Freshwater Microbial Communities

  • Jakob Pernthaler


Freshwaters provide essential commodities and services to society and they act as regulators of carbon cycling and of local and global climate. Prokaryotic microbes in lacustrine ecosystems are centrally involved in various biogeochemical cycles, for example, they are responsible for a considerable fraction of global methane and carbon dioxide production. Freshwater systems comprise a diverse set of habitats hosting contrasting microbial assemblages. Subsurface environments such as groundwater and hyporheic corridors harbor various types of chemolithotrophic bacteria, as well as microbes from exotic phyla without a single cultured representative. The microbial assemblages in large rivers exhibit distinct longitudinal transformations related to the gradually changing supply of organic carbon in lotic environments, and abrupt shifts in community composition are induced by discontinuities, for example, impoundments or point sources of organic matter. Riverine and stream biofilms may be regarded as “landscapes” of microbial assemblages which appear to be more shaped by extrinsic factors, particularly the velocity and direction of the water flow, than by immigration of waterborne bacteria. Lakes and ponds offer a range of habitats to specialized prokaryotic assemblages, including the air-water interface, the chemocline and anoxic realms, the benthic layer, or the aufwuchs (periphyton) on littoral macrophytes. The prokaryotic assemblages in the euphotic zone of standing and running waters harbor both, oxygenic and anoxygenic autotrophic microbes, and various lineages of bacteriorhodopsin-bearing photoheterotrophs. If categorized according to growth strategy and cell size, microbes in freshwater pelagic habitats can be roughly divided into free-living ultramicrobacteria, opportunistically growing bacteria that often exhibit a dual lifestyle (planktonic and surface attached), and filamentous bacteria that resist protistan grazing. Apart from the biotic interactions that affect prokaryotes in all biomes, such as competition with other pro- and eukaryotes, predation, and parasitism, there are specific properties of lacustrine ecosystem that may be responsible for the establishment of typical and unique microbial assemblages: On the one hand, there are indications for the importance of regional factors in shaping freshwater microbial assemblages, such as local climate, biogeochemical interaction with the catchment area, and the massive introduction of bacteria into lakes with low hydrological retention times. On the other hand, freshwaters are discontinuous habitats, and intrinsic factors, such as internal variability, lake trophic state, pH, organic matter composition, phytoplankton, and food web structure, may all codetermine microbial community structure by selecting for or against particular ecotypes.


Dissolve Organic Matter Freshwater Habitat Pelagic Zone Humic Lake Meromictic Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



My thanks go to my wife and little daughter for tolerating that I finished this chapter during our holidays.


  1. Alfreider A, Schirmer M, Vogt C (2012) Diversity and expression of different forms of RubisCO genes in polluted groundwater under different redox conditions. FEMS Microbiol Ecol 79:649–660PubMedCrossRefGoogle Scholar
  2. Allgaier M, Grossart HP (2006a) Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes in northeastern Germany. Aquat Microb Ecol 45:115–128CrossRefGoogle Scholar
  3. Allgaier M, Grossart HP (2006b) Diversity and seasonal dynamics of Actinobacteria populations in four lakes in northeastern Germany. Appl Environ Microbiol 72:3489–3497PubMedCrossRefGoogle Scholar
  4. Alonso C, Warnecke F, Amann R, Pernthaler J (2007) High local and global diversity of Flavobacteria in marine plankton. Environ Microbiol 9:1253–1266PubMedCrossRefGoogle Scholar
  5. Alonso C, Zeder M, Piccini C, Conde D, Pernthaler J (2009) Ecophysiological differences of betaproteobacterial populations in two hydrochemically distinct compartments of a subtropical lagoon. Environ Microbiol 11:867–876PubMedCrossRefGoogle Scholar
  6. Ask J, Karlsson J, Persson L, Ask P, Bystrom P, Jansson M (2009) Whole-lake estimates of carbon flux through algae and bacteria in benthic and pelagic habitats of clear-water lakes. Ecology 90:1923–1932PubMedCrossRefGoogle Scholar
  7. Atamna-Ismaeel N, Sabehi G, Sharon I, Witzel KP, Labrenz M, Jurgens K et al (2008) Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems. ISME J 2:656–662PubMedCrossRefGoogle Scholar
  8. Auguet JC, Casamayor EO (2008) A hotspot for cold crenarchaeota in the neuston of high mountain lakes. Environ Microbiol 10:1080–1086PubMedCrossRefGoogle Scholar
  9. Bahr M, Hobbie JE, Sogin ML (1996) Bacterial diversity in an arctic lake: a freshwater SAR11 cluster. Aquat Microb Ecol 11:271–277CrossRefGoogle Scholar
  10. Battin TJ, Wille A, Sattler B, Psenner R (2001) Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream. Appl Environ Microbiol 67:799–807PubMedCrossRefGoogle Scholar
  11. Battin TJ, Sloan WT, Kjelleberg S, Daims H, Head IM, Curtis TP, Eberl L (2007) Microbial landscapes: new paths to biofilm research. Nat Rev Microbiol 5:76–81PubMedCrossRefGoogle Scholar
  12. Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2:598–600CrossRefGoogle Scholar
  13. Beier S, Bertilsson S (2011) Uncoupling of chitinase activity and uptake of hydrolysis products in freshwater bacterioplankton. Limnol Oceanogr 56:1179–1188CrossRefGoogle Scholar
  14. Benner R (2003) Molecular indicators of bioavailability of dissolved organic matter. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic, San Diego, pp 121–137CrossRefGoogle Scholar
  15. Berggren M, Laudon H, Haei M, Strom L, Jansson M (2010) Efficient aquatic bacterial metabolism of dissolved low-molecular-weight compounds from terrestrial sources. ISME J 4:408–416PubMedCrossRefGoogle Scholar
  16. Berggren M, Lapierre J-F, del Giorgio PA (2012) Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. ISME J 6:984–993PubMedCrossRefGoogle Scholar
  17. Bertilsson S, Tranvik LJ (1998) Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton. Limnol Oceanogr 43:885–895CrossRefGoogle Scholar
  18. Besemer K, Peter H, Logue JB, Langenheder S, Lindström ES, Tranvik LJ, Battin TJ (2012) Unraveling assembly of stream biofilm communities. ISME J 6:1–10CrossRefGoogle Scholar
  19. Blom JF, Horňák K, Šimek K, Pernthaler J (2010) Aggregate formation in a freshwater bacterial strain induced by growth state and conspecific chemical cues. Environ Microbiol 12:2486–2495PubMedCrossRefGoogle Scholar
  20. Böckelmann U, Manz W, Neu TR, Szewzyk U (2000) Characterization of the microbial community of lotic organic aggregates (‘river snow’) in the Elbe river of Germany by cultivation and molecular methods. FEMS Microbiol Ecol 33:157–170CrossRefGoogle Scholar
  21. Bosshard PP, Santini Y, Gruyter D, Stettler R, Bachofen R (2000) Bacterial diversity and community composition in the chemocline of the meromictic alpine Lake Cadagno as revealed by 16S rDNA analysis. FEMS Microbiol Ecol 31(2):173–182PubMedCrossRefGoogle Scholar
  22. Boucher D, Jardillier L, Debroas D (2006) Succession of bacterial community composition over two consecutive years in two aquatic systems: a natural lake and a lake-reservoir. FEMS Microbiol Ecol 55:79–97PubMedCrossRefGoogle Scholar
  23. Brock ML, Brock TD (1968) The application of micro-autoradiographic techniques to ecological studies. Mitt Int Verein Limnol 15:1–29Google Scholar
  24. Bruns A, Nübel U, Cypionka H, Overmann J (2003) Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton. Appl Environ Microbiol 69:1980–1989PubMedCrossRefGoogle Scholar
  25. Buck U, Grossart HP, Amann R, Pernthaler J (2009) Substrate incorporation patterns of bacterioplankton populations in stratified and mixed waters of a humic lake. Environ Microbiol 11:1854–1865PubMedCrossRefGoogle Scholar
  26. Burkert U, Warnecke F, Babenzien D, Zwirnmann E, Pernthaler J (2003) Members of a readily enriched beta-proteobacterial clade are common in surface waters of a humic lake. Appl Environ Microbiol 69:6550–6559PubMedCrossRefGoogle Scholar
  27. Callieri C (2007) Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshwater Rev 1:1–28Google Scholar
  28. Callieri C, Corno G, Caravati E, Rasconi S, Contesini M, Bertoni R (2009) Bacteria, Archaea, and Crenarchaeota in the epilimnion and hypolimnion of a deep holo-oligomictic lake. Appl Environ Microbiol 75:7298–7300PubMedCrossRefGoogle Scholar
  29. Canfield DE, Kristensen E, Thamdrup B (eds) (2005) Aquatic geomicrobiology. Elsevier/Academic Press, San DiegoGoogle Scholar
  30. Casamayor EO, Garcia-Cantizano J, Pedros-Alio C (2008) Carbon dioxide fixation in the dark by photosynthetic bacteria in sulfide-rich stratified lakes with oxic-anoxic interfaces. Limnol Oceanogr 53:1193–1203CrossRefGoogle Scholar
  31. Cébron A, Coci M, Garnier J, Laanbroek HJ (2004) Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine River: impact of Paris wastewater effluents. Appl Environ Microbiol 70:6726–6737PubMedCrossRefGoogle Scholar
  32. Chaffron S, Rehrauer H, Pernthaler J, von Mering C (2010) A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res 20:947–959PubMedCrossRefGoogle Scholar
  33. Chapelle FH, O’Neill K, Bradley PM, Methe BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315PubMedCrossRefGoogle Scholar
  34. Cole JJ, Pace ML, Caraco NF, Steinhart GS (1993) Bacterial biomass and cell-size distributions in lakes—more and larger cells in anoxic waters. Limnol Oceanogr 38:1627–1632CrossRefGoogle Scholar
  35. Corno G, Jurgens K (2006) Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Appl Environ Microbiol 72:78–86PubMedCrossRefGoogle Scholar
  36. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilm. Annu Rev Microbiol 49:711–745PubMedCrossRefGoogle Scholar
  37. Cotner JB, Biddanda BA (2002) Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5:105–121CrossRefGoogle Scholar
  38. Cousin S, Brambilla E, Yang J, Stackebrandt E (2008) Culturable aerobic bacteria from the upstream region of a karst water rivulet. Int Microbiol 11:91–100PubMedGoogle Scholar
  39. Crump BC, Hobbie JE (2005) Synchrony and seasonality in bacterioplankton communities of two temperate rivers. Limnol Oceanogr 50:1718–1729CrossRefGoogle Scholar
  40. Crump BC, Koch EW (2008) Attached bacterial populations shared by four species of aquatic angiosperms. Appl Environ Microbiol 74:5948–5957PubMedCrossRefGoogle Scholar
  41. Crump BC, Kling GW, Bahr M, Hobbie JE (2003) Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl Environ Microbiol 69:2253–2268PubMedCrossRefGoogle Scholar
  42. Crump BC, Adams HE, Hobbie JE, Kling GW (2007) Biogeography of bacterioplankton in lakes and streams of an arctic tundra catchment. Ecology 88:1365–1378PubMedCrossRefGoogle Scholar
  43. Currie DJ, Kalff J (1984) Can bacteria outcompete phytoplankton for phosphorus? A chemostat test. Microb Ecol 10:205–216CrossRefGoogle Scholar
  44. Dokulil MT, Teubner K (2000) Cyanobacterial dominance in lakes. Hydrobiologia 438:1–12CrossRefGoogle Scholar
  45. Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG et al (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397CrossRefGoogle Scholar
  46. Dunbar C (1908) Principles of sewage treatment. C. Griffin, LondonGoogle Scholar
  47. Eckert EM, Salcher MM, Posch T, Eugster B, Pernthaler J (2011) Rapid successions affect microbial N-acetyl-glucosamine uptake patterns during a lacustrine spring phytoplankton bloom. Environ Microbiol. doi:10.1111/j.1462-2920.2011.02639.x, online earlyGoogle Scholar
  48. Eiler A, Bertilsson S (2004) Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ Microbiol 6:1228–1243PubMedCrossRefGoogle Scholar
  49. Eiler A, Bertilsson S (2007) Flavobacteria blooms in four eutrophic lakes: linking population dynamics of freshwater bacterioplankton to resource availability. Appl Environ Microbiol 73:3511–3518PubMedCrossRefGoogle Scholar
  50. Eiler A, Heinrich F, Bertilsson S (2012) Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J 6:330–342PubMedCrossRefGoogle Scholar
  51. Farnleitner AH, Wilhartitz I, Ryzinska G, Kirschner AKT, Stadler H, Burtscher MM et al (2005) Bacterial dynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonous microbial endokarst communities. Environ Microbiol 7:1248–1259PubMedCrossRefGoogle Scholar
  52. Fazi S, Amalfitano S, Piccini C, Zoppini A, Puddu A, Pernthaler J (2008) Colonization of overlaying water by bacteria from dry river sediments. Environ Microbiol 10:2760–2772PubMedCrossRefGoogle Scholar
  53. Ferris MJ, Ward DM (1997) Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl Environ Microbiol 63:1375–1381PubMedGoogle Scholar
  54. Fred EB, Wilson FC, Davenport A (1924) The distribution and significance of bacteria in Lake Mendota. Ecology 5:322–339CrossRefGoogle Scholar
  55. Freese HM, Schink B (2011) Composition and Stability of the Microbial Community inside the Digestive Tract of the Aquatic Crustacean Daphnia magna. Microb Ecol 62:882–894PubMedCrossRefGoogle Scholar
  56. Gaston KJ, May RM (1992) Taxonomy of Taxonomists. Nature 356:281–282CrossRefGoogle Scholar
  57. Ghai R, McMahon KD, Rodriguez-Valera F (2011a) Breaking a paradigm: cosmopolitan and abundant freshwater actinobacteria are low GC. Environ Microbiol Rep 3. doi:10.1111/j.1758-2229.2011.00274.xGoogle Scholar
  58. Ghai R, Rodriguez-Valera F, McMahon KD, Toyama D, Rinke R, de Oliveira TCS et al (2011b) Metagenomics of the Water Column in the Pristine Upper Course of the Amazon River. PLoS One 6:e23785PubMedCrossRefGoogle Scholar
  59. Gich F, Overmann J (2006) Sandarakinorhabdus limnophila gen. nov., sp nov., a novel bacteriochlorophyll a-containing, obligately aerobic bacterium isolated from freshwater lakes. Int J Syst Evol Microbiol 56:847–854PubMedCrossRefGoogle Scholar
  60. Glöckner FO, Babenzien H-D, Amann R (1998) Phylogeny and identification in situ of Nevskia ramosa. Appl Environ Microbiol 64:1895–1901PubMedGoogle Scholar
  61. Glöckner FO, Fuchs BM, Amann R (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726PubMedGoogle Scholar
  62. Glöckner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol 66:5053–5065PubMedCrossRefGoogle Scholar
  63. Griebler C, Lueders T (2009) Microbial biodiversity in groundwater ecosystems. Freshwat Biol 54:649–677CrossRefGoogle Scholar
  64. Grime J (1979) Evidence for the existance of three primary strategies in plants and its releveance to ecological and evolutionary theory. Am Nat 111:1169–1194CrossRefGoogle Scholar
  65. Grossart HP, Jezbera J, Horňák K, Hutalle KML, Buck U, Šimek K (2008) Top-down and bottom-up induced shifts in bacterial abundance, production and community composition in an experimentally divided humic lake. Environ Microbiol 10:635–652PubMedCrossRefGoogle Scholar
  66. Grossart HP, Frindte K, Dziallas C, Eckert W, Tang KW (2011) Microbial methane production in oxygenated water column of an oligotrophic lake. Proc Natl Acad Sci USA 108:19657–19661PubMedCrossRefGoogle Scholar
  67. Gutknecht JLM, Goodman RM, Balser TC (2006) Linking soil process and microbial ecology in freshwater wetland ecosystems. Plant Soil 289:17–34CrossRefGoogle Scholar
  68. Hahn MG (2003) Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl Environ Microbiol 69:5248–5254PubMedCrossRefGoogle Scholar
  69. Hahn M, Pöckl M (2005) Ecotypes of planktonic Actinobacteria with identical 16S rRNA genes adapted to thermal niches in temperate, subtropical, and tropical freshwater habitats. Appl Environ Microbiol 71:766–773PubMedCrossRefGoogle Scholar
  70. Hahn MW, Moore ERB, Hofle MG (2000) Role of microcolony formation in the protistan grazing defense of the aquatic bacterium Pseudomonas sp MWH1. Microb Ecol 39:175–185PubMedGoogle Scholar
  71. Hahn MW, Lunsdorf H, Wu QL, Schauer M, Hofle MG, Boenigk J, Stadler P (2003) Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol 69:1442–1451PubMedCrossRefGoogle Scholar
  72. Hahn MW, Stadler P, Wu QL, Pockl M (2004) The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 57:379–390PubMedCrossRefGoogle Scholar
  73. Hahn MW, Pockl M, Wu QLL (2005) Low intraspecific diversity in a Polynucleobacter subcluster population numerically dominating bacterioplankton of a freshwater pond. Appl Environ Microbiol 71:4539–4547PubMedCrossRefGoogle Scholar
  74. Hahn MW, Lang E, Brandt U, Wu QL, Scheuerl T (2009) Emended description of the genus Polynucleobacter and the species P. necessarius and proposal of two subspecies, P. necessarius subspecies necessarius subsp. nov. and P. necessarius subsp. asymbioticus subsp. nov. Int J Syst Evol Microbiol 59:2002–2009PubMedCrossRefGoogle Scholar
  75. Hahn MW, Kasalicky V, Jezbera J, Brandt U, Jezberova J, Šimek K (2010) Limnohabitans curvus gen. nov., sp nov., a planktonic bacterium isolated from a freshwater lake. Int J Syst Evol Microbiol 60:1358–1365PubMedCrossRefGoogle Scholar
  76. Hahn MW, Scheuerl T, Jezberová J, Koll U, Jezbera J, Šimek K et al (2012) The passive yet successful way of planktonic life: genomic and experimental analysis of the ecology of a free-living Polynucleobacter population. PLos one 7:e32772PubMedCrossRefGoogle Scholar
  77. Hamlin C (1990) A science of impurity: water analysis in nineteenth century Britain. University of California Press, BerkeleyGoogle Scholar
  78. Haukka K, Heikkinen E, Kairesalo T, Karjalainen H, Sivonen K (2005) Effect of humic material on the bacterioplankton community composition in boreal lakes and mesocosms. Environ Microbiol 7:620–630PubMedCrossRefGoogle Scholar
  79. Henrici AT (1933) Studies of freshwater bacteria I: a direct microscopic technique. J Bacteriol 25:277–287PubMedGoogle Scholar
  80. Hiorns WD, Methe BA, Nierzwicki-Bauer SA, Zehr JP (1997) Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences. Appl Environ Microbiol 63:2957–2960PubMedGoogle Scholar
  81. Hoekstra AY, Mekonnen MM (2012) The water footprint of humanity. Proc Natl Acad Sci USA 109:3232–3237PubMedCrossRefGoogle Scholar
  82. Holmfeldt K, Dziallas C, Titelman J, Pohlmann K, Grossart HP, Riemann L (2009) Diversity and abundance of freshwater Actinobacteria along environmental gradients in the brackish northern Baltic Sea. Environ Microbiol 11:2042–2054PubMedCrossRefGoogle Scholar
  83. Horňák K, Jezbera J, Nedoma J, Gasol JM, Šimek K (2006) Effects of resource availability and bacterivory on leucine incorporation in different groups of freshwater bacterioplankton, assessed using microautoradiography. Aquat Microb Ecol 45:277–289CrossRefGoogle Scholar
  84. Horňák K, Jezbera J, Šimek K (2008) Effects of a Microcystis aeruginosa bloom and bacterivory on bacterial abundance and activity in a eutrophic reservoir. Aquat Microb Ecol 52:107–117CrossRefGoogle Scholar
  85. Horňák K, Zeder M, Blom JF, Posch T, Pernthaler J (2012) Suboptimal light conditions negatively affect the heterotrophy of Planktothrix rubescens but are beneficial for accompanying Limnohabitans spp. Environ Microbiol 14:765PubMedCrossRefGoogle Scholar
  86. Hörtnagl P, Perez MT, Sommaruga R (2010) Living at the border: a community and single-cell assessment of lake bacterioneuston activity. Limnol Oceanogr 55:1134–1144PubMedCrossRefGoogle Scholar
  87. Huisman J, Matthijs CP, Visser PM (2005) Harmful cyanobacteria. Springer, DordrechtCrossRefGoogle Scholar
  88. Hullar MAJ, Kaplan LA, Stahl DA (2006) Recurring seasonal dynamics of microbial communities in stream habitats. Appl Environ Microbiol 72:713–722PubMedCrossRefGoogle Scholar
  89. Jannasch HW (1958) Studies on planktonic bacteria by means of a direct membrane filter method. J Gen Microbiol 18:609–620PubMedGoogle Scholar
  90. Jezbera J, Horňák K, Šimek K (2006) Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients. Environ Microbiol 8:1330–1339PubMedCrossRefGoogle Scholar
  91. Jezbera J, Jezberova J, Brandt U, Hahn MW (2011) Ubiquity of Polynucleobacter necessarius subspecies asymbioticus results from ecological diversification. Environ Microbiol 13:922–931PubMedCrossRefGoogle Scholar
  92. Jezberova J, Komarkova J (2007) Morphological transformation in a freshwater Cyanobium sp induced by grazers. Environ Microbiol 9:1858–1862PubMedCrossRefGoogle Scholar
  93. Jezberova J, Jezbera J, Brandt U, Lindström ES, Langenheder S, Hahn MW (2010) Ubiquity of Polynucleobacter necessarius ssp asymbioticus in lentic freshwater habitats of a heterogenous 2000 km2 area. Environ Microbiol 12:658–669PubMedCrossRefGoogle Scholar
  94. Jones JG (1974) Some Observations on Direct Counts of Freshwater Bacteria Obtained with a Fluorescence Microscope. Limnol Oceanogr 19:540–543CrossRefGoogle Scholar
  95. Jones SE, McMahon KD (2009) Species-sorting may explain an apparent minimal effect of immigration on freshwater bacterial community dynamics. Environ Microbiol 11:905–913PubMedCrossRefGoogle Scholar
  96. Jones SE, Chiu CY, Kratz TK, Wu JT, Shade A, McMahon KD (2008) Typhoons initiate predictable change in aquatic bacterial communities. Limnol Oceanogr 53:1319–1326CrossRefGoogle Scholar
  97. Jones SE, Newton RJ, McMahon KD (2009) Evidence for structuring of bacterial community composition by organic carbon source in temperate lakes. Environ Microbiol 11:2463–2472PubMedCrossRefGoogle Scholar
  98. Jürgens K, Stolpe G (1995) Seasonal dynamics of crustacean zooplankton, heterotrophic nanoflagellates and bacteria in a shallow, eutrophic lake. Freshwat Biol 33:27–38CrossRefGoogle Scholar
  99. Jürgens K, Arndt H, Rothhaupt KO (1994) Zooplankton-mediated change of bacterial community structure. Microb Ecol 27:27–42CrossRefGoogle Scholar
  100. Jürgens K, Pernthaler J, Schalla S, Amann R (1999) Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Appl Environ Microbiol 65:1241–1250PubMedGoogle Scholar
  101. Kent AD, Jones SE, Yannarell AC, Graham JM, Lauster GH, Kratz TK, Triplett EW (2004) Annual patterns in bacterioplankton community variability in a humic lake. Microb Ecol 48:550–560PubMedCrossRefGoogle Scholar
  102. Kent AD, Yannarell AC, Rusak JA, Triplett EW, McMahon KD (2007) Synchrony in aquatic microbial community dynamics. ISME J 1:38–47PubMedCrossRefGoogle Scholar
  103. Keough BP, Schmidt TM, Hicks RE (2003) Archaeal nucleic acids in picoplankton from great lakes on three continents. Microb Ecol 46:238–248PubMedCrossRefGoogle Scholar
  104. Kirchman DL, Dittel AI, Findlay SEG, Fischer D (2004) Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York. Aquat Microb Ecol 35:243–257CrossRefGoogle Scholar
  105. Kolmonen E, Haukka K, Rantala-Ylinen A, Rajaniemi-Wacklin P, Lepisto L, Sivonen K (2011) Bacterioplankton community composition in 67 Finnish lakes differs according to trophic status. Aquat Microb Ecol 62:241–U249CrossRefGoogle Scholar
  106. Krashnopolsky VA, Maillard JP, Owen TC (2004) Detection of methane in the martian atmosphere: evidence for life? Icarus 172:537–547CrossRefGoogle Scholar
  107. LaMontagne MG, Holden PA (2003) Comparison of free-living and particle-associated bacterial communities in a coastal lagoon. Microb Ecol 46:228–237PubMedCrossRefGoogle Scholar
  108. Lemarchand C, Jardillier L, Carrias JF, Richardot M, Debroas D, Sime-Ngando T, Amblard C (2006) Community composition and activity of prokaryotes associated to detrital particles in two contrasting lake ecosystems. FEMS Microbiol Ecol 57:442–451PubMedCrossRefGoogle Scholar
  109. Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–418CrossRefGoogle Scholar
  110. Lindström ES (2000) Bacterioplankton community composition in five lakes differing in trophic status and humic content. Microb Ecol 40:104–113PubMedGoogle Scholar
  111. Lindström ES, Langenheder S (2012) Local and regional factors influencing bacterial community assembly. Environ Microbiol Rep. doi:10.1111/j.1758-2229.2011.00257.xGoogle Scholar
  112. Lindström ES, Forslund M, Algesten G, Bergstrom AK (2006) External control of bacterial community structure in lakes. Limnol Oceanogr 51:339–342CrossRefGoogle Scholar
  113. Logares R, Bråte J, Heinrich F, Shalchian-Tabrizi K, Bertilsson S (2010) Infrequent transitions between saline and fresh waters in one of the most abundant microbial lineages (SAR11). Mol Biol Evol 27:347–357PubMedCrossRefGoogle Scholar
  114. Martinez-Garcia M, Swan BK, Poulton NJ, Gomez ML, Masland D, Sieracki ME, Stepanauskas R (2012) High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. ISME J 6:113–123PubMedCrossRefGoogle Scholar
  115. Masin M, Nedoma J, Pechar L, Koblizek M (2008) Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ Microbiol 10:1988–1996PubMedCrossRefGoogle Scholar
  116. Methé BA, Hiorns WD, Zehr JP (1998) Contrasts between marine and freshwater bacterial community composition: analyses of communities in Lake George and six other Adirondack lakes. Limnol Oceanogr 43:368–374CrossRefGoogle Scholar
  117. Minder L (1920) Zur Hydrophysik des Zürich- und Walensees, nebst Beitrag zur Hydrochemie und Hydrobakteriologie des Zürichsees. Arch Hydrobiol 12:122–194Google Scholar
  118. Mindl B, Sonntag B, Pernthaler J, Vrba J, Psenner R, Posch T (2005) Effects of phosphorus loading on interactions of algae and bacteria: reinvestigation of the ‘phytoplankton-bacteria paradox’ in a continuous cultivation system. Aquat Microb Ecol 38:203–213CrossRefGoogle Scholar
  119. Miyoshi T, Iwatsuki T, Naganuma T (2005) Phylogenetic characterization of 16S rRNA gene clones from deep-groundwater microorganisms that pass through 0.2-micrometer-pore-size filters. Appl Environ Microbiol 71:1084–1088PubMedCrossRefGoogle Scholar
  120. Morita RY (1997) Bacteria in oligotrophic environments: starvation-survival lifestyle. Chapman Hall, New YorkGoogle Scholar
  121. Muylaert K, Van der Gucht K, Vloemans N, De Meester L, Gillis M, Vyverman W (2002) Relationship between bacterial community composition and bottom-up versus top-down variables in four eutrophic shallow lakes. Appl Environ Microbiol 68:4740–4750PubMedCrossRefGoogle Scholar
  122. Newton RJ, McMahon KD (2011) Seasonal differences in bacterial community composition following nutrient additions in a eutrophic lake. Environ Microbiol 13:887–899PubMedCrossRefGoogle Scholar
  123. Newton RJ, Kent AD, Triplett EW, McMahon KD (2006) Microbial community dynamics in a humic lake: differential persistence of common freshwater phylotypes. Environ Microbiol 8:956–970PubMedCrossRefGoogle Scholar
  124. Newton RJ, Jones SE, Helmus MR, McMahon KD (2007) Phylogenetic ecology of the freshwater Actinobacteria acI lineage. Appl Environ Microbiol 73:7169–7176PubMedCrossRefGoogle Scholar
  125. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49PubMedCrossRefGoogle Scholar
  126. O’Sullivan LA, Weightman AJ, Fry JC (2002) New degenerate Cytophaga-Flexibacter-Bacteroides-specific 16S ribosomal DNA-targeted oligonucleotide probes reveal high bacterial diversity in River Taff epilithon. Appl Environ Microbiol 68:2093-bGoogle Scholar
  127. Overmann J, Tuschak C, Frostl JM, Sass H (1998) The ecological niche of the consortium “Pelochromatium roseum”. Arch Microbiol 169:120–128PubMedCrossRefGoogle Scholar
  128. Overmann J, Coolen MJL, Tuschak C (1999) Specific detection of different phylogenetic groups of chemocline bacteria based on PCR and denaturing gradient gel electrophoresis of 16S rRNA gene fragments. Arch Microbiol 172:83–94PubMedCrossRefGoogle Scholar
  129. Pace ML, Cole JJ, Carpenter SR, Kitchell JF, Hodgson JR, Van de Bogert MC et al (2004) Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427:240–243PubMedCrossRefGoogle Scholar
  130. Page KA, Connon SA, Giovannoni SJ (2004) Representative freshwater bacterioplankton isolated from Crater Lake, Oregon. Appl Environ Microbiol 70:6542–6550PubMedCrossRefGoogle Scholar
  131. Perez MT, Sommaruga R (2006) Differential effect of algal- and soil-derived dissolved organic matter on alpine lake bacterial community composition and activity. Limnol Oceanogr 51:2527–2537CrossRefGoogle Scholar
  132. Pernthaler J, Posch T (2009) Microbial food webs. In: Encyclopedia of inland waters. Elsevier, Oxford, pp 244–251CrossRefGoogle Scholar
  133. Pernthaler J, Glockner FO, Unterholzner S, Alfreider A, Psenner R, Amann R (1998) Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl Environ Microbiol 64:4299–4306PubMedGoogle Scholar
  134. Pernthaler J, Posch T, Šimek K, Vrba J, Pernthaler A, Glockner FO et al (2001) Predator-specific enrichment of actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture. Appl Environ Microbiol 67:2145–2155PubMedCrossRefGoogle Scholar
  135. Pernthaler J, Zollner E, Warnecke F, Jürgens K (2004) Bloom of filamentous bacteria in a mesotrophic lake: identity and potential controlling mechanism. Appl Environ Microbiol 70:6272–6281PubMedCrossRefGoogle Scholar
  136. Philosof A, Sabehi G, Beja O (2009) Comparative analyses of actinobacterial genomic fragments from Lake Kinneret. Environ Microbiol 11:3189–3200PubMedCrossRefGoogle Scholar
  137. Piccini C, Conde D, Alonso C, Sommaruga R, Pernthaler J (2006) Blooms of single bacterial species in a coastal lagoon of the southwestern Atlantic Ocean. Appl Environ Microbiol 72:6560–6568PubMedCrossRefGoogle Scholar
  138. Pollard PC, Ducklow H (2011) Ultrahigh bacterial production in a eutrophic subtropical Australian river: does viral lysis short-circuit the microbial loop? Limnol Oceanogr 56:1115–1129CrossRefGoogle Scholar
  139. Posch T, Franzoi J, Prader M, Salcher MM (2009) New image analysis tool to study biomass and morphotypes of three major bacterioplankton groups in an alpine lake. Aquat Microb Ecol 54:113–126CrossRefGoogle Scholar
  140. Pronk M, Goldscheider N, Zopfi J (2009) Microbial communities in karst groundwater and their potential use for biomonitoring. Hydrogeol J 17:37–48CrossRefGoogle Scholar
  141. Rappe MS, Kemp PF, Giovannoni SJ (1997) Phylogenetic diversity of marine coastal picoplankton 16S rRNA genes cloned from the continental shelf off Cape Hatteras, North Carolina. Limnol Oceanogr 42:811–826CrossRefGoogle Scholar
  142. Rappé MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633PubMedCrossRefGoogle Scholar
  143. Rasumov AS (1932) Die direkte Methode der Zählung der Bakterien im Wasser und ihre Vergleichung mit der Kochschen Plattenkultur Methode. Microbiol, Moskow 1:131Google Scholar
  144. Raymond PA, Bauer JE (2001) Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. Nature 409:497–500PubMedCrossRefGoogle Scholar
  145. Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  146. Riemann L, Winding A (2001) Community dynamics of free-living and particle-associated bacterial assemblages during a freshwater phytoplankton bloom. Microb Ecol 42:274–285PubMedCrossRefGoogle Scholar
  147. Salcher MM, Pernthaler J, Psenner R, Posch T (2005) Succession of bacterial grazing defense mechanisms against protistan predators in an experimental microbial community. Aquat Microb Ecol 38:215–229CrossRefGoogle Scholar
  148. Salcher MM, Pernthaler J, Zeder M, Psenner R, Posch T (2008) Spatio-temporal niche separation of planktonic Betaproteobacteria in an oligo-mesotrophic lake. Environ Microbiol 10:2074–2086PubMedCrossRefGoogle Scholar
  149. Salcher MM, Pernthaler J, Posch T (2010) Spatiotemporal distribution and activity patterns of bacteria from three phylogenetic groups in an oligomesotrophic lake. Limnol Oceanogr 55:846–856CrossRefGoogle Scholar
  150. Salcher MM, Pernthaler J, Posch T (2011a) Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria ‘that rule the waves’ (LD12). ISME J 5:1242–1252PubMedCrossRefGoogle Scholar
  151. Salcher MM, Pernthaler J, Frater N, Posch T (2011b) Vertical and longitudinal distribution patterns of different bacterioplankton populations in a canyon-shaped, deep prealpine lake. Limnol Oceanogr 56:2027–2039CrossRefGoogle Scholar
  152. Sander BC, Kalff J (1993) Factors controlling bacterial production in marine and freshwater sediments. Microb Ecol 26:79–99CrossRefGoogle Scholar
  153. Schauer M, Hahn MW (2005) Diversity and phylogenetic affiliations of morphologically conspicuous large filamentous bacteria occurring in the pelagic zones of a broad spectrum of freshwater habitats. Appl Environ Microbiol 71:1931–1940PubMedCrossRefGoogle Scholar
  154. Schauer M, Kamenik C, Hahn MW (2005) Ecological differentiation within a cosmopolitan group of planktonic freshwater bacteria (SOL cluster, Saprospiraceae, Bacteroidetes). Appl Environ Microbiol 71:5900–5907PubMedCrossRefGoogle Scholar
  155. Schauer M, Jiang J, Hahn MW (2006) Recurrent seasonal variations in abundance and composition of filamentous SOL cluster bacteria (Saprospiraceae, Bacteroidetes) in oligomesotrophic Lake Mondsee (Austria). Appl Environ Microbiol 72:4704–4712PubMedCrossRefGoogle Scholar
  156. Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative Equilibria in Shallow Lakes. Trends Ecol Evol 8:275–279PubMedCrossRefGoogle Scholar
  157. Schink B (1989) Microbial Communities in Sediments. Naturwissenschaften 76:364–372CrossRefGoogle Scholar
  158. Schubert CJ, Vazquez F, Losekann-Behrens T, Knittel K, Tonolla M, Boetius A (2011) Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiol Ecol 76:26–38PubMedCrossRefGoogle Scholar
  159. Schweitzer B, Huber I, Amann R, Ludwig W, Simon M (2001) Alpha- and beta-proteobacteria control the consumption and release of amino acids on lake snow aggregates. Appl Environ Microbiol 67:632–645PubMedCrossRefGoogle Scholar
  160. Shabarova T, Pernthaler J (2010) Karst pools in subsurface environments: collectors of microbial diversity or temporary residence between habitat types. Environ Microbiol 12:1061–1074PubMedCrossRefGoogle Scholar
  161. Shade A, Kent AD, Jones SE, Newton RJ, Triplett EW, McMahon KD (2007) Interannual dynamics and phenology of bacterial communities in a eutrophic lake. Limnol Oceanogr 52:487–494CrossRefGoogle Scholar
  162. Sharma AK, Sommerfeld K, Bullerjahn GS, Matteson AR, Wilhelm SW, Jezbera J et al (2009) Actinorhodopsin genes discovered in diverse freshwater habitats and among cultivated freshwater Actinobacteria. ISME J 3:726–737PubMedCrossRefGoogle Scholar
  163. Šimek K, Chrzanowski TH (1992) Direct and indirect evidence of size-selective grazing on pelagic bacteria by freshwater nanoflagellates. Appl Environ Microbiol 58:3715–3720PubMedGoogle Scholar
  164. Šimek K, Pernthaler J, Weinbauer MG, Horňák K, Dolan JR, Nedoma J et al (2001) Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl Environ Microbiol 67:2723–2733PubMedCrossRefGoogle Scholar
  165. Šimek K, Horňák K, Jezbera J, Masin M, Nedoma J, Gasol JM, Schauer M (2005) Influence of top-down and bottom-up manipulations on the R-BT065 subcluster of beta-proteobacteria, an abundant group in bacterioplankton of a freshwater reservoir. Appl Environ Microbiol 71:2381–2390PubMedCrossRefGoogle Scholar
  166. Šimek K, Horňák K, Jezbera J, Nedoma J, Vrba J, Straskrabova V et al (2006) Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environ Microbiol 8:1613–1624PubMedCrossRefGoogle Scholar
  167. Šimek K, Weinbauer MG, Horňák K, Jezbera J, Nedoma J, Dolan JR (2007) Grazer and virus-induced mortality of bacterioplankton accelerates development of Flectobacillus populations in a freshwater community. Environ Microbiol 9:789–800PubMedCrossRefGoogle Scholar
  168. Šimek K, Kasalicky V, Jezbera J, Jezberova J, Hahn MW (2010a) Broad habitat range of the phylogenetically narrow R-BT065 cluster, representing a core group of the betaproteobacterial genus limnohabitans. Appl Environ Microbiol 76:3763CrossRefGoogle Scholar
  169. Šimek K, Kasalicky V, Horňák K, Hahn MW, Weinbauer MG (2010b) Assessing niche separation among coexisting Limnohabitans strains through interactions with a competitor, viruses, and a bacterivore. Appl Environ Microbiol 76:1406–1416PubMedCrossRefGoogle Scholar
  170. Šimek K, Kasalicky V, Zapomelova E, Horňák K (2011) Alga-derived substrates select for distinct betaproteobacterial lineages and contribute to niche separation in Limnohabitans strains. Appl Environ Microbiol 77:7307–7315PubMedCrossRefGoogle Scholar
  171. Simon M (1987) Biomass and production of small and large free-living bacteria in Lake Constance. Limnol Oceanogr 32:591CrossRefGoogle Scholar
  172. Singer G, Besemer K, Schmitt-Kopplin P, Hodl I, Battin TJ (2010) Physical heterogeneity Iincreases biofilm resource use and its molecular diversity in stream mesocosms. PLoS One 5:e9988PubMedCrossRefGoogle Scholar
  173. Sommaruga R (2001) The role of solar UV radiation in the ecology of alpine lakes. J Photochem Photobiol B-Biol 62:35–42CrossRefGoogle Scholar
  174. Sommaruga R, Casamayor EO (2009) Bacterial ‘cosmopolitanism’ and importance of local environmental factors for community composition in remote high-altitude lakes. Freshwat Biol 54:994–1005CrossRefGoogle Scholar
  175. Sommaruga R, Psenner R (1995) Permanent presence of grazing-resistant bacteria in a hypertrophic lake. Appl Environ Microbiol 61:3457–3459PubMedGoogle Scholar
  176. Stepanauskas R, Moran MA, Bergamaschi BA, Hollibaugh JT (2003) Covariance of bacterioplankton composition and environmental variables in a temperate delta system. Aquat Microb Ecol 31:85–98CrossRefGoogle Scholar
  177. Stürmeyer H, Overmann J, Babenzien HD, Cypionka H (1998) Ecophysiological and phylogenetic studies of Nevskia ramosa in pure culture. Appl Environ Microbiol 64:1890–1894PubMedGoogle Scholar
  178. Taipale S, Kankaala P, Hahn MW, Jones RI, Tiirola M (2011) Methane-oxidizing and photoautotrophic bacteria are major producers in a humic lake with a large anoxic hypolimnion. Aquat Microb Ecol 64:81–95CrossRefGoogle Scholar
  179. Tarao M, Jezbera J, Hahn MW (2009) Involvement of cell surface structures in size-independent grazing resistance of freshwater actinobacteria. Appl Environ Microbiol 75:4720–4726PubMedCrossRefGoogle Scholar
  180. Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45:1320–1328CrossRefGoogle Scholar
  181. Tonolla M, Demarta A, Peduzzi R, Hahn D (1999) In situ analysis of phototrophic sulfur bacteria in the chemocline of meromictic Lake Cadagno (Switzerland). Appl Environ Microbiol 65:1325–1330PubMedGoogle Scholar
  182. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ et al (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314CrossRefGoogle Scholar
  183. Urbach E, Vergin KL, Larson GL, Giovannoni SJ (2007) Bacterioplankton communities of Crater Lake, OR: dynamic changes with euphotic zone food web structure and stable deep water populations. Hydrobiologia 574:161–177CrossRefGoogle Scholar
  184. Van der Gucht K, Vandekerckhove T, Vloemans N, Cousin S, Muylaert K, Sabbe K et al (2005) Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure. FEMS Microbiol Ecol 53:205–220PubMedCrossRefGoogle Scholar
  185. Van der Gucht K, Cottenie K, Muylaert K, Vloemans N, Cousin S, Declerck S et al (2007) The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proc Natl Acad Sci USA 104:20404–20409PubMedCrossRefGoogle Scholar
  186. van Hannen EJ, Zwart G, van Agterveld MP, Gons HJ, Ebert J, Laanbroek HJ (1999) Changes in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses. Appl Environ Microbiol 65:795–801PubMedGoogle Scholar
  187. Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130CrossRefGoogle Scholar
  188. Warnecke F, Amann R, Pernthaler J (2004) Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environ Microbiol 6:242–253PubMedCrossRefGoogle Scholar
  189. Warnecke F, Sommaruga R, Sekar R, Hofer JS, Pernthaler J (2005) Abundances, identity, and growth state of actinobacteria in mountain lakes of different UV transparency. Appl Environ Microbiol 71:5551–5559PubMedCrossRefGoogle Scholar
  190. Weinbauer MG, Höfle MG (1998) Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl Environ Microbiol 64:431–438PubMedGoogle Scholar
  191. Wetzel RG (2000) Freshwater ecology: changes, requirements, and future demands. Limnology 1:3–9CrossRefGoogle Scholar
  192. Winter C, Hein T, Kavka G, Mach RL, Farnleitner AH (2007) Longitudinal changes in the bacterial community composition of the Danube river: a whole-river approach. Appl Environ Microbiol 73:421–431PubMedCrossRefGoogle Scholar
  193. Wobus A, Bleul C, Maassen S, Scheerer C, Schuppler M, Jacobs E, Roske I (2003) Microbial diversity and functional characterization of sediments from reservoirs of different trophic state. FEMS Microbiol Ecol 46:331–347PubMedCrossRefGoogle Scholar
  194. Wright RT, Hobbie JE (1965) The uptake of organic solutes in lake water. Limnol Oceanogr 10:22–28CrossRefGoogle Scholar
  195. Wu QL, Hahn MW (2006a) Differences in structure and dynamics of Polynucleobacter communities in a temperate and a subtropical lake, revealed at three phylogenetic levels. FEMS Microbiol Ecol 57:67–79PubMedCrossRefGoogle Scholar
  196. Wu QLL, Hahn MW (2006b) High predictability of the seasonal dynamics of a species-like Polynucleobacter population in a freshwater lake. Environ Microbiol 8:1660–1666PubMedCrossRefGoogle Scholar
  197. Wu OLL, Boenigk J, Hahn MW (2004) Successful predation of filamentous bacteria by a nanoflagellate challenges current models of flagellate bacterivory. Appl Environ Microbiol 70:332–339PubMedCrossRefGoogle Scholar
  198. Yannarell AC, Triplett EW (2004) Within- and between-lake variability in the composition of bacterioplankton communities: investigations using multiple spatial scales. Appl Environ Microbiol 70:214–223PubMedCrossRefGoogle Scholar
  199. Zeder M, Peter S, Shabarova T, Pernthaler J (2009) A small population of planktonic Flavobacteria with disproportionally high growth during the spring phytoplankton bloom in a prealpine lake. Environ Microbiol 11:2676–2686PubMedCrossRefGoogle Scholar
  200. Zwart G, Crump BC, Agterveld M, Hagen F, Han SK (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Limnological Station, Institute of Plant BiologyUniversity of ZurichKilchbergSwitzerland

Personalised recommendations