1999) Model of maltose-binding protein/chemoreceptor complex supports intrasubunit signaling mechanism. Proc Natl Acad Sci USA 96:939–944PubMedGoogle Scholar
  344. Zhang P, Khursigara CM, Hartnell LM, Subramaniam S (2007) Direct visualization of Escherichia coli chemotaxis receptor arrays using cryo-electron microscopy. Proc Natl Acad Sci USA 104:3777–3781PubMedGoogle Scholar
  345. Zhao RB, Amsler CD, Matsumura P, Khan S (1996a) FliG and FliM distribution in the Salmonella typhimurium cell and flagellar basal bodies. J Bacteriol 178:258–265PubMedGoogle Scholar
  346. Zhao RH, Pathak N, Jaffe H, Reese TS, Khan S (1996b) FliN is a major structural protein of the C-ring in the Salmonella typhimurium flagellar basal body. J Mol Biol 261:195–208PubMedGoogle Scholar
  347. Zhao R, Collins EJ, Bourret RB, Silversmith RE (2002) Structure and catalytic mechanism of the E. coli chemotaxis phosphatase CheZ. Nat Struct Biol 9:570–575PubMedGoogle Scholar
  348. Zhou JD, Blair DF (1997) Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor. J Mol Biol 273:428–439PubMedGoogle Scholar
  349. Zhou HJ, Dahlquist FW (1997) Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NMR. Biochemistry 36:699–710PubMedGoogle Scholar
  350. Zhou HJ, Lowry DF, Swanson RV, Simon MI, Dahlquist FW (1995a) Nmr-studies of the phosphotransfer domain of the histidine kinase Chea from Escherichia coli – assignments, secondary structure, general fold, and backbone dynamics. Biochemistry 34:13858–13870PubMedGoogle Scholar
  351. Zhou J, Fazzio RT, Blair DF (1995b) Membrane topology of the MotA protein of Escherichia coli. J Mol Biol 251:237–242PubMedGoogle Scholar
  352. Zhou JD, Lloyd SA, Blair DF (1998a) Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc Natl Acad Sci USA 95:6436–6441PubMedGoogle Scholar
  353. Zhou JD, Sharp LL, Tang HL, Lloyd SA, Billings S, Braun TF, Blair DF (1998b) Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. J Bacteriol 180:2729–2735PubMedGoogle Scholar
  354. Zhou Q, Ames P, Parkinson JS (2009) Mutational analyses of HAMP helices suggest a dynamic bundle model of input-output signalling in chemoreceptors. Mol Microbiol 73:801–814PubMedGoogle Scholar
  355. Zhou Q, Ames P, Parkinson JS (2011) Biphasic control logic of HAMP domain signalling in the Escherichia coli serine chemoreceptor. Mol Microbiol 80:596–611PubMedGoogle Scholar
  356. Zhu XY, Rebello J, Matsumura P, Volz K (1997) Crystal structures of CheY mutants Y106W and T871/Y106W – CheY activation correlates with movement of residue 106. J Biol Chem 272:5000–5006PubMedGoogle Scholar
  357. Zhulin IB (2001) The superfamily of chemotaxis transducers: from physiology to genomics and back. Adv Microb Physiol 45(45):157–198PubMedGoogle Scholar
  358. Zimmer MA, Tiu J, Collins MA, Ordal GW (2000) Selective methylation changes on the Bacillus subtilis chemotaxis receptor McpB promote adaptation. J Biol Chem 275:24264–24272PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.OCISB, Department of BiochemistryUniversity of OxfordOxfordUK

Personalised recommendations