Pelagic Oxygen Minimum Zone Microbial Communities

  • Osvaldo Ulloa
  • Jody J. Wright
  • Lucy Belmar
  • Steven J. Hallam


Marine oxygen minimum zones (OMZs) are oxygen-starved regions of the ocean harboring diverse microbial communities that drive biogeochemical processes of global significance, particularly those associated with the nitrogen cycle, with resulting impacts on marine nutrient cycles and the climate system. OMZs appear to be expanding and intensifying due to global climate change. Actual dissolved oxygen concentrations vary among extant OMZs, with some of them being totally anoxic and dominated by anaerobic metabolic processes, others presenting no geochemical signs of anaerobic metabolisms. Despite these overt phenotypic differences, culture-independent molecular studies have identified recurring microbial community composition patterns within OMZs consistent with redox-driven niche partitioning. While the majority of molecular studies have been based on individual marker genes, more recent studies have incorporated community genomic and transcriptomic data sets. Here, we highlight dominant trends emerging from these studies with emphasis on key taxonomic groups implicated in nitrogen, sulfur, and carbon transformations within OMZs.


Anammox Bacterium Oxygen Minimum Zone Ammonia Monooxygenase Marine Group Cariaco Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This chapter was prepared while the lead author (O.Ulloa) was on sabbatical at the Department of Microbiology and Immunology, University of British Columbia, supported by the Life Sciences Institute Visiting Scholar Award, the Peter Wall Institute for Advanced Studies International Visiting Research Scholar Award, and a gift from the Agouron Institute.

This work was performed under the auspices of the Agouron Institute, the Gordon and Betty Moore Foundation, the FONDAP Program of the Chilean National Commission for Scientific and Technological Research (CONICYT), the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Canada Foundation for Innovation, and the Canadian Institute for Advanced Research. J. J. Wright was supported by NSERC. L. Belmar was supported by CONICYT.


  1. Belmar L, Molina V, Ulloa O (2011) Abundance and phylogenetic identity of archaeoplankton in the permanent oxygen minimum zone of the eastern tropical South Pacific. FEMS Microbiol Ecol 78:314–326PubMedCrossRefGoogle Scholar
  2. Beman JM, Popp BN, Francis CA (2008) Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME J 2:429–441PubMedCrossRefGoogle Scholar
  3. Campbell BJ, Engel AS, Porter ML, Takai K (2006) The versatile ε-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4:458–468PubMedCrossRefGoogle Scholar
  4. Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF, Revsbech NP, Ulloa O (2010) A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science 330:1375–1378PubMedCrossRefGoogle Scholar
  5. Castro-González M, Braker G, Farías L, Ulloa O (2005) Communities of nirS-type denitrifiers in the water column of the oxygen minimum zone in the eastern South Pacific. Environ Microbiol 7:1298–1306PubMedCrossRefGoogle Scholar
  6. Codispoti LA (2010) Interesting times for marine N2O. Science 327:1339–1340PubMedCrossRefGoogle Scholar
  7. Codispoti LA, Brandes JAYA, Christensen JP, Devol AH, Naqvi SWA, Paerl HW, Yoshinari T (2001) The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene? Sci Mar 65:85–105CrossRefGoogle Scholar
  8. Coolen MJ, Abbas B, van Bleijswijk J, Hopmans EC, Kuypers MMM, Wakeham SG, Sinninghe Damsté JS (2007) Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16 S ribosomal and functional genes and membrane lipids. Environ Microbiol 9:1001–1016PubMedCrossRefGoogle Scholar
  9. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689PubMedCrossRefGoogle Scholar
  10. DeLong EF (1998) Everything in moderation: archaea as ‘non-extremophiles’. Curr Opin Genet Dev 8:649–654PubMedCrossRefGoogle Scholar
  11. Diaz RJ, Rosenberg R (2009) Spreading dead zones and consequences for marine ecosystems. Science 926:926–929Google Scholar
  12. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461PubMedCrossRefGoogle Scholar
  13. Fossing H, Gallardo VA, Jørgensen BB, Hüttel M, Nielsen LP, Schulz H, Canfield DE, Forster S, Glud RN, Gundersen JK, Küver J, Ramsing NB, Teske A, Thamdrup B, Ulloa O (1995) Concentration and transport of nitrate by the mat-forming sulfur bacterium Thioploca. Nature 374:713–715CrossRefGoogle Scholar
  14. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102:14683–14688PubMedCrossRefGoogle Scholar
  15. Fuchs BM, Woebken D, Zubkov MV, Burkill P, Amann R (2005) Molecular identification of picoplankton populations in contrasting waters of the Arabian Sea. Aquat Microb Ecol 39:145–157CrossRefGoogle Scholar
  16. Fuhrman JA, Davis AA (1997) Widespread archaea and novel bacteria from the deep sea as shown by 16 S rRNA gene sequences. Mar Ecol Prog Ser 150:275–285CrossRefGoogle Scholar
  17. Galán A, Molina V, Thamdrup B, Woebken D, Lavik G, Kuypers MMM, Ulloa O (2009) Anammox bacteria and the anaerobic oxidation of ammonium in the oxygen minimum zone off northern Chile. Deep-Sea Res II 56:1021–1031CrossRefGoogle Scholar
  18. Goericke R, Olson RJ, Shalapyonok A (2000) A novel niche for Prochlorococcus sp. in low-light suboxic environments in the Arabian Sea and the eastern tropical North Pacific. Deep-Sea Res I 47:1183–1205CrossRefGoogle Scholar
  19. Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, DeLong EF (2006) Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4:e95PubMedCrossRefGoogle Scholar
  20. Hamersley MR, Lavik G, Woebken D, Rattray JE, Lam P, Hopmans EC, Damste JSS, Kruger S, Graco M, Gutierrez D, Kuypers MMM (2007) Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnol Oceanogr 52:923–933CrossRefGoogle Scholar
  21. Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson KH, Horikoshi K (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Ohkotsk. Appl Environ Microbiol 69:7224–7235PubMedCrossRefGoogle Scholar
  22. Jayakumar DA, Francis CA, Naqvi SWA, Ward BB (2004) Diversity of nitrite reductase genes (nirS) in the denitrifying water column of the coastal Arabian Sea. Aquat Microb Ecol 34:69–78CrossRefGoogle Scholar
  23. Jayakumar A, O’Mullan GD, Naqvi SWA, Ward BB (2009) Denitrifying bacterial community composition changes associated with stages of denitrification in oxygen minimum zones. Microb Ecol 58:350–362PubMedCrossRefGoogle Scholar
  24. Jeon SO, Ahn TS, Hong SH (2008) A novel archaeal group in the phylum Crenarchaeota found unexpectedly in an eukaryotic survey in the Cariaco Basin. J Microbiol 46:34–39PubMedCrossRefGoogle Scholar
  25. Johnson Z, Landry ML, Bidigare RR, Brown SL, Campbell L, Gunderson J, Marra J, Trees C (1999) Energetics and growth kinetics of a deep Prochlorococcus spp. population in the Arabian Sea. Deep-Sea Res II 46:1719–1743CrossRefGoogle Scholar
  26. Jurgens G, Lindström K, Saano A (1997) Novel group within the kingdom Crenarchaeota from boreal forest soil. Appl Environ Microbiol 63:803–805PubMedGoogle Scholar
  27. Jurgens G, Glöckner FO, Amann R, Saano A, Montonen L, Likolammi M, Munster U (2000) Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization. FEMS Microbiol Ecol 34:45–56PubMedGoogle Scholar
  28. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066PubMedCrossRefGoogle Scholar
  29. Keeling RF, Körtzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Ann Rev Mar Sci 2:199–229PubMedCrossRefGoogle Scholar
  30. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546PubMedCrossRefGoogle Scholar
  31. Labrenz M, Sintes E, Toetzke F, Zumsteg A, Herndl GJ, Seidler M, Jürgens K (2010) Relevance of a crenarchaeotal subcluster related to Candidatus Nitrosopumilus maritimus to ammonia oxidation in the suboxic zone of the central Baltic Sea. ISME J 4:1496–1508PubMedCrossRefGoogle Scholar
  32. Lam P, Kuypers MMM (2011) Microbial nitrogen cycling processes in oxygen minimum zones. Ann Rev Mar Sci 3:317–345PubMedCrossRefGoogle Scholar
  33. Lam P, Jensen MM, Lavik G, McGinnis DF, Müller B, Schubert CJ, Amann R, Thamdrup B, Kuypers MMM (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc Natl Acad Sci USA 104:7104–7109PubMedCrossRefGoogle Scholar
  34. Lavik G, Stuhrmann T, Bruchert V, Van der Plas A, Mohrholz V, Lam P, Mussmann M, Fuchs BM, Amann R, Lass U, Kuypers MMM (2009) Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457:581–584PubMedCrossRefGoogle Scholar
  35. Lavin P, González B, Santibánez JF, Scanlan DJ, Ulloa O (2010) Novel lineages of Prochlorococcus thrive within the oxygen minimum zone of the eastern tropical South Pacific. Environ Microbiol Rep 2:728–738CrossRefGoogle Scholar
  36. Lipschultz F, Wofsy SC, Ward BB, Codispoti LA, Friedrich G, Elkins JW (1990) Bacterial transformations of inorganic nitrogen in the oxygen-deficient waters of the eastern tropical South-Pacific ocean. Deep-Sea Res 37:1513–1541CrossRefGoogle Scholar
  37. Madrid VM, Taylor GT, Scranton MI, Chistoserdov AY (2001) Phylogenetic diversity of bacterial and archaeal communities in the anoxic zone of the Cariaco Basin. Appl Environ Microbiol 67:1663–1674PubMedCrossRefGoogle Scholar
  38. Massana R, DeLong EF, Pedrós-Alió C (2000) A few cosmopolitan phylotypes dominate planktonic archaeal assemblages in widely different oceanic provinces. Appl Environ Microbiol 66:1777–1787PubMedCrossRefGoogle Scholar
  39. Mincer TJ, Church MJ, Taylor LT, Preston C, Karl DM, DeLong EF (2007) Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ Microbiol 9:1162–1175PubMedCrossRefGoogle Scholar
  40. Molina V, Belmar L, Ulloa O (2010) High diversity of ammonia-oxidizing archaea in permanent and seasonal oxygen-deficient waters of the eastern South Pacific. Environ Microbiol 12:2450–2465PubMedCrossRefGoogle Scholar
  41. Price MN, Dehal PS, Arkin AP (2010) FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490PubMedCrossRefGoogle Scholar
  42. Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941PubMedCrossRefGoogle Scholar
  43. Ramírez-Flandes S, Ulloa O (2008) Bosque: integrated phylogenetic analysis software. Bioinformatics 24:2539–2541PubMedCrossRefGoogle Scholar
  44. Revsbech NP, Larsen LH, Gundersen J, Dalsgaard T, Ulloa O, Thamdrup B (2009) Determination of ultra-low oxygen concentrations in oxygen minimum zones by the STOX sensor. Limnol Oceanogr Methods 7:371–381CrossRefGoogle Scholar
  45. Sørensen KB, Teske A (2006) Stratified communities of active archaea in deep marine subsurface sediments. Appl Environ Microbiol 72:4596–4603PubMedCrossRefGoogle Scholar
  46. Stevens H, Ulloa O (2008) Bacterial diversity in the oxygen minimum zone of the eastern tropical South Pacific. Environ Microbiol 10:1244–1259PubMedCrossRefGoogle Scholar
  47. Stewart FJ, Ulloa O, DeLong EF (2012) Microbial metatranscriptomics in a permanent marine oxygen minimum zone. Environ Microbiol 14:23–40PubMedCrossRefGoogle Scholar
  48. Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Medigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJM, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes HW, Weissenbach J, Jetten MSM, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794PubMedCrossRefGoogle Scholar
  49. Sunamura M, Higashi Y, Miyako C, Ishibashi J, Maruyama A (2004) Two bacteria phylotypes are predominant in the Suiyo Seamount hydrothermal plume. Appl Environ Microbiol 70:1190–1198PubMedCrossRefGoogle Scholar
  50. Takai K, Horikoshi K (1999) Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297PubMedGoogle Scholar
  51. Takai K, Komatsu T, Inagaki F, Horikoshi K (2001) Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629PubMedCrossRefGoogle Scholar
  52. Thamdrup B, Dalsgaard T, Revsbech NP (2012) Widespread functional anoxia in the oxygen minimum zone of the eastern South Pacific. Deep-Sea Res I 65:36–45CrossRefGoogle Scholar
  53. Treusch AH, Leiningger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995PubMedCrossRefGoogle Scholar
  54. van de Vossenberg J, Woebken D, Maalcke WJ, Wessels HJCT, Dutilh BE, Kartal B, Janssen-Megens EM, Roeselers G, Yan J, Speth D, Gloerich J, Geerts W, van der Biezen E, Pluk W, Francoijs K-J, Russ L, Lam P, Malfatti SA, Tringe SG, Haaijer SCM, Op den Camp HJM, Stunnenberg HG, Amann R, Kuypers MMM, Jetten MSM (2012) The metagenome of the marine anammox bacterium ‘Candidatus Scalindua profunda’ illustrates the versatility of this globally important nitrogen cycle bacterium. Environ Microbiol. doi:10.1111/j.1462-2920.2012.02774.xGoogle Scholar
  55. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74PubMedCrossRefGoogle Scholar
  56. Vetriani C, Jannasch HW, MacGregor BJ, Stahl DA, Reysenbach AL (1999) Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl Environ Microbiol 65:4375–4384PubMedGoogle Scholar
  57. Vetriani C, Traan HV, Kerkof L (2003) Fingerprinting microbial assemblages from the oxic/anoxic chemocline of the Black Sea. Appl Environ Microbiol 69:6481–6488PubMedCrossRefGoogle Scholar
  58. Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, Brochier-Armanet C, Chain PSG, Chan PP, Gollabgir A, Hemp J, Hügler M, Karr EA, Könneke M, Shin M, Lawton TJ, Lowe T, Martens-Habbena W, Sayavedra-Soto LA, Lang D, Sievert SM, Rosenzweig AC, Manning G, Stahl DA (2010) Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci USA 107:8818–8823PubMedCrossRefGoogle Scholar
  59. Walsh DA, Zaikova E, Howes CG, Song YC, Wright JJ, Tringe SG, Tortell PD, Hallam SJ (2009) Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science 326:578–582PubMedCrossRefGoogle Scholar
  60. Ward BB, Zafiriou O (1988) Nitrification and nitric oxide in the oxygen minimum of the eastern tropical North Pacific. Deep-Sea Res 35:1127–1142CrossRefGoogle Scholar
  61. Ward BB, Glover HE, Lipschultz F (1989) Chemoautotrophic activity and nitrification in the oxygen minimum zone off Peru. Deep-Sea Res 36:1031–1051CrossRefGoogle Scholar
  62. Ward BB, Devol AH, Rich JJ, Chang BX, Bulow SE, Naik H, Pratihary A, Jayakumar A (2009) Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature 461:78–81PubMedCrossRefGoogle Scholar
  63. Woebken D, Fuchs BA, Kuypers MAA, Amann R (2007) Potential interactions of particle-associated anammox bacteria with bacterial and archaeal partners in the Namibian upwelling system. Appl Environ Microbiol 73:4648–4657PubMedCrossRefGoogle Scholar
  64. Woebken D, Lam P, Kuypers MMM, Naqvi SWA, Kartal B, Strous M, Jetten MSM, Fuchs BM, Amann R (2008) A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environ Microbiol 10:3106–3119PubMedCrossRefGoogle Scholar
  65. Wright JJ, Konwar KM, Hallam SJ (2012) Microbial ecology of expanding oxygen minimum zones. Nat Rev Microbiol 10:381–394PubMedGoogle Scholar
  66. Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Damste JSS (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103:12317–12322PubMedCrossRefGoogle Scholar
  67. Zaikova E, Walsh DA, Stilwell CP, Mohn WW, Tortell PD, Hallam SJ (2010) Microbial community dynamics in a seasonally anoxic fjord: Saanich Inlet, British Columbia. Environ Microbiol 12:172–191PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Osvaldo Ulloa
    • 1
  • Jody J. Wright
    • 2
  • Lucy Belmar
    • 3
  • Steven J. Hallam
    • 2
    • 4
  1. 1.Departamento de OceanografíaUniversidad de ConcepciónConcepciónChile
  2. 2.Department of Microbiology and ImmunologyUniversity of British Columbia, Life Sciences InstituteVancouverCanada
  3. 3.Departamento de Oceanografía and Programa de Postgrados en OceanografíaUniversidad de ConcepciónConcepciónChile
  4. 4.Graduate Program in BioinformaticsUniversity of British Columbia, Life Sciences InstituteVancouverCanada

Personalised recommendations