Skip to main content

Marine Deep Sediment Microbial Communities

  • Reference work entry
The Prokaryotes

Abstract

A new biosphere of bacteria, archaea, and eukaryotes in deep marine subsurface sediments, characterized by unexpected evolutionary depth and metabolic diversity, is currently being explored by gene sequencing surveys, cell counts, molecular quantification studies, and cultivations. Although cultivable bacteria have been detected and quantified in deep marine sediments decades ago (Morita and Zobell 1955), the pioneering work by John R. Parkes and colleagues provided comprehensive proof of the deep microbial biosphere in subsurface marine sediments, by integrating microbial cell counts, Most-Probable-Number counts, characterizations of subsurface bacterial isolates, geochemical porewater profiles, and measurements of microbial process rates (Parkes et al. 1994). Total cell numbers and biomass of this subsurface biosphere account for a major portion of all living biomass (Whitman et al. 1998; Parkes et al. 2000). Specific phylum-level lineages of bacteria and archaea occur consistently in marine subsurface sediments, often in distinctly structured communities that reflect specific subsurface habitats and geochemical settings, and that are distinct from the surface biosphere. Investigating the activity, metabolism, biogeochemical role, and energy and carbon sources of subsurface bacteria, archaea, and eukaryotes remains an ongoing challenge of deep subsurface microbiology. Most deep sediment samples for deep subsurface microbial research were recovered through the Ocean Drilling Program (ODP) and its successor, the Integrated Ocean Drilling Program (IODP). Deep sediment sampling expeditions have to a very large extent provided the sediment samples, subsurface habitat characterizations, and biogeochemical process studies that have nurtured, and continue to develop, the field of deep subsurface microbiology (D’Hondt et al. 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amend JP, Teske A (2005) Expanding frontiers in deep subsurface microbiology. Palaeogeography, Palaeoclimatology, Palaeoecology 219:131–155

    Google Scholar 

  • Bahr M, Crump BC, Klepac-Ceraj V, Teske A, Sogin ML, Hobbie JE (2005) Molecular characterization of sulfate-reducing bacteria in a New England salt marsh. Environ Microbiol 7:1175–1185

    PubMed  CAS  Google Scholar 

  • Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC, Weightman AJ, Parkes RJ (1997) Desulfovobrio profundus sp. nov., a novel barophilic sulphate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47:515–521

    PubMed  CAS  Google Scholar 

  • Barnes SP, Bradbrook SD, Cragg BA, Marchesi JR, Weightman AJ, Fry JC, Parkes RJ (1998) Isolation of sulphate reducing bacteria from deep sediment layers of the Pacific Ocean. Geomicrobiol J 15:67–83

    Google Scholar 

  • Barns SM, Delwiche CF, Palmer JD, Pace NR (1996) Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci USA 93:9188–9193

    PubMed  CAS  Google Scholar 

  • Batzke A, Engelen B, Sass H, Cypionka H (2007) Phylogenetic and physiological diversity of cultured deep-biosphere bacteria from equatorial Pacific Ocean and Peru margin sediments. Geomicrobiol J 24:261–273

    CAS  Google Scholar 

  • Biddle JF, House CH, Brenchley JE (2005a) Enrichment and cultivation of microorganisms from sediment from the slope of the Peru Trench (ODP site 1230). In: Jørgensen BB, D’Hondt SL, Miller DJ (eds) Proceedings of ODP, science results, 201 [online]. Texas A&M University, College Station, TX. Available from World Wide Web: http://www-odp.tamu.edu/publications201_SR/107107.htm

  • Biddle JF, House CH, Brenchley JE (2005b) Microbial stratification in deeply-buried marine sediment reflects changes in sulfate/methane profiles. Geobiology 3:287–295

    CAS  Google Scholar 

  • Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH (2008) Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci USA 105:10583–10588

    PubMed  CAS  Google Scholar 

  • Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sørensen KB, Anderson R, Fredricks HF, Elvert M, Kelly TJ, Schrag DP, Sogin ML, Brenchley JE, Teske A, House CH, Hinrichs K-U (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA 103:3846–3851

    PubMed  CAS  Google Scholar 

  • Biddle JF, White JR, Teske A, House CH (2011) Metagenomics of the subsurface Brazos-Trinity Basin (IODP Site 1320): comparison with other sediment and pyrosequenced metagenomes. ISME J 5:1038–1047

    PubMed  CAS  Google Scholar 

  • Binga EK, Lasken RS, Neufeld JD (2008) Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology. ISME J 2:233–241

    PubMed  CAS  Google Scholar 

  • Blazejak A, Schippers A (2010) High abundance of JS-1- and Chloroflexi-related bacteria in deeply buried marine sediments revealed by quantitative, real-time PCR. FEMS Microbiol Ecol 72:198–207

    PubMed  CAS  Google Scholar 

  • Blazejak A, Schippers A (2012) Real-time quantification and diversity analysis of the functional genes aprA and dsrA of sulfate-reducing prokaryotes in marine sediments of the Peru continental Margin and the Black Sea. Front Microbiol 2:253. doi:10.3389/jmicb.2011.00253

    Google Scholar 

  • Böttcher ME, Ferdelman TG, Jørgensen BB, Blake RE, Surkov AV, Claypool GE (2006) Sulfur isotope fractionation by the deep biosphere within sediments of the eastern equatorial Pacific and Peru Margin. In: Jørgensen BB, D’Hondt SL, Miller DJ (eds) Proceedings of ODP, science results, 201 [online]. Texas A&M University, College Station, TX. Available from World Wide Web: http://www-odp.tamu.edu/publications/201_SR/109/109.htm

  • Braun M, Mayer F, Gottschalk G (1981) Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch Microbiol 128:288–293

    PubMed  CAS  Google Scholar 

  • Briggs BR, Pohlman JW, Torres M, Riedel M, Brodie EL, Colwell FS (2011) Macroscopic biofilms in fracture-dominated sediment that anaerobically oxidize methane. Appl Environ Microbiol 77:6780–6787

    PubMed  CAS  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    PubMed  CAS  Google Scholar 

  • Canfield DE (1991) Sulfate reduction in deep-sea sediments. Am J Sci 291:177–188

    PubMed  CAS  Google Scholar 

  • Cano RJ, Borucki MK (1995) Revival and identification of bacterial spores in 25 to 40 million year-old Dominican amber. Science 268:1060–1064

    PubMed  CAS  Google Scholar 

  • Chivian D, Brodie EL, Alm AJ, Culley DE, Dehal PS, DeSantis TZ, Gihring TM, Lapidus A, Lin L-H, Lowry SR, Moser DP, Richardson PM, Southam G, Wanger G, Pratt LM, Andersen GL, Hazen TC, Brockman FJ, Arkin AP, Onstott TC (2008) Environmental genomics reveals a single-species ecosystem within Earth. Science 322:275–278

    PubMed  CAS  Google Scholar 

  • Coolen MJL, Cypionka H, Sass AM, Sass H, Overmann J (2002) Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science 296:2407–2419

    PubMed  CAS  Google Scholar 

  • D’Hondt S, Inagaki F, Ferdelman T, Jørgensen BB, Kato K, Kemp P, Sobecky P, Sogin M, Takai K (2007) Exploring subseafloor life with the integrated ocean drilling program. Sci Drill 5:26–37

    Google Scholar 

  • D’Hondt S, Jørgensen BB, Miller DJ et al (2004) Distribution of microbial activities in deep subseafloor sediments. Science 306:2216–2221

    PubMed  Google Scholar 

  • D’Hondt S, Rutherford S, Spivack AJ (2002) Metabolic activity of subsurface life in deep-sea sediments. Science 295:2067–2070

    PubMed  Google Scholar 

  • D’Hondt S, Spivack AJ, Pockalny R, Ferdelman TG, Fischer JP, Kallmeyer J, Abrams LJ, Smith DC, Graham D, Hasiuk F, Schrum H, Stancin AM (2009) Subseafloor sedimentary life in the South Pacific Gyre. Proc Natl Acad Sci USA 106:11651–11656

    PubMed  Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    PubMed  CAS  Google Scholar 

  • DeLong EF (2004) Microbial life breaths deep. Science 306:2198–2200

    PubMed  CAS  Google Scholar 

  • DeLong F, Pace N (2001) Environmental diversity of bacteria and archaea. Syst Biol 50:470–478

    PubMed  CAS  Google Scholar 

  • Divins DL (2003) Total Sediment Thickness of the World’s Oceans & Marginal Seas. NOAA National Geophysical Data Center, Boulder, CO

    Google Scholar 

  • Dojka MA, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869–3877

    PubMed  CAS  Google Scholar 

  • Dunne JP, Sarmiento JL, Gnanadesikan A (2007) A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochem Cycles 21:GB4006

    Google Scholar 

  • Durbin AM, Teske A (2010) Sediment-associated microdiversity within the marine group I Crenarchaeota. Environ Microbiol Rep 2:693–703

    CAS  Google Scholar 

  • Durbin AM, Teske A (2011) Microbial diversity and stratification of South Pacific abyssal marine sediments. Environ Microbiol 13:3219–3234

    PubMed  Google Scholar 

  • Durbin AM, Teske A (2012) Archaea in organic-lean and organic-rich marine subsurface sediments: an environmental gradient reflected in distinct phylogenetic lineages. Front Microbiol 3:168

    PubMed  Google Scholar 

  • Edgcomb VP, Biddle JF (2011) Microbial eukaryotes in the marine subsurface. In: Altenbach AV et al (eds) Anoxia: evidence for eukaryote survival and paleontological strategies, vol 21, Cellular origin, life in extreme habitats and astrobiology. Springer, New York, pp 479–493. doi:10.1007/978-94-007-1896-8_25

    Google Scholar 

  • Edgcomb VP, Beaudoin D, Gast R, Biddle JF, Teske A (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13:172–183

    PubMed  CAS  Google Scholar 

  • Fichtel K, Mathes F, Könneke M, Cypionka H, Engelen B (2012) Isolation of sulfate-reducing bacteria from sediments above the deep-subseafloor aquifer. Front Microbiol 3:65. doi:10.3389/fmicb.2012.00065

    PubMed  Google Scholar 

  • Forschner SR, Sheffer R, Rowley DC, Smith DC (2009) Microbial diversity in Cenozoic sediments from the Lomonosov Ridge in the central Arctic Ocean. Environ Microbiol 11:630–639

    PubMed  CAS  Google Scholar 

  • Friedrich M (2005) Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. Meth Enzymol 26:428–442

    Google Scholar 

  • Friedrich MW (2002) Phylogenetic analysis reveals multiple lateral transfers of adenosine-5 ′-phosphosulfate reductase genes among sulfate-reducing microorganisms. J Bacteriol 184:278–289

    PubMed  CAS  Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090

    CAS  Google Scholar 

  • Fry JC, Parkes RJ, Cragg BA, Weightman AJ, Webster G (2008) Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol Ecol 66:181–196

    PubMed  CAS  Google Scholar 

  • Fuerst JA, Sagulenko E (2011) Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 9:403–413

    PubMed  CAS  Google Scholar 

  • Futagami T, Morono Y, Terada T, Kaksonen AH, Inagaki F (2009) Dehalogenation activities and distribution of reductive dehalogenase homologous genes in marine subsurface sediments. Appl Environ Microbiol 75:6905–6909

    PubMed  CAS  Google Scholar 

  • Gagen EM, Denman SE, Padmanabha J, Zadbuke S, Jassim RA, Morrison M, McSweeney CS (2010) Functional gene analysis suggests different acetogen populations in the bovine rumen and Tammar Wallaby forestomach. Appl Environ Microbiol 76:7785–7795

    PubMed  CAS  Google Scholar 

  • Gest H, Mandelstam J (1987) Longevity of microorganisms in natural environ-ments. Microbiol Sci 4:69–71

    PubMed  CAS  Google Scholar 

  • Gieskes JM, Boulègue J (1986) Interstitial water studies, Leg 92. In: Leinen M, Rea DK, Anderson RN, Becker K, Boulègue JJ, Erzinger J, Gieskes JM, Goldberg D, Goldfarb M, Goldsborough R, Hobart MA, Kastner M, Knuettel S, Lyle MW, Moos D, Newmark R, Nishatani T, Owen RM, Pearce JA, Romine K, Stephan RA (eds) Initial reports DSPD, 92. US Govt Printing Office, Washington, pp 423–429

    Google Scholar 

  • Gold T (1992) The deep, hot biosphere. Proc Natl Acad Sci USA 89:6045–6049

    PubMed  CAS  Google Scholar 

  • Guy L, Ettema TJG (2011) The archaeal TACK superphylum and the origin of eukaryotes. Trends Microbiol 19:580–587

    PubMed  CAS  Google Scholar 

  • Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305:1457–1462

    PubMed  CAS  Google Scholar 

  • Harrison BK, Zhang H, Berelson W, Orphan VJ (2009) Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments (Santa Barbara Basin, California). Appl Environ Microbiol 75:1487–1409

    PubMed  CAS  Google Scholar 

  • Head IM, Joes DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    PubMed  CAS  Google Scholar 

  • Heuer VB, Pohlman JW, Torres ME, Elvert M, Hinrichs K-U (2009) The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin. Geochim Cosmochim Acta 73:3323–3336

    CAS  Google Scholar 

  • Hoshino T, Morono Y, Terada T, Imachi H, Ferdelman TG, Inagaki F (2011) Comparative study of sub-seafloor microbial community structures in deeply buried coral fossils and sediment matrices from the Challenger Mound in the Porcupine Seabight. Front Microbiol 2:231. doi:10.3389/fmicb.2011.00231

    PubMed  Google Scholar 

  • House C, Cragg B, Teske A, the Leg 201 Scientific Party (2003) Drilling contamination tests on ODP Leg 201 using chemical and particulate tracers. In: D’Hondt SL, Jørgensen BB, Miller DJ et al (eds) Proceedings of ODP, initial reports, 201 [online]. Texas A&M University, College Station, TX. Available from the World Wide Web: http://www-odp.tamu.edu/publications/201_IR/chap_02/chap_02.htm

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    PubMed  CAS  Google Scholar 

  • Hubert C, Loy A, Nickel M, Arnosti C, Baranyi C, Bruechert V, Ferdelman T, Finster K, Christensen FM, de Rezende JR, Vandieken V, Jørgensen BB (2009) A constant flux of diverse thermophilic bacteria into the cold arctic seabed. Science 325:1541–1544

    PubMed  CAS  Google Scholar 

  • Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. http://genomebiology. com/2002/3/2/reviews/0003. Accessed May 26, 2012

  • Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998a) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376

    PubMed  CAS  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998b) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    PubMed  CAS  Google Scholar 

  • Imachi H, Aoi K, Tasumi E, Saito Y, Yamanaka Y, Saito Y, Yamaguchi T, Tomaru H, Takeuchi R, Morono Y, Inagaki F, Takai K (2011) Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor. ISME J 5:1913–1925

    PubMed  CAS  Google Scholar 

  • Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson KH, Horikoshi K (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol 69:7224–7235

    PubMed  CAS  Google Scholar 

  • Inagaki F, Takai K, Komatsu T, Kanamatsu T, Fujiioka K, Horikoshi K (2001) Archaeology of archaea: geomicrobiological record of pleistocene thermal events concealed in a deep-sea subseafloor environment. Extremophiles 5:385–392

    PubMed  CAS  Google Scholar 

  • Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever MA, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D’Hondt SL, Jørgensen BB (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA 103:2815–2820

    PubMed  CAS  Google Scholar 

  • Inagaki F, Okada H, Tsapin AI, Nealson KH (2005) The Paleome: a sedimentary genetic record of past microbial communities. Astrobiology 5:141–153

    PubMed  CAS  Google Scholar 

  • Isaksen MF, Bak F, Jørgensen BB (1994) Thermophilic sulfate-reducing bacteria in cold marine sediment. FEMS Microbiol Ecol 14:1–8

    CAS  Google Scholar 

  • Jørgensen BB (1982) Mineralization of organic matter in the sea bed – the role of sulphate reduction. Nature 296:643–645

    Google Scholar 

  • Jørgensen BB (2011) Deep subseafloor microbial cells on physiological standby. Proc Natl Acad Sci USA 108:18193–18194

    PubMed  Google Scholar 

  • Jørgensen BB, Boetius A (2007) Feast and famine—microbial life in the deep-sea bed. Nat Rev Microbiol 5:770–781

    PubMed  Google Scholar 

  • Jørgensen BB, D’Hondt SL, Miller DJ (2006) Leg 201 synthesis: controls on microbial communities in deeply buried sediments. In: Jørgensen BB, D’Hondt SL, Miller DJ (eds) Proceedings of ODP, science result, 201. ODP, College Station, pp 1–45

    Google Scholar 

  • Kallmeyer J, Smith DC, Spivack AJ, D’Hondt S (2008) New cell extraction procedure applied to deep subsurface sediments. Limnol Oceanogr Methods 6:236–245

    Google Scholar 

  • Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA, early edition. doi:10.1073/pnas.1203849109

    Google Scholar 

  • Karen Lloyd, KG, et al (2012) Single cell genomics of uncultured archaea. Abstract, 22nd Goldschmidt Conference, Montreal, Canada, June 24-29, 2012

    Google Scholar 

  • Kendall MM, Boone DR (2006) Cultivation of methanogens from shallow marine sediments at hydrate ridge, oregon. Archaea 2:31–38

    PubMed  CAS  Google Scholar 

  • Kendall MM, Liu Y, Sieprawska-Lupa M, Stetter KO, Whitman WB, Boone DR (2006) Methanococcus aeolicus sp. nov., a mesophilic, methanogenic archaeon from shallow and deep marine sediments. Int J Syst Evol Microbiol 56:1525–1529

    PubMed  CAS  Google Scholar 

  • Kirkpatrick J, Oakley B, Fuchsman C, Srinivasan S, Staley JT, Murray JW (2006) Diversity and distribution of Planktomycetes and related bacteria in the suboxic zone of the Black Sea. Appl Environ Microbiol 72:3079–3083

    PubMed  CAS  Google Scholar 

  • Klein M, Friedrich M, Roger AJ, Hugenholtz P, Fishbain S, Abicht H, Blackall LL, Stahl DA, Wagner M (2001) Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol 183:6028–6035

    PubMed  CAS  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    PubMed  CAS  Google Scholar 

  • Kondo R, Nedwell DB, Purdy KJ, de Queiroz Silva S (2004) Detection and enumeration of sulphate-reducing bacteria in estuarine sediments by competitive PCR. Geomicrobiol J 21:145–157

    CAS  Google Scholar 

  • Kormas AK, Smith DC, Edgcomb V, Teske A (2003) Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176). FEMS Microbiol Ecol 45:115–125

    PubMed  CAS  Google Scholar 

  • Kragelund C, Levantesi C, Borger A, Thelen K, Eikelboom D, Tandoi V, Kong Y, van der Waarde V, Krooneman J, Rosetti S, Thomson TR, Nielsen PH (2007) Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants. FEMS Microbiol Ecol 59:671–682

    PubMed  CAS  Google Scholar 

  • Krajmalnik-Brown R, Hölscher T, Thomson IN, Saunders FM, Ritalahti KM, Löffler FE (2004) Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Appl Environ Microbiol 70:6347–6351

    PubMed  CAS  Google Scholar 

  • Kubo K, Lloyd KG, Biddle JF, Amann R, Teske A, Knittel K (2012) Archaea of the Miscellaneous Crenarchaeotal Group (MCG) are abundant, diverse and widespread in marine sediments. ISME J. doi:10.1038/ismej.2012.37doi. Advance online publication, 3 May 2012

    Google Scholar 

  • Lappe M, Kallmeyer J (2012) A cell extraction method for oily sediments. Front Microbiol 2:233. doi:10.3389/fmicb.2011.00233

    Google Scholar 

  • Leaphart AB, Friez MJ, Lovell CR (2003) Formyltetrahydrofolate synthetase sequences from salt marsh plant roots reveal a diversity of acetogenic Bacteria and other bacterial functional groups. Appl Environ Microbiol 69:693–696

    PubMed  CAS  Google Scholar 

  • Lee Y, Wagner I, Brice M-E, Kevbrin VV, Mills G, Romanek CS, Wiegel J (2005) Thermosediminibacter oceani gen. nov., sp. nov. and Thermosediminibacter litoriperuensis sp. nov., new anaerobic thermophilic bacteria isolated from Peru Margin. Extremophiles 9:375–383

    PubMed  CAS  Google Scholar 

  • Leloup J, Fossing H, Kohls K, Holmkvist L, Borowski C, Jørgensen BB (2009) Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Environ Microbiol 11:1278–1291

    PubMed  CAS  Google Scholar 

  • Leloup J, Loy A, Knab NJ, Borowski C, Wagner M, Jørgensen BB (2007) Diversity and abundance of sulfate-reducing microorgsnisms in the sulfate and methane zones of a marine sediment, Black Sea. Environ Microbiol 9:131–142

    PubMed  CAS  Google Scholar 

  • Lever MA (2012) Acetogenesis in the energy-starved deep biosphere – a paradox? Front Microbiol 2:294. doi:10.3389/fmicb.2011.00284

    Google Scholar 

  • Lever MA, Alperin MJ, Engelen B, Inagaki F, Nakagawa S, Steinsbu B, Teske A (2006) Trends in basalt and sediment core contamination during IODP Expedition 301. Geomicrobiol J 23:517–530

    CAS  Google Scholar 

  • Lever MA, Heuer VB, Morono Y, Masui N, Schmidt F, Alperin MJ, Inagaki F, Hinrichs K-U, Teske A (2010) Acetogenesis in deep subseafloor sediments of the Juan de Fuca Ridge Flank: a synthesis of geochemical, thermodynamic, and gene-based evidence. Geomicrobiol J 27:183–211

    CAS  Google Scholar 

  • Lipp JS, Morono Y, Inagaki F, Hinrichs K-U (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991–994

    PubMed  CAS  Google Scholar 

  • Li P-Y, Xie B-B, Zhang X-Y, Qin Q-L, Dang H-Y, Wang X-M, Chen X-L, Yu J, Zhang Y-Z (2012) Genetic structure of three fosmid fragments encoding 16S rRNA genes of the Miscellaneous Crenarchaeotic Group (MCG): implications for physiology and evolution of marine sedimentary archaea. Environ Microbiol 14:467–479

    PubMed  CAS  Google Scholar 

  • Lin Y-S, Biddle JF, Lipp JS, Orcutt B, Holler T, Teske A, Hinrichs K-U (2010) Effect of storage conditions on archaeal and bacterial communities in subsurface marine sediments. Geomicrobiol J 27:261–272

    CAS  Google Scholar 

  • Lloyd KG, Lapham L, Teske, A (2006) An anaerobic methane-oxidizing community of ANME-1 archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol 72:7218–7230

    PubMed  CAS  Google Scholar 

  • Lloyd KG, Albert D, Biddle JF, Chanton L, Pizarro O, Teske A (2010) Spatial structure and activity of sedimentary microbial communities underlying a Beggiatoa spp. mat in a Gulf of Mexico hydrocarbon seep. PLoS ONE 5(1):e8738. doi:10.1371/journal.pone.0008738

    Google Scholar 

  • Lloyd KG, Alperin M, Teske A (2011) Environmental evidence for net methane production and oxidation in putative Anaerobic MEthanotrophic (ANME) archaea. Environ Microbiol 13:2548–2564

    PubMed  CAS  Google Scholar 

  • Lloyd KG, Schreiber L, Petersen DG, Richter M, Kjeldsen K, Lever M, Lenk S, Kleindienst S, Schramm A, Jørgensen BB (2012) Single cell genomics of uncultured subsurface archaea. Abstract at 22nd V.M. Goldschmidt conference, Montreal, Canada, June 24–29, 2012

    Google Scholar 

  • Lomstein BA, Langerhuus AT, D’Hondt S, Jørgensen BB, Spivack AJ (2012) Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment. Nature 484:101–104

    PubMed  CAS  Google Scholar 

  • Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16 S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530

    PubMed  CAS  Google Scholar 

  • Martino AJ, Rhodes ME, Biddle JF, Brandt LD, Tomsho LP, House CH (2012) Novel degenerate PCR method for whole-denome amplification applied to Peru Margin (ODP Leg 201) subsurface samples. Front Microbiol 3:17. doi:10.3389/fmicb.2012.00017

    PubMed  Google Scholar 

  • Masui N, Morono Y, Inagaki F (2008) Microbiological assessment of circulation mud fluids during the first operation of riser drilling by the deep-earth research vessel Chikyu. Geomicrobiol J 25:274–282

    CAS  Google Scholar 

  • Meister P, Prokopenko M, Skilbeck CG, Watson M, McKenzie J (2006) Data report: compilation of total organic and inorganic carbon data from Peru Margin and eastern Equatorial Pacific drill sites (ODP Legs 112, 138, and 201). In: Jørgensen BB, D’Hondt SL, Miller DJ (eds) Proceedings of ODP, science results, 201, pp 1–19 [online]. Texas A&M University, College Station, TX. Available from World Wide Web: http://www-odp.tamu.edu/publiactions/201_SR/VOLUME/CHAPTERS/105.PDF

  • Meng J, Wang F, Wang F, Zheng Y, Peng X, Zhou H et al (2009) An uncultivated crenarchaeota contains functional bacteriochlorophyll a synthase. ISME J 3:106–116

    PubMed  CAS  Google Scholar 

  • Mikucki JA, Liu Y, Delwiche M, Colwell FS, Boone DR (2003) Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp.nov. Appl Environ Microbiol 69:3311–3316

    PubMed  CAS  Google Scholar 

  • Mills HJ, Reese BK, Peter CS (2012a) Characterization of Microbial Population Shifts during Sample Storage. Frontiers in Microbiology 3:49. doi:10.3389/fmicb.2012.00049

    PubMed  Google Scholar 

  • Mills HJ, Reese BK, Shepard AK, Riedinger N, Dowd SE, Morono Y, Inagaki F (2012b) Characterization of metabolically active bacterial populations in subseafloor nankai trough sediments above, within, and below the sulfate–methane transition zone. Frontiers in Microbiology 3:113. doi:10.3389/fmicb.2012.00113

    PubMed  Google Scholar 

  • Moe, WMJ Yan, Fernanda Nobre M, da Costa MS, Rainey FA (2009) Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. Int J Syst Evol Microbiol 59:2692–2697

    PubMed  CAS  Google Scholar 

  • Morita RY, Zobell CE (1955) Occurrence of bacteria in pelagic sediments collected during the Mid-Pacific Expedition. Deep-Sea Research 3:66–73

    CAS  Google Scholar 

  • Morono Y, Inagaki F (2010) Automatic slide-loader fluorescence microscope for discriminative enumeration of subseafloor life. Sci Drill 9:32–36

    Google Scholar 

  • Morono Y, Terada T, Masui N, Inagaki F (2009) Discriminative detection and enumeration of microbial life in marine subsurface sediments. ISME J 3:503–511

    PubMed  CAS  Google Scholar 

  • Morono Y, Terada T, Nishizawa M, Ito M, Hillon F, Takahata N, Sano Y, Inagaki F (2011) Carbon and nitrogen assimilation in deep subseafloor microbial cells. Proc Natl Acad Sci USA 108:18295–18300

    PubMed  CAS  Google Scholar 

  • Nakagawa S, Inagaki F, Suzuki Y, Steinsbu BO, Lever MA, Takai K, Engelen B, Sako Y, Wheat CG, Horikoshi K, Integrated Ocean Drilling Program Expedition 301 Scientists (2006) Microbial community in black rust exposed to hot ridge flank crustal fluids. Appl Environ Microbiol 72:6789–6799

    PubMed  CAS  Google Scholar 

  • Newberry CJ, Webster G, Weightman AJ, Fry JC (2004) Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the nankai trough, ocean drilling program Leg 190. Environ Microbiol 6:274–287

    PubMed  Google Scholar 

  • Nunoura T, Inagaki F, Delwiche ME, Colwell FS, Takai K (2008) Subseafloor microbial communities in methane-hydrate bearing sediments at two distinct locations (ODP Leg 204) in the Cascadia Margin. Microbes Environ 23:317–325

    PubMed  Google Scholar 

  • Nunoura T, Soffientino B, Blazejak A, Kakuta J, Oida H, Schippers A, Takai K (2009) Subseafloor microbial communities associated with rapid turbidite deposition in the Gulf of Mexico continental slope (IODP Expedition 308). FEMS Microbiol Ecol 69:410–424

    PubMed  CAS  Google Scholar 

  • Nunoura T, Takai Y, Kakuta J, Nishi S, Sugahara J, Kazama H, Chee GJ, Hattori M, Kanai A, Atomi H, Takai K, Takami H (2010) Insights into the evolution of archaea and eukarytic protein modifier systems revealed by the genome of a novel archaeal group. Nucl Acids Res, advance online publication. doi:10.1093/nar/gkq1228

    Google Scholar 

  • Orcutt BN, Bach W, Becker K, Fisher AT, Hentscher M, Toner BM, Wheat CG, Edwards KJ (2010) Colonization of subsurface microbial observatories deployed in young ocean crust. ISME J 5:692–703

    PubMed  Google Scholar 

  • Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 75:361–422

    PubMed  CAS  Google Scholar 

  • Oren A (2012) There must be an acetogen somewhere. Front Microbiol 3:22. doi:10.3389/fmicb.2012.00022

    PubMed  Google Scholar 

  • Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman K, Rochelle PA, Fry JC, Weightman AJ, Harvey SM (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410–413

    Google Scholar 

  • Parkes R, Cragg B, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol J 8:11–28

    Google Scholar 

  • Parkes RJ, Sellek G, Webster G, Martin D, Anders E, Weightman AJ, Sass H (2009) Culturable prokaryotic diversity of deep, gas hydrate sediments: first use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG). Environ Microbiol 11:3140–3153

    PubMed  CAS  Google Scholar 

  • Parkes RJ, Webster G, Cragg BA, Weightman AJ, Newberry CJ, Ferdelman TG, Kallmeyer J, Jørgensen BB, Aiello IW, Fry JC (2005) Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436:390–394

    PubMed  CAS  Google Scholar 

  • Pester M, Schleper C, Wagner M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 14:300–306

    PubMed  CAS  Google Scholar 

  • Picard A, Ferdelman TG (2012) Linking microbial heterotrophic activity and sediment lithology in oxic, oligotrophic sub-seafloor sediments of the North Atlantic Ocean. Front Microbiol 2:263. doi:10.3389/fmicb.2011.00263

    Google Scholar 

  • Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    PubMed  Google Scholar 

  • Reed DW, Fujita Y, Delwiche ME, Blackwelder DB, Sheridan PP, Uchida T, Colwell FS (2002) Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl Environ Microbiol 68:3759–3770

    PubMed  CAS  Google Scholar 

  • Rey RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML, Pace NR (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695

    Google Scholar 

  • Rochelle PA, Cragg BA, Fry JC, Parkes RJ, Weightman AJ (1994) Effect of sample handling on estimation of bacterial diversity in marine sediments by 16 S rRNA gene sequence analysis. FEMS Microbiol Ecol 19:215–226

    Google Scholar 

  • Roussel EG, Bonavita M-AC, Querellou J, Cragg BA, Webster G, Prieur D, Parkes RJ (2008) Extending the sub-sea-floor biosphere. Science 320:1046

    PubMed  CAS  Google Scholar 

  • Roussel EG, Sauvadet A-L, Chaduteau C, Fouquet Y, Charlou J-L, Prieur D, Cambon Bonavita M-A (2009) Archaeal communities associated with shallow to deep subseafloor sediments of New Caledonia Basin. Environ Microbiol 11:2446–2462

    PubMed  CAS  Google Scholar 

  • Røy H, Kallmeyer J, Adhikari RR, Pockalny R, Jørgensen BB, D’Hondt S (2012) Aerobic microbial respiration in 86-million-year-old deep-sea red clay. Science 336:922–925

    PubMed  Google Scholar 

  • Santelli CM, Banerjee N, Bach W, Edwards KJ (2010) Tapping the subsurface ocean crust biosphere: low biomass and drilling-related contamination calls for improved quality controls. Geomicrobiol J 27:158–169

    Google Scholar 

  • Sauer P, Glombitza C, Kallmeyer J (2012) A system for incubations at high gas partial pressure. Front Microbiol 3:25. doi:10.3389/fmicb.2012.00025

    PubMed  Google Scholar 

  • Scheller S, Goenrich M, Boecher R, Thauer R, Jaun B (2010) The key nickel enzyme of methanogenesis catalyzes the anaerobic oxidation of methane. Nature 465:606–609

    PubMed  CAS  Google Scholar 

  • Schippers A, Kock D, Höft C, Köweker G, Siegert M (2012) Quantification of microbial communities in subsurface sediments of the Black Sea and off Namibia. Front Microbiol 3:16. doi:10.3389/fmicb.2012.00016

    PubMed  Google Scholar 

  • Schippers A, Neretin LN (2006) Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR. Environ Microbiol 8:1251–1260

    PubMed  CAS  Google Scholar 

  • Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG, Cragg BA, Parkes JR, Jørgensen BB (2005) Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861–864

    PubMed  CAS  Google Scholar 

  • Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nat Rev Microbiol 3:479–488

    PubMed  CAS  Google Scholar 

  • Seiter K, Hensen C, Schroter J, Zabel M (2004) Organic carbon content in surface sediments-defining regional provinces. Deep-Sea Res I 51:2001–2026

    CAS  Google Scholar 

  • Sekiguchi Y, Takahashi H, Kamagata Y, Ohashi A, Harada H (2001) In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I. Appl Environ Microbiol 67:5740–5749

    PubMed  CAS  Google Scholar 

  • Sekiguchi Y, Yamada T, Hanada S, Ohashi A, Harada H, Kamagata Y (2003) Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. Int J Syst Evol Microbiol 53:1843–1851

    PubMed  CAS  Google Scholar 

  • Smith DC, Spivack AJ, Fisk MR, Haveman SA, Staudigel H (2000) Tracer-based estimates of drilling-induced microbial contamination of deep-sea crust. Geomicrobiol J 17:207–219

    CAS  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc Natl Acad Sci USA 103:12115–12120

    PubMed  CAS  Google Scholar 

  • Sørensen KB, Lauer A, Teske A (2004) Archaeal phylotypes in a metal-rich, low-activity deep subsurface sediment of the Peru Basin, ODP Leg 201, Site 1231. Geobiology 2:151–161

    Google Scholar 

  • Sørensen KB, Teske A (2006) Stratified communities of active archaea in deep marine subsurface sediments. Appl Environ Microbiol 72:4596–4603

    PubMed  Google Scholar 

  • Springer E, Sachs MS, Woese CR, Boone DR (1995) Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae. Int J Syst Bacteriol 45:554–559

    PubMed  CAS  Google Scholar 

  • Steinsbu BO, Thorseth IH, Nakagawa S, Inagaki F, Lever MA, Engelen B, Øvreås L, Pedersen RB (2010) Archaeoglobus sulfaticallidus sp. nov., a novel thermophilic and facultatively lithoautotrophic sulfate-reducer isolated from black rust exposed to hot ridge flank crustal fluids. Int J Syst Evol Microbiol 60:2745–2752

    PubMed  CAS  Google Scholar 

  • Sturt HF, Summons RE, Smith KJ, Elvert M, Hinrichs K-U (2004) Intact polar lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry – new biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Spectrom 18:617–628

    PubMed  CAS  Google Scholar 

  • Süß J, Engelen B, Cypionka H, Sass H (2004) Quantitative analysis of bacterial communities from Mediterranean sapropels based on cultivation-dependent methods. FEMS Microbiol Ecol 51:109–121

    PubMed  Google Scholar 

  • Süß J, Schubert K, Sass H, Cypionka H, Overmann J, Engelen B (2006) Widespread distribution and high abundance of Rhizobium radiobacter within Mediterranean subsurface sediments. Environ Microbiol 8:1753–1763

    PubMed  Google Scholar 

  • Takai K, Horikoshi K (1999) Genetic diversity of Archaea in deep-sea hydrothermal vent environments. Genetics 152:1284–1297

    Google Scholar 

  • Takai K, Moser DP, DeFlaun M, Onstott TC, Fredrickson JK (2001) Archaeal diversity in waters from deep South African gold mines. Appl Environ Microbiol 67:5750–5760

    PubMed  CAS  Google Scholar 

  • Teske AP (2006) Microbial communities of deep marine subsurface sediments: molecular and cultivation surveys. Geomicrobiol J 23:357–368

    CAS  Google Scholar 

  • Teske A, Biddle JF (2008) Analysis of deep subsurface microbial communities by functional genes and genomics. In: Dilek Y, Furnes H, Muehlenbachs K (eds) Links between geological processes, microbial activities & evolution of life, vol 4, Modern approaches in solid earth sciences. Springer, Berlin, pp 159–176

    Google Scholar 

  • Teske A, Hinrichs K-U, Edgcomb V, Gomez AD, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007

    PubMed  CAS  Google Scholar 

  • Teske A, Sørensen KB (2008) Uncultured Archaea in deep marine subsurface sediments: have we caught them all? ISME J 2:3–18

    PubMed  CAS  Google Scholar 

  • Toffin L, Bidault A, Pignet P, Tindall BJ, Slobodkin A, Kato C, Prieur D (2004a) Shewanella profunda sp.nov., isolated from deep marine sediment of the Nankai Trough. Int J Syst Evol Microbiol 54:1943–1949

    PubMed  CAS  Google Scholar 

  • Toffin L, Webster G, Weightman AL, Fry JC, Prieur D (2004b) Molecular monitoring of culturable bacteria from deep-sea sediment of the Nankai Trough, Leg 190 Ocean Drilling Program. FEMS Microbiol Ecol 48:357–367

    PubMed  CAS  Google Scholar 

  • Toffin L, Zink K, Kato C, Pignet P, Bidault A, Bienvenu N, Birrien JL, Prieur D (2005) Marinilactibacillus piezotolerans sp. nov., a novel marine lactic acid bacterium isolated from deep sub-seafloor sediment of the Nankai trough. Int J Syst Evol Microbiol 55:345–351

    PubMed  CAS  Google Scholar 

  • Vetriani C, Jannasch HW, MacGregor BJ, Stahl DA, Reysenbach AL (1999) Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl Environ Microbiol 65:4375–4384

    PubMed  CAS  Google Scholar 

  • von Klein D, Arab H, Völker H, Thomm M (2002) Methanosarcina baltica, sp. nov., a novel methanogen isolated from the Gotland Deep of the Baltic Sea. Extremo-philes 6:103–110

    Google Scholar 

  • Wagner M, Horn M (2006) The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 17:241–249

    PubMed  CAS  Google Scholar 

  • Wagner M, Loy A, Klein M, Lee N, Ramsing NB, Stahl DA, Friedrich MW (2005) Functional marker genes for identification of sulfate-reducing prokaryotes. Methods Enzymol 397:469–489

    PubMed  CAS  Google Scholar 

  • Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982

    PubMed  CAS  Google Scholar 

  • Wang G, Spivack AJ, Rutherford S, Manor U, D’Hondt S (2008) Quantification of co-occurring reaction rates in deep subseafloor sediments. Geochim Cosmochim Acta 72:3479–3488

    CAS  Google Scholar 

  • Wang G, Spivack AJ, D’Hondt S (2010) Gibbs energies of reaction and microbial mutualism in anaerobic deep subseafloor sediments of ODP Site 1226. Geochim Cosmochim Acta 74:3938–3947

    CAS  Google Scholar 

  • Wakeham SG, Lee C, Hedges JI, Hernes PJ, Peterson ML (1997) Molecular indicators of diagenetic status in marine organic matter. Geochim Cosmochim Acta 61:5363–5369

    CAS  Google Scholar 

  • Webster G, Newberry CJ, Fry JC, Weightman AJ (2003) Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16 S rDNA-based techniques: a cautionary tale. J Microbiol Methods 55:155–164

    PubMed  CAS  Google Scholar 

  • Webster G, Parkes RJ, Fry JC, Weightman AJ (2004) Widespread occurrence of a novel division of bacteria identified by 16 S rRNA gene sequences originally found in deep marine sediments. Appl Environ Microbiol 70:5708–5713

    PubMed  CAS  Google Scholar 

  • Webster G, Parkes RJ, Cragg BA, Newberry CJ, Weightman AJ, Fry JC (2006) Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiol Ecol 58:65–85

    PubMed  CAS  Google Scholar 

  • Webster G, Yarram L, Freese E, Köster J, Sass H, Parkes RJ, Weightman AJ (2007) Distribution of candidate division JS1 and other Bacteria in tidal sediments of the German Wadden Sea using targeted 16 S rRNA gene PCR-DGGE. FEMS Microbiol Ecol 62:78–89

    PubMed  CAS  Google Scholar 

  • Webster G, Blazejak A, Cragg BA, Schippers A, Sass H, Rinna J, Tang X, Mathes F, Ferdelman TG, Fry JC, Weightman AJ, Parkes RJ (2009) Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307). Environ Microbiol 11:239–257

    PubMed  CAS  Google Scholar 

  • Webster G, Rinna J, Roussel EG, Fry JC, Weightman AJ, Parkes RJ (2010) Prokaryotic functional diversity in different biogeochemical depth zones in todal sediments of the Severn Estuary, UK, revealed by stable-isotope probing. FEMS Microbiol Ecol 72:179–197

    PubMed  CAS  Google Scholar 

  • Webster G, Sass H, Cragg BA, Gorra R, Knab NJ, Green CJ, Mathes F, Fry JC, Weightman AJ, Parkes RJ (2011) Enrichment and cultivation of prokaryotes associated with the sulphate-methane transition zone of diffusion-controlled sediments of Aarhus Bay, Denmark, under heterotrophic conditions. FEMS Microbiol Ecol 77:248–263

    PubMed  CAS  Google Scholar 

  • Wellsbury P, Goodman K, Barth T, Cragg BA, Barnes SP, Parkes RJ (1997) Deep marine biosphere fuelled by increasing organic matter availability during burial and reheating. Nature 388:573–576

    CAS  Google Scholar 

  • Wellsbury P, Mather I, Parkes RJ (2002) Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean. FEMS Microbiol Ecol 42:59–70

    PubMed  CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    PubMed  CAS  Google Scholar 

  • Wilms R, Köpke B, Sass H, Chang TS, Cypionka H, Engelen B (2006) Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Environ Microbiol 8:709–719

    PubMed  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, Kamagata Y (2006) Anaerolinea thermolimosa sp. nov., Levilinea saccarolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol 56:1331–1340

    PubMed  CAS  Google Scholar 

  • Yamada T, Imachi H, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2007) Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int J Syst Evol Microbiol 57:2299–2306

    PubMed  CAS  Google Scholar 

  • Yoshioka H, Maruyama A, Nakamura T, Higashi Y, Fuse H, Sakata S, Bartlett DH (2010) Activities and distribution of methanogenic and methane-oxidizing microbes in marine sediments from the Cascadia Margin. Geobiology 8:223–233

    PubMed  CAS  Google Scholar 

  • Zengler K (2010) Central role of the cell in microbial ecology. Microl Mol Biol Rev 73:712–729

    Google Scholar 

  • Zengler K, Walcher M, Clark G, Haller I, Toledo G, Holland T, Mathur EJ, Woodnutt G, Short JM, Keller M (2005) High-throughput cultivation of microorganisms using microcapsules. Methods Enzymol 397:124–130

    PubMed  CAS  Google Scholar 

  • Ziebis W, McManus J, Ferdelman TG, Schmidt-Schierhorn F, Bach W, Muratli J, Edwards KJ, Villinger H (2012) Interstitial fluid chemistry of sediments underlying the North Pond Atlantic Gyre and the influence of subsurface fluid flow. Earth Planet Sci Lett 323–324:79–91

    Google Scholar 

  • Zverlov V, Klein M, Lücker S, Friedrich MW, Kellermann J, Stahl DA, Loy A, Wagner M (2005) Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited. J Bacteriol 187:2203–2208

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Teske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Teske, A. (2013). Marine Deep Sediment Microbial Communities. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30123-0_42

Download citation

Publish with us

Policies and ethics