The Anaerobic Way of Life

  • Ruth A. Schmitz
  • Rolf Daniel
  • Uwe Deppenmeier
  • Gerhard Gottschalk
Reference work entry


Molecular oxygen in appreciable amounts is found only in those areas on earth that are in direct contact with air or are inhabited by organisms carrying out oxygenic photosynthesis. The solubility of oxygen in water is low. In equilibrium with air at 1.013 bar and at 20 °C, pure water will contain approximately 9 mg/l of dissolved oxygen. In aqueous systems, aerobic organisms rapidly consume dissolved oxygen so that deeper layers of many waters and soils (especially if they are rich in organic compounds), as well as mud and sludge, are practically anaerobic. Nevertheless, these areas are inhabited by numerous organisms that fulfill the important ecological role of converting insoluble organic material to soluble compounds and gases that can circulate back into aerobic regions. Other important anaerobic habitats are the rumen, the intestinal tract, and man-made anaerobic digesters of sewage treatment plants.


Methanogenic Archaea Obligate Anaerobe Methanosarcina Barkeri Acetobacterium Woodii Benzyl Succinate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aeckersberg F, Rainey FA, Widdel F (1998) Growth, natural relationships, cell fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170:361–369PubMedCrossRefGoogle Scholar
  2. Andreesen JR (1994) Glycine metabolism in anaerobes. Ant v Leeuwenhoek 66:223–227CrossRefGoogle Scholar
  3. Archibald FS, Fridovich I (1981) Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J Bacteriol 146:928–936PubMedGoogle Scholar
  4. Badziong W, Thauer RK (1978) Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources. Arch Microbiol 117:209–214PubMedCrossRefGoogle Scholar
  5. Barker HA (1981) Amino acid degradation by anaerobic bacteria. Ann Rev Biochem 50:23–40PubMedCrossRefGoogle Scholar
  6. Bauer CE, Elsen S, Bird TH (1999) Mechanisms for redox control of gene expression. Ann Rev Microbiol 53:495–523CrossRefGoogle Scholar
  7. Bäumer S, Ide T, Jacobi C, Johann A, Gottschalk G, Deppemeier U (2000) The F420H2 dehydrogenase from Methanosarcina mazei Gö1 is a redox-driven proton pump closely related to NADH dehydrogenases. J Biol Chem 275:17968–17973PubMedCrossRefGoogle Scholar
  8. Beinert H, Kiley PJ (1999) Fe-S proteins in sensing and regulatory functions. Curr Opin Chem Biol 3:152–157PubMedCrossRefGoogle Scholar
  9. Ben-Bassat A, Lamed R, Zeikus JG (1981) Ethanol production by thermophilic bacteria: metabolic control of end product formation in Thermoanaerobium brockii. J Bacteriol 146:192–199PubMedGoogle Scholar
  10. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jörgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626PubMedCrossRefGoogle Scholar
  11. Boll M, Fuchs G (1995) Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172. Eur J Biochem 234:921–933PubMedCrossRefGoogle Scholar
  12. Brandis-Heep A, Gebhardt NA, Thauer RK, Widdel F, Pfennig N (1983) Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei. 1: demonstration of all enzymes required for the operation of the citric acid cycle. Arch Microbiol 36:222–229CrossRefGoogle Scholar
  13. Brüggemann H, Falinski F, Deppenmeier U (2000) Structure of the F420H2:quinone oxidoreductase of Archaeoglobus fulgidus identification and overproduction of the F420H2-oxidizing subunit. Eur J Biochem 267:5810–5814PubMedCrossRefGoogle Scholar
  14. Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Microbiol 59:20–31Google Scholar
  15. Bryant MP, Campbell LL, Reddy CA, Crabill MR (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33:1162–1169PubMedGoogle Scholar
  16. Buckel W (1980) Analysis of fermentation pathways of clostridia using double labelled glutamate. Arch Microbiol 127:167–169PubMedCrossRefGoogle Scholar
  17. Buckel W (1996) Unusual dehydrations in anaerobic bacteria: considering ketyls (radical anions) as reactive intermediates in enzymatic reactions. FEBS Lett 389:20–24PubMedCrossRefGoogle Scholar
  18. Buckel W, Golding BT (1996) Glutamate and 2-methyleneglutarate mutase: from microbial curiosities to paradigms for coenzyme B12-dependent enzymes. Chem Soc Rev 25:329–337CrossRefGoogle Scholar
  19. Buckel W, Golding BT (1999) Radical species in the catalytic pathways of enzymes from anaerobes. FEMS Microbiol Rev 22:523–541CrossRefGoogle Scholar
  20. Cannio R, D’angelo A, Rossi M, Bartolucci S (2000a) A superoxide dismutase from the archaeon Sulfolobus solfataricus is an extracellular enzyme and prevents the deactivation by superoxide of cell-bound proteins. Eur J Biochem 267:235–243PubMedCrossRefGoogle Scholar
  21. Cannio R, Fiorentino G, Morana A, Rossi M, Bartolucci S (2000b) Oxygen: friend or foe? Archaeal superoxide dismutases in the protection of intra- and extracellular oxidative stress. Front Biosci 5:768–779CrossRefGoogle Scholar
  22. Charon MH, Volbeda A, Chabriere E, Pieulle L, Fontecilla-Camps JC (1999) Structure and electron transfer mechanism of pyruvate: ferredoxin oxidoreductase. Curr Opin Struct Biol 9:663–669PubMedCrossRefGoogle Scholar
  23. Cruz Ramos H, Boursier L, Moszer I, Kunst F, Danchin A, Glaser P (1995) Anaerobic transcription activation in Bacillus subtilis: identification of distinct FNR-dependent and-independent regulatory mechanisms. EMBO J 14:5984–5994PubMedGoogle Scholar
  24. Daniel R, Bobik TA, Gottschalk G (1998) Biochemistry of coenzyme B12-dependent glycerol and diol dehydratases and organization of the encoding genes. FEMS Microbiol Rev 22:553–566PubMedCrossRefGoogle Scholar
  25. Deppenmeier U, Müller V, Gottschalk G (1996) Pathways of energy conservation in methanogenic Archaea. Arch Microbiol 165:149–163CrossRefGoogle Scholar
  26. Deppenmeier U, Lienard T, Gottschalk G (1999) Novel reactions involved in energy conservation by methanogenic archaea. FEEBS Lett 457:291–297CrossRefGoogle Scholar
  27. Dimroth P (1997) Primary sodium ion translocating enzymes. Biochim Biophys Acta 1318:11–51PubMedCrossRefGoogle Scholar
  28. Dimroth P, Schink B (1998) Energy conservation in the decarboxylation of dicarboxylic acids by fermenting bacteria. Arch Microbiol 170:69–77PubMedCrossRefGoogle Scholar
  29. Feigel BJ, Knackmuss HJ (1993) Syntrophic interactions during degradation of 4-aminobenzenesulfonic acid by a two species bacterial culture. Arch Microbiol 159:124–130PubMedCrossRefGoogle Scholar
  30. Ferry JG (1997) Enzymology of the fermentation of acetate to methane by Methanosarcina thermophila. Biofactors 6:25–35PubMedCrossRefGoogle Scholar
  31. Ferry JG (1999) Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol Rev 23:13–38PubMedCrossRefGoogle Scholar
  32. Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–386PubMedGoogle Scholar
  33. Fischer HM (1996) Environmental regulation of rhizobial symbiotic nitrogen fixation genes. Trends Microbiol 4:317–320PubMedCrossRefGoogle Scholar
  34. Fridovich I (1995) Superoxide radical and superoxide dismutases. Ann Rev Biochem 64:97–112PubMedCrossRefGoogle Scholar
  35. Friedrich M, Laderer U, Schink B (1991) Fermentative degradation of glycolic acid by defined syntrophic cocultures. Arch Microbiol 156:398–404CrossRefGoogle Scholar
  36. Fuchs G (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol Rev 39:181–213CrossRefGoogle Scholar
  37. Gerlach D, Reichardt W, Vettermann S (1998) Extracellular superoxide dismutase from Streptococcus pyogenes type 12 strain is manganese-dependent. FEMS Microbiol Lett 160:217–224PubMedCrossRefGoogle Scholar
  38. Gilles-Gonzalez MA, Gonzalez G, Perutz MF (1995) Kinase activity of oxygen sensor FixL depends on the spin state of its heme iron. Biochemistry 34:232–236PubMedCrossRefGoogle Scholar
  39. Gottschalk G, Chowdhury AA (1969) Pyruvate synthesis from acetyl coenzyme A and carbon dioxide with NADH2 or NADPH2 as electron donors. FEBS Lett 2:342–344PubMedCrossRefGoogle Scholar
  40. Gottschalk G, Thauer RK (2001) The Na+ translocating methyltransferase complex from methanogenic archaea. Biochim Biophys Acta 1505:28–36PubMedCrossRefGoogle Scholar
  41. Gross R, Simon J, Theis F, Kröger A (1998) Two membrane anchors of Wolinella succinogenes hydrogenase and their function in fumarate and polysulfide respiration. Arch Microbiol 170:50–58PubMedCrossRefGoogle Scholar
  42. Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc London Ser A 147:332–352CrossRefGoogle Scholar
  43. Hansen TA (1994) Metabolism of sulfate-reducing prokaryotes. Ant v Leeuwenhoek 66:165–185CrossRefGoogle Scholar
  44. Harwood CS, Burchhardt G, Herrmann H, Fuchs G (1999) Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol Rev 22:439–458CrossRefGoogle Scholar
  45. Hatchikian EC, Henry YA (1977) An iron-containing superoxide dismutase from the strict anaerobe Desulfovibrio desulfuricans (Norway 4). Biochimie 59:153–161PubMedCrossRefGoogle Scholar
  46. Hedderich R, Klimmek O, Kröger A, Dirmeier R, Keller M, Stetter KO (1999) Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev 22:353–381CrossRefGoogle Scholar
  47. Heise R, Müller V, Gottschalk G (1989) Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii. J Bacteriol 171:5473–5478PubMedGoogle Scholar
  48. Hidalgo E, Bollinger JM Jr, Bradley TM, Walsh CT, Demple B (1995) Binuclear [2Fe-2S] clusters in the Escherichia coli SoxR protein and role of the metal centers in transcription. J Biol Chem 270:20908–20914PubMedCrossRefGoogle Scholar
  49. Holliger C, Wohlfarth G, Diekert G (1999) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398CrossRefGoogle Scholar
  50. Hormann K, Andreesen JR (1989) Reductive cleavage of sarcosine and betaine by Eubacterium acidaminophilum via enzyme systems different from glycine reductase. Arch Microbiol 153:50–59CrossRefGoogle Scholar
  51. Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276:245–247PubMedCrossRefGoogle Scholar
  52. Hugenholtz J, Ljungdahl LG (1990) Metabolism and energy generation in homoacetogenic clostridia. FEMS Microbiol Rev 87:383–390CrossRefGoogle Scholar
  53. Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JB, Ribbons DW (eds) Methods in microbiology, vol 3B. Academic, New York/London, pp 117–132Google Scholar
  54. Jansen M, Hansen TA (1998) Tetrahydrofolate serves as a methyl acceptor in the demethylation of dimethylsulfoniopropionate in cell extracts of sulfate-reducing bacteria. Arch Microbiol 169:84–87PubMedCrossRefGoogle Scholar
  55. Jenney FE Jr, Verhagen MF, Cui X, Adams MW (1999) Anaerobic microbes: oxygen detoxification without super oxide dismutase. Science 286:306–309PubMedCrossRefGoogle Scholar
  56. Jones G (1961) The Markovnikov rule. J Chem Educ 38:297–300CrossRefGoogle Scholar
  57. Jungermann K, Thauer RK, Rupprecht E, Ohrloff C, Decker K (1969) Ferredoxin-mediated hydrogen formation from NADH in a cell-free system of Clostridium kluyveri. FEBS Lett 3:144–146PubMedCrossRefGoogle Scholar
  58. Kargalioglu Y, Imlay JA (1994) Importance of anaerobic superoxide dismutase synthesis in facilitating outgrowth of Escherichia coli upon entry into an aerobic habitat. J Bacteriol 176:7653–76538PubMedGoogle Scholar
  59. Khoroshilova N, Popescu C, Munck E, Beinert H, Kiley PJ (1997) Iron-sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe-4S] to [2Fe-2S] conversion with loss of biological activity. Proc Natl Acad Sci USA 94:6087–6092PubMedCrossRefGoogle Scholar
  60. Kiley PJ, Beinert H (1998) Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster. FEMS Microbiol Rev 22:341–352PubMedCrossRefGoogle Scholar
  61. Kirby TW, Lancaster JR Jr, Fridovich I (1981) Isolation and characterization of the iron-containing superoxide dismutase of Methanobacterium bryantii. Arch Biochem Biophys 210:140–148PubMedCrossRefGoogle Scholar
  62. Knappe J, Neugebauer FA, Blaschkowski HP, Gänzler M (1984) Post-translational activation introduces a free radical into pyruvate formate-lyase. Proc Natl Acad Sci USA 81:1332–1335PubMedCrossRefGoogle Scholar
  63. Konings WN, Lokema SJ, van Veen HW, Poolman B, Driessen AJM (1997) The role of transport processes in survival of lactic acid bacteria. Ant v Leeuwenhoek 71:117–128CrossRefGoogle Scholar
  64. Kröger A, Geißler V, Lemma E, Theis F, Lenger R (1992) Bacterial fumarate respiration. Arch Microbiol 158:311–314CrossRefGoogle Scholar
  65. Lancaster RCD, Kröger A (2000) Succinate: quinone oxidoreductases: new insights from X-ray crystal structures. Biochim Biophys Acta 1459:422–431PubMedCrossRefGoogle Scholar
  66. Lazazzera BA, Beinert H, Khoroshilova N, Kennedy MC, Kiley PJ (1996) DNA binding and dimerization of the Fe-S-containing FNR protein from Escherichia coli are regulated by oxygen. Biol Chem 271:2762–2768CrossRefGoogle Scholar
  67. Lee MJ, Zinder SH (1988a) Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetate oxidizing coculture. Arch Microbiol 150:513–518CrossRefGoogle Scholar
  68. Lee MJ, Zinder SH (1988b) Isolation and characterization of a thermophilic bacterium, which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl Environ Microbiol 54:124–129PubMedGoogle Scholar
  69. Leuthner B, Leutwein C, Schulz H, Hörth P, Hachnel W, Schlitz E, Schägger H, Heider J (1998) Biochemical and genetic characterisation of benzylsuccinate synthase from Thauera aromatica: a new glycyl-radical enzyme catalysing the first step in anaerobic toluene degradation. Molec Microbiol 28:615–628CrossRefGoogle Scholar
  70. Licht S, Gerfen GJ, Stubbe J (1996) Thiyl radicals in ribonucleotide reductases. Science 271:477–481PubMedCrossRefGoogle Scholar
  71. Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann Rev Microbiol 40:415–450CrossRefGoogle Scholar
  72. McInerney MJ, Bryant MP, Hespell RB, Costerton JW (1981) Synthrophomonas wolfei gen. nov. sp. nov., an anaerobic, synthrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41:1029–1039PubMedGoogle Scholar
  73. Meile L, Fischer K, Leisinger T (1995) Characterization of the superoxide dismutase gene and its upstream region from Methanobacterium thermoautotrophicum Marburg. FEMS Microbiol Lett 128:247–253PubMedCrossRefGoogle Scholar
  74. Melville SB, Gunsalus RP (1996) Isolation of an oxygen-sensitive FNR protein of Escherichia coli: interaction at activator and repressor sites of FNR-controlled genes. Proc Natl Acad Sci USA 93:1226–1231PubMedCrossRefGoogle Scholar
  75. Menon S, Ragsdale SW (1999) The role of an iron-sulfur cluster in an enzymatic methylation reaction. Methylation of CO dehydrogenase/acetyl-CoA synthase by the methylated corrinoid iron-sulfur protein. J Biol Chem 274:11513–11518PubMedCrossRefGoogle Scholar
  76. Möller D, Schauder R, Fuchs G, Thauer RK (1987) Acetate oxidation to CO2 via a citric acid cycle involving an ATP-citrate lyase: a mechanism for the synthesis of ATP via substrate level phosphorylation in Desulfobacter postgatei growing on acetate and sulfate. Arch Microbiol 148:202–207CrossRefGoogle Scholar
  77. Möller-Zinkhahn D, Börner G, Thauer RK (1989) Function of methanofuran, tetrahydromethanopterin, and coenzyme F420 in Archaeoglobus fulgidus. Arch Microbiol 152:362–368CrossRefGoogle Scholar
  78. Morris JG (1976) Oxygen and the obligate anaerobes. J Appl Bacteriol 40:229–244PubMedCrossRefGoogle Scholar
  79. Mountfort DO, Bryant MP (1982) Isolation and characterization of an anaerobic syntrophic benzoate-degrading bacterium from sewage sludge. Arch Microbiol 133:249–256CrossRefGoogle Scholar
  80. Naumann E, Hippe H, Gottschalk G (1983) Betaine: New oxidant in the Stickland reaction and methanogenesis from betaine and L-alanine by a Clostridium sporogenes Methanosarcina barkeri coculture. Appl Environ Microbiol 45:474–483PubMedGoogle Scholar
  81. Niimura Y, Nishiyama Y, Saito D, Tsuji H, Hidaka M, Miyaji T, Watanabe T, Massey V (2000) A hydrogen peroxide-forming NADH oxidase that functions as an alkyl hydroperoxide reductase in Amphibacillus xylanus. J Bacteriol 182:5046–5051PubMedCrossRefGoogle Scholar
  82. Philipp B, Schink B (1998) Evidence of two oxidative reaction steps initiating anaerobic degradation of resorcinol (1,3-dihydroxybenzene) by the denitrifying bacterium Azoarcus anaerobius. J Bacteriol 180:3644–3649PubMedGoogle Scholar
  83. Philipp B, Schink B (2000) Two distinct pathways for anaerobic degradation of aromatic compounds in the denitrifying bacterium Thauera aromatica strain AR-1. Arch Microbiol 173:91–96PubMedCrossRefGoogle Scholar
  84. Pianzzola MJ, Soubes M, Touati D (1996) Overproduction of the rbo gene product from Desulfovibrio species suppresses all deleterious effects of lack of superoxide dismutase in Escherichia coli. J Bacteriol 178:6736–6742PubMedGoogle Scholar
  85. Roy F, Samain E, Dubourgier HC, Albagnac G (1986) Synthrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch Microbiol 145:142–147CrossRefGoogle Scholar
  86. Saunders NF, Houben EN, Koefoed S, deWeert S, Reijnders WN, Westerhoff HV, DeBoer AP, VanSpanning RJ (1999) Transcription regulation of the nir gene cluster encoding nitrite reductase of Paracoccus denitrificans involves NNR and NirI, a novel type of membrane protein. Molec Microbiol 34:24–36CrossRefGoogle Scholar
  87. Schink B (1984) Fermentation of 2.3-butanediol by Pelobacter carbinolyticus sp. nov. and Pelobacter propionicus, sp. nov., and evidence for propionate formation from C2 compounds. Arch Microbiol 137:33–41CrossRefGoogle Scholar
  88. Schink B (1985) Fermentation of acetylene by an obligate anaerobe. Pelobacter acetylenicus sp. nov. Arch Microbiol 142:295–301CrossRefGoogle Scholar
  89. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Molec Biol Rev 61:262–280Google Scholar
  90. Schink B, Thauer RK (1987) Energetics of syntrophic methane formation and the influence of aggregation. In: Lettinga G, Zehnder AJB, Grotenhuis JTC, Hilshoff CW (eds) Granular anaerobic sludge: microbiology and technology. Proceedings of the GASMAT-Workshop, Lunteren, The Netherlands Puduc Wageningen, The Netherlands, pp 5–17Google Scholar
  91. Schink B, Philipp B, Müller J (2000) Anaerobic degradation of phenolic compounds. Naturwissenschaften 87:12–23PubMedCrossRefGoogle Scholar
  92. Shanmugasundaram T, Ragsdale SW, Wood HG (1988) Role of carbon monoxide dehydrogenase in acetate synthesis by the acetogenic bacterium Acetobacterium woodii. Biofactors 1:147–152PubMedGoogle Scholar
  93. Shieh J, Whitman WB (1988) Autotrophic acetyl coenzyme A biosynthesis in Methanococcus maripaludis. J Bacteriol 170:3072–3079PubMedGoogle Scholar
  94. Spiro S (1994) The FNR family of transcriptional regulators. Ant v Leeuwenhoek 66:23–36CrossRefGoogle Scholar
  95. Spormann AM, Thauer RK (1988) Anaerobic acetate oxidation to CO2 by Desulfotomaculum acetoxidans. Demonstration of enzymes required for the operation of an oxidative acetyl-CoA/carbon monoxide dehydrogenase pathway. Arch Microbiol 150:374–380CrossRefGoogle Scholar
  96. Stams AJ (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Ant v Leeuwenhoek 66:271–294CrossRefGoogle Scholar
  97. Takao M, Yasui A, Oikawa A (1991) Unique characteristics of superoxide dismutase of a strictly anaerobic archaebacterium Methanobacterium thermoautotrophicum. J Biol Chem 266:14151–14154PubMedGoogle Scholar
  98. Thauer RK (1988) Citric-acid cycle, 50 years on: modifications and an alternative pathway in anaerobic bacteria. Eur J Biochem 176:497–508PubMedCrossRefGoogle Scholar
  99. Thauer RK (1998) 1998 Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Marjory Stephenson Prize Lecture. Microbiology 144:2377–2406PubMedCrossRefGoogle Scholar
  100. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180PubMedGoogle Scholar
  101. Thauer RK, Möller-Zinkhan D, Spormann AM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Ann Rev Microbiol 43:43–67CrossRefGoogle Scholar
  102. Uyeda R, Rabinowitz JC (1971) Pyruvate-ferredoxin oxidoreductase. III: purification and properties of the enzyme. J Biol Chem 246:3111–3119PubMedGoogle Scholar
  103. Vollack KU, Härtig E, Korner H, Zumft WG (1999) Multiple transcription factors of the FNR family in denitrifying Pseudomonas stutzeri: characterization of four fnr-like genes, regulatory responses and cognate metabolic processes. Molec Microbiol 31:1681–1694CrossRefGoogle Scholar
  104. Wallrabenstein C, Hauschild E, Schink B (1995) Synthrophomonas pfennigii sp. nov., a new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 164:346–352CrossRefGoogle Scholar
  105. Whittaker MM, Whittaker JW (1998) A glutamate bridge is essential for dimer stability and metal selectivity in manganese superoxide dismutase. J Biol Chem 273:22188–22193PubMedCrossRefGoogle Scholar
  106. Wood HG, Ragsdale SW, Pezacka E (1986) The acetyl-CoA pathway or autotrophic growth. FEMS Microbiol Rev 39:345–362CrossRefGoogle Scholar
  107. Youn HD, Kim EJ, Roe JH, Hah YC, Kang SO (1996a) A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem J 318:889–896PubMedGoogle Scholar
  108. Youn HD, Youn H, Lee JW, Yim YI, Lee JK, Hah YC, Kang SO (1996b) Unique isozymes of superoxide dismutase in Streptomyces griseus. Arch Biochem Biophys 334:341–348PubMedCrossRefGoogle Scholar
  109. Zeikus JG (1983) Metabolism of one-carbon compounds by chemotrophic anaerobes. Adv Microbiol Physiol 24:215–293CrossRefGoogle Scholar
  110. Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269PubMedCrossRefGoogle Scholar
  111. Zinder SH, Koch M (1984) Non-acetoclastic methanogenesis from acetate: acetate oxidation by a thermophilic synthrophic coculture. Arch Microbiol 138:263–272CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ruth A. Schmitz
    • 1
  • Rolf Daniel
    • 2
  • Uwe Deppenmeier
    • 3
  • Gerhard Gottschalk
    • 4
  1. 1.Institut für Allgemeine MikrobiologieChristian-Albrechts-Universität KielKielGermany
  2. 2.Department of Genomic and Applied MicrobiologyGeorg-August-Universität GöttingenGöttingenGermany
  3. 3.Department of Biological SciencesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  4. 4.Institut für Mikrobiologie und GenetikGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations