Advertisement

Alpine and Arctic Soil Microbial Communities

  • M. Rhodes
  • J. Knelman
  • R. C. Lynch
  • J. L. Darcy
  • D. R. Nemergut
  • S. K. Schmidt

Abstract

Cold environments, where average daily air temperatures are below 5 °C throughout the year, are widespread in the terrestrial biosphere (Zakhia et al. 2008). These ecosystems are common in high mountain ranges, the high Arctic and Antarctica. In these areas, cold temperatures are often accompanied by freeze-thaw cycles, seasonally high solar radiation exposure, low nutrient supply, limited water availability, and high salinity. As a result of these conditions, such environments are mostly devoid of higher plants and are instead dominated by microbial communities. These areas have been referred to as the subnival zone, cold deserts, the allobiosphere, or the aeolian zone among other names (Bahl et al. 2011; Edwards 1988; King et al. 2008; Mayilraj et al. 2005; Swan 1992). Due to the absence of plants and large animals, comprehensive studies of the diversity of these ecosystems have been limited. However, recent advances in molecular techniques have allowed for more extensive study of the microorganisms that are abundant in these seemingly barren areas. High mountain cold desert areas are also receiving recent attention because they are in watersheds that are the source of water (from snow and ice melt) for a large proportion of the world’s population, especially in areas downstream from the Andes, Rockies, and Himalayan Ranges. For example, the Himalayan-Karakorum-Hindu Kush Mountain complex provides water for approximately 1.3 billion people (Hua 2009). In addition, the global extent of cold, plant-free ecosystems is presently expanding rapidly as a result of glacier and ice cap melting due to global warming (Bradley et al. 2006; Byers 2007; Racoviteanu et al. 2008).

Keywords

Archaeal Community Cold Desert Polar Desert Limited Water Availability Cyanobacterial Diversity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aislabie J, Chhour K, Saul D, Miyauchi S, Ayton J, Paetzold R, Balks M (2006) Dominant bacteria in soils of Marble Point and Wright valley, Victoria Land, Antarctica. Soil Biol Biochem 38:3041–3056Google Scholar
  2. Bahl J, Lau MCY, Smith GJD, Vijaykrishna D, Cary SC, Lacap DC, Lee CK, Papke RT, Warren-Rhodes KA, Wong FKY, McKay CP, Pointing SB (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163PubMedGoogle Scholar
  3. Ball BA, Virginia RA, Barrett JE, Parsons AN, Wall WH (2009) Interactions between physical and biotic factors influence CO2 flux in Antarctic Dry Valley soils. Soil Biol Biochem 41:1510–1517Google Scholar
  4. Banks JC, Ross PM, Smith TE (2009) Report of a mummified leopard seal carcass in the southern Dry Valleys, McMurdo sound, Antartica. Antarct Sci 22:43Google Scholar
  5. Barwick RE, Balham RW (1967) Mummified seal carcasses in a deglaciated region of South Victoria Land, Antarctic. Tautara 15:165–180Google Scholar
  6. Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917PubMedGoogle Scholar
  7. Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sørensen KB, Anderson R, Fredricks HF, Elvert M, Kelly TJ, Schrag DP, Sogin ML, Brenchley JE, Teske A, House CH, Hinrichs K-U (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Perú. Proc Natl Acad Sci USA 103:3846–3851PubMedGoogle Scholar
  8. Bliss LC (1981) North American and Scandinavian tundra’s and polar deserts. In: Bliss LC, Heal OW, Moore JJ (eds) Tundra Ecosystems: a comparative analysis. Cambridge University Press, Cambridge, UK, pp 8–24Google Scholar
  9. Bliss LC, Gold WG (1999) Vascular plant reproduction, establishment, and growth and the effects of cryptogamic crusts within a polar desert ecosystem, Devon Island, NWT, Canada. Can J Botany 77:623–636Google Scholar
  10. Bliss LC, Svoboda J, Bliss DI (1984) Polar deserts, their plant cover and plant production in the Canadian High Arctic. Holarctic Ecol 7:305–324Google Scholar
  11. Bockheim JG, McLeod M (2008) Soil distribution in the McMurdo Dry Valleys, Antarctica. Geoderma 144:43–49Google Scholar
  12. Borin S, Ventura S, Tambone F, Mapelli F, Schubotz F, Brusetti L, Scaglia B, D’Acqui LP, Solheim B, Turicchia S, Marasco R, Hinrichs K-U, Baldi F, Adani F, Daffonchio D (2010) Rock weathering creates oases of life in a high Arctic desert. Environ Microbiol 12:293–303PubMedGoogle Scholar
  13. Bradley RS, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312:1755–1756PubMedGoogle Scholar
  14. Broady P (1981) The ecology of sublithic terrestrial algae at the Vestfold Hills, Antartica. Eur J Phycol 16:231–240Google Scholar
  15. Broady PA (2005) The distribution of terrestrial and hydro-terrestrial algal associations at three contrasting locations in southern Victoria Land, Antarctica. Algal Stud 118:95–112Google Scholar
  16. Broady PA, Weinsteinz RN (1998) Algae, lichens and fungi in La Gorce Mountains, Antartica. Antarct Sci 10:376–385Google Scholar
  17. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252PubMedGoogle Scholar
  18. Burkins MB, Virginia RA, Chamberlain CP, Wall DH (2000) Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology 81:2377–2391Google Scholar
  19. Burkins MB, Virginia RA, Wall DH (2001) Organic carbon cycling in Taylor Valley Antarctica: quantifying soil reservoirs and soil respiration. Glob Change Biol 7:113–125Google Scholar
  20. Byers AC (2007) An assessment of contemporary glacier fluctuations in Nepal’s Khumbu Himal using repeat photography. Himal J Sci 4:21–26Google Scholar
  21. Callaghan T, Björn, LO, Chernov Y, Chapin FS, Christensen T, Huntley B, Ims R, Johansson M, et al. (2004) Effects on the function of Arctic ecosystems in the short- and long-term perspectives. Ambio 33:448–458PubMedGoogle Scholar
  22. Cameron R, Morelli F, Johnson R (1972) Bacterial species in soil and air of the Antarctic continent. Antarct J US 7:187–189Google Scholar
  23. Caruso T, Chan Y, Lacap DC, Lau MCY, McKay CP, Pointing SB (2011) Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME J 5:1406–1413PubMedGoogle Scholar
  24. Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic dry valley soils. Nat Rev Micro 8:129–138Google Scholar
  25. Chu H, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 12:2998–3006PubMedGoogle Scholar
  26. Claridge GGC, Campbell IB (1976) The salts in Antartic soils, their distribution and relationship to soil processes. Soil Sci 123:377–384Google Scholar
  27. Cockell CS, Lee PC, Schuerger AC, Hidalgo L, Jones JA, Stokes MD (2001) Microbiology and vegetation of micro-oases and polar desert, Haughton impact crater, Devon Island, Nunavut, Canada. Arct Antarct Alp Res 33:306–318Google Scholar
  28. Cockell CS, Stokes MD (2004) Widespread colonization by polar hypoliths. Nature 431:414PubMedGoogle Scholar
  29. Cockell CS, Stokes MD (2006) Hypolithic colonization of opaque rocks in the Arctic and Antarctic Polar Desert. Arct Antarct Alp Res 38:335–342Google Scholar
  30. Cockell CS, McKay CP, Warren-Rhodes K, Horneck G (2008) Ultraviolet radiation-induced limitation to epilithic microbial growth in arid deserts–dosimetric experiments in the hyperarid core of the Atacama Desert. J Photochem Photobiol B 90:79–87PubMedGoogle Scholar
  31. Costello EK, Schmidt SK (2006) Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment. Environ Microbiol 8:1471–1486PubMedGoogle Scholar
  32. Costello EK, Halloy SRP, Reed SC, Sowell P, Schmidt SK (2009) Fumarole-supported islands of biodiversity within a hyperarid, high-elevation landscape on Socompa Volcano, Puna de Atacama, Andes. Appl Environ Microbiol 75:735–747PubMedGoogle Scholar
  33. Cowan DA, Russell NJ, Mamais A, Sheppard DM (2002) Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6:431–436PubMedGoogle Scholar
  34. Cowan DA, Tow LA (2004) Endangered Antarctic environments. Annu Rev Microbiol 58:649–690PubMedGoogle Scholar
  35. Cowan DA, Khan N, Pointing SB, Cary SC (2010) Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarct Sci 22:714–720Google Scholar
  36. Cowan DA, Pointing SB, Stevens MI, Craig Cary S, Stomeo F, Tuffin IM (2011) Distribution and abiotic influences on hypolithic microbial communities in an Antarctic Dry Valley. Polar Biol 34:307–311Google Scholar
  37. Darcy JL, Lynch RC, King AJ, Robeson MS, Schmidt SK (2011) Global distribution of Polaromonas phylotypes - evidence for a highly successful dispersal capacity. PLoS One 6(8):e23742. doi:10.1371/journal.pone.0023742PubMedGoogle Scholar
  38. DeLong EF, Wu KY, Prézelin BB, Jovine RV (1994) High abundance of Archaea in Antarctic marine picoplankton. Nature 371:695–697PubMedGoogle Scholar
  39. Dickson LG (2000) Constraints to nitrogen fixation by cryptogamic crusts in a polar desert ecosystem, Devon Island, NWT, Canada. Arct Antarct Alp Res 32:40–45Google Scholar
  40. Edwards IP, Bürgmann H, Miniaci C, Zeyer J (2006) Variation in microbial community composition and culturability in the rhizosphere of Leucanthemopsis alpina (L.) Heywood and adjacent bare soil along an alpine chronosequence. Microb Ecol 52:679–692PubMedGoogle Scholar
  41. Edwards JS (1988) Life in the allobiosphere. Trends Ecol Evol 3:111–114PubMedGoogle Scholar
  42. Elster J, Benson EE (2004) Life in the Polar Terrestrial Environment with a Focus on Algae and Cyanobacteria. In: Fuller BJ, Lane N, Benson EE (eds) Life in the Frozen State Libro. CRC Press, Boca Raton, pp 111–150Google Scholar
  43. Freeman KR (2010) Toward an understanding of microbial communities and biogeochemistry in high-elevation, un-vegetated soils. Ph.D. dissertation, University of Colorado, BoulderGoogle Scholar
  44. Freeman KR, Martin AP, Karki D, Lynch RC, Mitter MS, Meyer AF, Longcore JE, Simmons DR, Schmidt SK (2009a) Evidence that chytrids dominate fungal communities in high-elevation soils. Proc Natl Acad Sci USA 106:18315–18320PubMedGoogle Scholar
  45. Freeman KR, Pescador MY, Reed SC, Costello EK, Robeson MS, Schmidt SK (2009b) Soil CO2 flux and photoautotrophic community composition in high-elevation, “barren” soil. Environ Microbiol 11:674–686PubMedGoogle Scholar
  46. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053PubMedGoogle Scholar
  47. Friedmann EI, Garty J, Kappen L (1980) Fertile stages of cryptoendolithic lichens in the dry valleys of southern Victoria Land. Antarct J US 12:6–30Google Scholar
  48. Friedmann EI, Kappen L, Meyer MA, Nienow JA (1993) Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microb Ecol 25:51–69PubMedGoogle Scholar
  49. Green WJ, Gardner TJ, Ferdelman TG, Angle MP, Varner LC, Nixon P (1989) Geochemical processes in the Lake Fryxell Basin (Victoria Land, Antarctica). Hydrobiologia 172:129–148Google Scholar
  50. Hansel CM, Fendorf S, Jardine PM, Francis CA (2008) Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl Environ Microbiol 74:1620–1633PubMedGoogle Scholar
  51. Hogg ID, Cary SC, Convey P, Newsham KK, O’Donnell AG, Adams BJ, Aislabie J, Frati F, Stevens MI, Wall DH (2010) Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biol Biochem 38:3035–3040Google Scholar
  52. Hopkins DW, Sparrow AD, Novis PM, Gregorich EG, Elberling B, Greenfield LG (2006) Controls on the distribution of productivity and organic resources in Antarctic Dry Valley soils. Proc R Soc B 273:2687–2695PubMedGoogle Scholar
  53. Horowitz NH, Cameron RE, Hubbard JS (1972) Microbiology of the dry valleys of Antarctica. Science 176:242–245PubMedGoogle Scholar
  54. Hua O (2009) The Himalayas - water storage under threat. Sustain Mountain Develop 56:3–5Google Scholar
  55. Hughes KA, Lawley B (2003) A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol 5:555–565PubMedGoogle Scholar
  56. Johnston CG, Vestal JR (1991) Photosynthetic carbon incorporation and turnover in Antarctic cryptoendolithic microbial communities: are they the slowest-growing communities on Earth? Appl Environ Microbiol 57:2308–2311PubMedGoogle Scholar
  57. Jungblut AD, Lovejoy C, Vincent WF (2010) Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 4:191–202PubMedGoogle Scholar
  58. Kappen L, Friedmann EI, Garty J (1981) Ecophysiology of lichens in the dry valleys of Southern Victoria-Land, Antarctica. I. Microclimate of the cryptoendolithic-lichen habitat. Flora 171:216–235Google Scholar
  59. King AJ, Freeman KR, McCormick KF, Lynch RC, Lozupone C, Knight R, Schmidt SK (2010b) Biogeography and habitat modelling of high-alpine bacteria. Nat Commun 1:53PubMedGoogle Scholar
  60. King AJ, Karki D, Nagy L, Racoviteanu AE, Schmidt SK (2010a) Microbial biomass and activity in high elevation (>5100 meters) soils from the Annapurna and Sagarmatha regions of the Nepalese Himalayas. Himal J Sci 6:11–18Google Scholar
  61. King AJ, Meyer AF, Schmidt SK (2008) High levels of microbial biomass and activity in unvegetated tropical and temperate alpine soils. Soil Biol Biochem 40:2605–2610Google Scholar
  62. Lee CK, Barbier BA, Bottos EM, McDonald IR, Cary SC (2011) The inter-valley soil comparative survey: the ecology of Dry Valley edaphic microbial communities. ISME J. doi:10.1038/ismej.2011.170Google Scholar
  63. Ley RE, Williams MW, Schmidt SK (2004) Microbial population dynamics in an extreme environment: controlling factors in talus soils at 3750 m in the Colorado Rocky Mountains. Biogeochemistry 68:297–311Google Scholar
  64. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235PubMedGoogle Scholar
  65. Lynch RC, King AJ, Farias ME, Sowell P, Vitry C, Schmidt SK (2012) The potential for microbial life in the highest elevation (>6000 m.) mineral soils of the Atacama region. J Geophys Res Biogeosci 117: G02028 doi:10.1029/2012JG001961Google Scholar
  66. Marchant DR, Head JW (2007) Antarctic Dry Valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus 192:187–222Google Scholar
  67. Matthes U, Turner SJ, Larson DW (2001) Light attenuation by limestone rock and its constraint on the depth distribution of endolithic algae and cyanobacteria. Int J Plant Sci 162:263–270Google Scholar
  68. Mayilraj S, Prasad GS, Suresh K, Saini HS, Shivaji S, Chakrabarti T (2005) Planococcus stackebrandtii sp. nov., isolated from a cold desert of the Himalayas, India. Int J Syst Evol Microbiol 55:91–94PubMedGoogle Scholar
  69. McKay CP, Friedmann EI (1985) The cryptoendolithic microbial environment in the Antarctic cold desert: temperature variations in nature. Polar Biol 4:19–25PubMedGoogle Scholar
  70. McKnight DM (1989) Antarctic lakes: biogeochemistry of dissovled organic material in lakes in the dry valleys. In: USGS Yearbook, Fiscal Year 1988. U.S. Geological Survey (USGS), Denver, CO, pp 80–81Google Scholar
  71. Miniaci C, Bunge M, Duc L, Edwards I, Bürgmann H, Zeyer J (2007) Effects of pioneering plants on microbial structures and functions in a glacier forefield. Biol Fert Soils 44:289–297Google Scholar
  72. Moorhead DL, Doran PT, Fountain AG, Lyons WB, McKnight DM, Priscu JC, Virginia RA, Wall DH (1999) Ecological legacies: impacts on ecosystems of the McMurdo Dry Valleys. Bioscience 49:1009–1019Google Scholar
  73. Namsarev Z, Mano M-J, Fernandez R, Wilmotte A (2010) Biogeography of terrestrial cyanobacteria from Antarctic ice-free areas. Ann Glaciol 51:171–177Google Scholar
  74. Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2007) Microbial community succession in unvegetated, recently-deglaciated soils. Microb Ecol 53:110–122PubMedGoogle Scholar
  75. Nemergut DR, Costello EK, Meyer AF, Pescador MY, Weintraub MN, Schmidt SK (2005) Structure and function of alpine and arctic soil microbial communities. Res Microbiol 156:775–784PubMedGoogle Scholar
  76. Neufeld JD, Mohn WW (2005) Unexpectedly high bacterial diversity in arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl Environ Microbiol 71:5710–5718PubMedGoogle Scholar
  77. Newsham KK, Pearce DA, Bridge PD (2010) Minimal influence of water and nutrient content on the bacterial community composition of a maritime Antarctic soil. Res Microbiol 165:523–530Google Scholar
  78. Niederberger TD, McDonald IR, Hacker AL, Soo RM, Barrett JE, Wall DH, Cary SC (2008) Microbial community composition in soils of Northern Victoria Land, Antarctica. Environ Microbiol 10:1713–1724PubMedGoogle Scholar
  79. Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI, Thistle AB (eds) Antarctic microbiology. Wiley-Liss, New York, NY., pp 343–412Google Scholar
  80. Novis PM, Whitehead D, Gregorich EG, Hunt JE, Sparrow AD, Hopkins DW, Elberling B, Greenfield LG (2007) Annual carbon fixation in terrestrial populations of Nostoc commune (Cyanobacteria) from an Antarctic dry valley is driven by temperature regime. Global Change Biol 13:1224–1237Google Scholar
  81. Oline DK, Schmidt SK, Grant MC (2006) Biogeography and landscape-scale diversity of the dominant Crenarchaeota of soil. Microb Ecol 52:480–490PubMedGoogle Scholar
  82. Omelon C, Pollard W, Ferris FG (2006) Environmental controls on microbial colonization of high Arctic cryptoendolithic habitats. Polar Biol 30:19–29Google Scholar
  83. Onofri S (2004) Antarctic microfungi as models for exobiology. Planet Space Sci 52:229–237Google Scholar
  84. Park SW, Park ST, Lee JE, Kim YM (2008) Pseudonocardia carboxydivorans sp. nov., a carbon monoxide-oxidizing actinomycete, and an emended description of the genus Pseudonocardia. Int J Syst Evol Microbiol 58:2475–2478PubMedGoogle Scholar
  85. Parsons AN, Barrett JE, Wall DH, Virginia RA (2004) Soil carbon dioxide flux in Antarctic Dry Valley ecosystems. Ecosystems 7:286–295Google Scholar
  86. Péwè TL, Rivard NR, Llano GA (1959) Mummified seal carcasses in the McMurdo Sound region, Antarctica. Science 130:716PubMedGoogle Scholar
  87. Pointing SB, Chan Y, Lacap DC, Lau MCY, Jurgens JA, Farrell RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci USA 106:19964–19969PubMedGoogle Scholar
  88. Prabahar V, Dube S, Reddy GSN, Shivaji S (2004) Pseudonocardia antarctica sp. nov. an Actinomycete from McMurdo Dry Valleys, Antarctica. Syst Appl Microbiol 27:66–71PubMedGoogle Scholar
  89. Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl Acids Res 35:7188–7196PubMedGoogle Scholar
  90. Racoviteanu AE, Arnaud Y, Williams MW, Ordoñez J (2008) Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. J Glaciol 54:499–510Google Scholar
  91. Reichert K, Lipski A, Pradella S, Stackebrandt E, Altendorf K (1998) Pseudonocardia asaccharolytica sp. nov. and Pseudonocardia sulfidoxydans sp. nov., two new dimethyl disulfide-degrading actinomycetes and emended description of the genus Pseudonocardia. Internat. J Syst Evol Microbiol 48:441–449Google Scholar
  92. Richardson MI, Moore IT, Soma KK, Lei F-M, Wingfield JC (2003) How similar are high latitude and high altitude habitats? A review and a preliminary study of the drenocortical response to stress in birds of the Qinghai-Tibetan Plateu. Acta Zool Sinica 49:1–19Google Scholar
  93. Schloss PD et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7544PubMedGoogle Scholar
  94. Schmidt SK, Cleveland CC, Nemergut DR, Reed SC, King AJ, Sowell P (2011a) Estimating phosphorus availability for microbial growth in an emerging landscape. Geoderma 163:135–140Google Scholar
  95. Schmidt SK, Lynch RC, King AJ, Karki D, Robeson MS, Nagy L, Williams MW, Mitter MS, Freeman KR (2011b) Phylogeography of microbial phototrophs in the dry valleys of the high Himalayas and Antarctica. Proc R Soc B Sci 278:702–708Google Scholar
  96. Schmidt SK, Naff CS, Lynch RC (2012) Fungal communities at the edge: ecological lessons from high alpine fungi. Fungal Ecol 5:443–452Google Scholar
  97. Schmidt SK, Nemergut DR, Miller AE, Freeman KR, King AJ, Seimon A (2009) Microbial activity and diversity during extreme freeze-thaw cycles in periglacial soils, 5400 m elevation, Cordillera Vilcanota, Perú. Extremophiles 13:807–816PubMedGoogle Scholar
  98. Schmidt SK, Reed SC, Nemergut DR, Stuart Grandy A, Cleveland CC, Weintraub MN, Hill AW, Costello EK (2008) The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proc R Soc B Sci 275:2793–2802Google Scholar
  99. Schütte UME, Abdo Z, Foster J, Ravel J, Bunge J, Solheim B, Forney LJ (2010) Bacterial diversity in a glacier foreland of the high Arctic. Mol Ecol 19:54–66PubMedGoogle Scholar
  100. Scott RF (1905) The voyage of the discovery, vol 1. Smith, Elder and Co, London, UKGoogle Scholar
  101. Smith JJ, Tow LA, Stafford W, Cary C, Cowan DA (2006) Bacterial diversity in three different Antarctic Cold Desert mineral soils. Microb Ecol 51:413–421PubMedGoogle Scholar
  102. Smith JL, Barrett JE, Tusnády G, Rejtö L, Cary SC (2010) Resolving environmental drivers of microbial community structure in Antarctic soils. Antarct Sci 22:673–680Google Scholar
  103. Smith RC, Prézelin BB, Baker KS, Bidigare RR, Boucher NP, Coley T, Karentz D, MacIntyre S, Matlick HA, Menzies D (1992) Ozone depletion – ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959PubMedGoogle Scholar
  104. Smith RIL, Poncet S (1985) New southernmost record for Antarctic flowering plants. Polar Record 22:425–427Google Scholar
  105. Starkenburg SR, Reitenga KG, Freitas T, Johnson S, Chain PSG, Garcia-Pichel F, Kuske CR (2011) Genome of the cyanobacterium Microcoleus vaginatus FGP-2, a photosynthetic ecosystem engineer of arid land soil biocrusts worldwide. J Bacteriol 193:4569–4570PubMedGoogle Scholar
  106. Steven B, Pollard WH, Greer CW, Whyte LG (2008) Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Environ Microbiol 10:3388–3403PubMedGoogle Scholar
  107. Stomeo F, Makhalanyane TP, Valverde A, Pointing SB, Stevens MI, Cary CS, Tuffin MI, Cowan DA (2012) Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-associated Antarctic Dry Valley. FEMS Microbiol Ecol. doi:10.1111/j.1574-6941.2012.01360.xGoogle Scholar
  108. Sun HJ, Nienow JA, McKay CP (2010) The antarctic cryptoendolithic microbial ecosystem. In: Doran PT, Lyons WB, McKnight DM (eds) Life in Antarctic deserts and other cold dry environments: astrobiological analogs. Cambridge University Press, Cambridge, UK, pp 110–138Google Scholar
  109. Swan LW (1963) Aeolian zone. Science 140:77–78PubMedGoogle Scholar
  110. Swan LW (1992) The Aeolian biome. Bioscience 42:262–270Google Scholar
  111. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedGoogle Scholar
  112. Tiao G, Lee CK, McDonald IR, Cowan DA, Cary SC (2012) Rapid microbial response to the presence of an ancient relic in the Antarctic Dry Valleys. Nat Commun 3:660PubMedGoogle Scholar
  113. Torre JR, Goebel BM, Friedmann EI, Pace NR (2003) Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 69:3858–3867PubMedGoogle Scholar
  114. Torsvik V, Øvreås L, Thingstad TF (2002) Prokaryotic diversity–magnitude, dynamics, and controlling factors. Science 296:1064–1066PubMedGoogle Scholar
  115. Tourna M, Freitag TE, Nicol GW, Prosser JI (2008) Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 10:1357–1364PubMedGoogle Scholar
  116. Vincent WF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, New York, NYGoogle Scholar
  117. Vincent WF (2000) Cyanobacterial dominance in the polar regions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 321–340Google Scholar
  118. Waksman SA (1950) The Actinomycetes, their nature, occurrence, activities and importance. The Chronica Botanica Co., Waltham MAGoogle Scholar
  119. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267PubMedGoogle Scholar
  120. Warren-Rhodes KA, Rhodes KL, Pointing SB, Ewing SA, Lacap DC, Gómez-Silva B, Amundson R, Friedmann EI, McKay CP (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb Ecol 52:389–398PubMedGoogle Scholar
  121. Warren-Rhodes KA, Rhodes KL, Boyle LN, Pointing SB, Chen Y, Liu S, Zhuo P, McKay CP (2007) Cyanobacterial ecology across environmental gradients and spatial scales in China’s hot and cold deserts. FEMS Microbiol Ecol 61:470–482PubMedGoogle Scholar
  122. Wong FKY, Lacap DC, Lau MCY, Aitchison JC, Cowan DA, Pointing SB (2010) Hypolithic microbial community of quartz pavement in the high-altitude tundra of central Tibet. Microb Ecol 60:730–739PubMedGoogle Scholar
  123. Wood SA, Rueckert A, Cowan DA, Cary SC (2008) Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME J 2:308–320PubMedGoogle Scholar
  124. Yergeau E, Hogues H, Whyte LG, Greer CW (2010) The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J 4:1206–1214PubMedGoogle Scholar
  125. Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9:2670–2682PubMedGoogle Scholar
  126. Zakhia F, Jungblut A-D, Taton A, Vincent WF, Wilmotte A (2008) Cyanobacteria in cold ecosystems. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 121–135Google Scholar
  127. Zhang L-M, Wang M, Prosser JI, Zheng Y-M, He J-Z (2009) Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. FEMS Microbiol Ecol 70:208–217Google Scholar
  128. Zielke M, Solheim B, Spjelkavik S, Olsen RA (2005) Nitrogen fixation in the high arctic: role of vegetation and environmental conditions. Arct Antarct Alp Res 37:372–378Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Rhodes
    • 1
  • J. Knelman
    • 1
  • R. C. Lynch
    • 1
  • J. L. Darcy
    • 1
  • D. R. Nemergut
    • 1
  • S. K. Schmidt
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations