Skip to main content

Tropical Soil Microbial Communities

  • Reference work entry

Abstract

Tropical soil ecosystems are diverse and complex and are different from those of temperate ecosystems. The various ecosystems found within the tropics provide the setting for diverse microbial niches and evolution. There is not a meaningful correlation between latitude and bacterial diversity, but communities can be characterized by ecotypes and function. Desert soils experience extremes of solar radiation, minimal precipitation, heat, and cold and in them very diverse bacterial communities have evolved and are briefly discussed. In the semiarid tropical biomes, dominated by grass vegetation, we find resilient dry-adapted bacterial biodiversity associated with plants. Water rich tropical environments including the rainforest soils and mangroves sediments are incredibly diverse and retain untold biotechnology potential. Tropical soils provide food for approximately 40% of the World´s population, many of whom are in developing countries. In Brazil, microbial inoculants isolated from tropical soils have been used to significantly improve food production on a large scale and this type of biotechnology is being shared by Embrapa with tropical countries in Africa. Tropical soil bacteria are already being used to remediate polluted soils, promote reforestation, and to protect water resources, but this needs to be scaled up everywhere throughout the tropics. It is of paramount importance to preserve areas within unique tropical ecosystems to ensure that their soil microbial gene pool is not lost to future generations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adámoli J, Macêdo J, Azevedo LG, Netto JM (1987) Caracterização da região dos Cerrados. In: Goedert WJ (ed) Solos dos Cerrados – Tecnologias e estratégias de manejo. Nobel e Embrapa, São Paulo e Brasília, pp 33–74

    Google Scholar 

  • Aksornkoae S, Arroyo C, Blasco F, Burbridge PR, Tuck CH, Cintron G et al (1984) Handbook for mangrove area management. United Nations Environment Program and East-West Center, Environment and Policy Institute, Honolulu, Hawaii, p 256

    Google Scholar 

  • Albuquerque UP, Medeiros PM, Almeida ALS, Monteiro JM, Lins Neto EMF, Melo JG, Santos JP (2007) Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: a quantitative approach. J Ethnopharmacol 114:325–354

    Article  PubMed  Google Scholar 

  • Alongi DM (2002) Present state and future of the world’s mangrove forests. Aust Inst Marine Sci 29:331–349

    Google Scholar 

  • Azúa-Bustos A, González-Silva C, Mancilla RA, Salas L, Gómez-Silva B (2011) Hypolithic cyanobacteria supported mainly by fog in the coastal range of the Atacama Desert. Microb Ecol 61(3):568–581

    Article  PubMed  Google Scholar 

  • Baldani JI, Baldani VLD (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. Anais da Academia Brasileira de Ciêncas 77(3):549–579. doi:10.1590/S0001-37652005000300014

    Article  CAS  Google Scholar 

  • Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368:413–418. doi:10.1038/368413a0

    Article  CAS  Google Scholar 

  • Brito EM, Duran R, Guyoneaud R, Goni-Urriza M, Garcia de Oteyza T, Crapez MA et al (2009) A case study of in situ oil contamination in a mangrove swamp (Rio De Janeiro, Brazil). Mar Pollut Bull 58:418–423

    Article  PubMed  CAS  Google Scholar 

  • Burns KA, Codi S, Duke NC (2000) Gladstone, Australia Field Studies: Weathering and Degradation of Hydrocarbons in Oiled Mangrove and Salt Marsh Sediments With and Without the Application of an Experimental Bioremediation Protocol. Mar Pollut Bull 41:392–402

    Article  CAS  Google Scholar 

  • Carmo FL, Santos HF, Ferreira EM, van Elsas JD, Rosado AS, Peixoto RS (2011) Bacterial Structure and Characterization of Plant Growth Promoting and Oil Degrading Bacteria from the Rhizospheres of Mangrove Plants. J Microbiol 49(535–543):201

    Google Scholar 

  • Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MA, Teplow DB, Stevens D, Yaver D (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148:675–685

    Google Scholar 

  • Castillo UF, Harper JK, Strobel GA, Sears J, Alesi K, Ford E, Lin J, Hunter M, Maranta M, Ge H, Yaver D, Jensen JB, Porter H, Robison R, Millar D, Hess WM, Condron M, Teplow D (2003) Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol Lett 29:183–190

    Article  Google Scholar 

  • Chanal A, Chapon V, Benzerara K, Barakat M, Christen R, Achouak W, Barras F, Heulin T (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8:514–525. doi:10.1111/j.1462-2920.2005.00921.x

    Article  PubMed  CAS  Google Scholar 

  • Coelho RRR, Drozdowicz A (1978) The occurrence of actinomycetes in a cerrado soil in Brazil. Rev Ecol Biol Sol 15:459–473

    Google Scholar 

  • Coelho RRR, Lopes A, Semêdo LTAS, Cruz FS (1995) Culture filtrates of actinomycetes isolated from tropical soils inhibit Trypanosoma cruzi replication in vitro. Rev Microbiol 26:307–313

    Google Scholar 

  • Das S, Lyla PS, Ajmal Khan S (2006) Marine microbial diversity and ecology:importance and future perspectives. Curr Sci 90:1325–1335

    CAS  Google Scholar 

  • De Azeredo LAI, Castilho LR, Leite SGF, Freire DMG, Coelho RRR (2003) Protease production by Streptomyces sp. isolated from Brazilian Cerrado soil. Optimization of culture medium employing statistical experimental design. Appl Biochem Biotechnol 105–108:749–755

    Article  PubMed  Google Scholar 

  • De Azeredo LAI, Freire DMGF, Soares RMA, Leite SGF, Coelho RRR (2004) Production and partial characterization of thermophilic proteases from Streptomyces sp. isolated from Brazilian Cerrado soil. Enz Microb Technol 34:354–358

    Article  Google Scholar 

  • De Azeredo LAI, Lima MB, Coelho RRR, Freire DMG (2006) A low cost fermentation medium for thermophilic protease production by Streptomyces sp 594 using feather meal and corn steep liquor. Curr Microbiol 53:335–339

    Article  PubMed  CAS  Google Scholar 

  • Dias AC, Andreote FD, Rigonato J, Fiore MF, Melo IS, Araújo WL (2010) The bacterial diversity in a Brazilian non-disturbed mangrove sediment. Antonie Van Leeuwenhoek 98:541–551

    Article  PubMed  Google Scholar 

  • Dos Reis FB Jr, Simon SF, Gross E, Boddey RM, Elliott GN, Neto NE, Loureiro M de F, de Queiroz LP, Scotti MR, Chen W-M et al (2010) Nodulation and nitrogen fixation by Mimosa spp in the Cerrado and Caatinga biomes of Brazil. New Phytol 186:934–946

    Google Scholar 

  • Duke NC, Burns KA, Swannell RPJ, Dalhaus O, Rupp RJ (2000) Dispersant use and a bioremediation strategy as alternate means of reducing impacts of large oil spills on mangroves: the Gladstone Field Trials. Mar Pollut Bull 41:403–412

    Article  CAS  Google Scholar 

  • Esposito E, Paulillo SM, Manfio GP (1998) Biodegradation of the herbicide diuron in soil by indigenous actinomycetes. Chemosphere 37:541–548

    Article  PubMed  CAS  Google Scholar 

  • Faoro H, Alves AC, Souza EM, Rigo LU, Cruz LM, Al-Janabi SM (2010) Influence of soil characteristics on the diversity of bacteria in the southern Brazilian. Atlantic Forest. Appl Environ Microbiol 76:4744–4749

    Article  PubMed  CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631. dx.doi.org/10.1073/pnas.0507535103

    Google Scholar 

  • Freitas ADS, Sampaio EVSB, Santos CERS, Fernandes AR (2010) Biological nitrogen fixation in tree legumes of the Brazilian semi-arid caatinga. J Arid Environ 74:344–349

    Article  Google Scholar 

  • Fulthorpe RR, Roesch LFW, Riva A, Triplett EW (2008) Distantly sampled soils carry few species in common. ISME J V2:901–910

    Google Scholar 

  • Furley PA (1999) The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados. Global Ecol Biogeogr 8:223–241

    Google Scholar 

  • Furley PA (2007) Tropical savannas and associated forests: vegetation and plant ecology. Prog Phys Geogr 31:203–211

    Article  Google Scholar 

  • Garcia-Pichel F, Pringault O (2001) Microbiology: Cyanobacteria track water in desert soils. Nature 413:380–381. doi:10.1038/35096640

    Article  PubMed  CAS  Google Scholar 

  • Ghizelini AM, Mendonca-Hagle LCS, Macrae A (2012) Microbial diversity in Brazilian mangrove sediments – a mini review. Brazilian J Microbiol (in press)

    Google Scholar 

  • Ghosh A, Dey N, Bera A, Tiwari A, Sathyaniranjan KB, Chakrabarti K, Chattopadhyay D (2010) Culture independent molecular molecular analysis of bacterial communities in the mangrove sediment of Sundarban, India. Saline Syst 6:1

    Article  PubMed  Google Scholar 

  • Gomes RC, Semêdo LTAS, Linhares AA, Guimarães ACC, Alviano CS, Linhares LF, Coelho RRR (1999) Efficiency of the dispersion and differential centrifugation technique in the isolation of chitinolytic actinomycetes from soil. W J Microbiol Biotechnol 15:47–50

    Article  Google Scholar 

  • Gomes RC, Semêdo LTAS, Soares RMA, Alviano CS, Linhares LF, Coelho RRR (2000) Chitinolytic activity of actinomycetes from a cerrado soil and their potential. Lett Appl Microbiol 30:146–150

    Article  PubMed  CAS  Google Scholar 

  • Gomes RC, Semêdo LTAS, Soares AS, Alviano CS, Coelho RRR (2001) Purification of a thermostable endochitinase from Streptomyces sp RC 1071 isolated from a cerrado soil and its antagonism against phytopathogenic fungi. J Appl Microbiol 90:653–661

    Article  PubMed  CAS  Google Scholar 

  • Gorlach-Lira K, Coutinho HDM (2007) Population dynamics and extracellular enzymes actrivity of mesophilic and thermophilic bacteria isolated from semi-arid soil of Northeastern Brazil. Brazilian J Microbiol 38:1–7

    Article  Google Scholar 

  • Griffin DW, Garrison VH, Herman JR, Shinn EA (2001) African desert dust in the Caribbean atmosphere: microbiology and public health. Aerobiologia 17(3):203–213. doi:10.1023/A:1011868218901

    Google Scholar 

  • Guo CL, Zhou HW, Wong YS, Tam NFY (2005) Isolation of PAH-degrading bacteria from mangrove sediments and their biodegradation potential. Mar Pollut Bull 51:1054–1061

    Article  PubMed  CAS  Google Scholar 

  • Holguin GVP, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils 33:265–278

    Article  CAS  Google Scholar 

  • Hopkins DW, MacNaughton SJ, O’Donnell AG (1991) A dispersion and differential centrifugation technique for representatively sampling microorganisms from soil. Soil Biol Biochem 23:217–225

    Article  Google Scholar 

  • IUCN (1988) Tropical countries from the IUCN list. www.nhm.ac.uk/hosted_sites/…/tropctry.htm. The following list is taken from Plants in Danger: What do we know? Published … TBG02/tropctry Issue 1–15.04.1988 – BJO (site visited on 15/01/12)

  • Kathiresan K, Qasim SZ (2005) Biodiversity of mangrove ecosystems. Hindustan Publishing Corporation, New Delhi, p 251

    Google Scholar 

  • Ke L, Wang WQ, Wong TWY, Wong YS, Tam NFY (2003) Removal of pyrene from contaminated sediments by mangrove microcosms. Chemosphere 51:25–34

    Article  PubMed  CAS  Google Scholar 

  • Kristensen E, Alongi DM (2006) Control by fiddler crabs (Uca vocans) and plant roots (Avicennia marina) on carbon, iron and sulfur biogeochemistry in mangrove sediment. Limnol Oceanogr 51:1557–1571

    Article  CAS  Google Scholar 

  • Kristensen EBS, Dittmar T, Marchand C (2008) Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany 89:201–219

    Article  CAS  Google Scholar 

  • Lester ED, Satomi M, Ponce A (2007) Microflora of extreme arid Atacama Desert soils. Soil Biol Biochem 39(2):704–708

    Article  CAS  Google Scholar 

  • Liang JB, Chen YQ, Lan CY, Tam NFY, Zan QJ, Huang LN (2007) Recovery of novel bacterial diversity from mangrove sediment. Mar Biol 150:739–747

    Article  Google Scholar 

  • Luan TG, Yu KSH, Zhong Y, Zhou HW, Lan CY, Tam NFY (2006) Study of metabolites from the degradation of polycyclic aromatic hydrocarbons (PAHs) by bacterial consortium enriched from mangrove sediments. Chemosphere 65:2289–2296

    Article  PubMed  CAS  Google Scholar 

  • Magnani GS, Didonet CM, Cruz LM, Picheth CF, Pedrosa FO, Souza EM (2010) Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res 9(1):250–258

    Article  PubMed  CAS  Google Scholar 

  • Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17:458–466

    Article  PubMed  CAS  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, de Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–856

    Article  PubMed  CAS  Google Scholar 

  • Nepstad DC, Verssimo A, Alencar A, Nobre S, Lima E, Lefebvre P, Schlesinger P, Potterk C, Moutinho P, Mendoza E, Cochrane M, Brooks V (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505–508

    Article  CAS  Google Scholar 

  • Odokuma LO, Dickson AA (2003) Bioremediation of a Crude Oil Polluted Tropical Mangrove Environment. J Appl Sci Environ Manag 7:23–29

    CAS  Google Scholar 

  • Okoro CK, Brown R, Jones AL, Andrews BA, Asenjo JA (2009) Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile. Antonie Van Leeuwenhoek 95(2):121–133

    Article  PubMed  Google Scholar 

  • Parkinson D, Coleman DC (1991) Microbial communities, activity and biomass. Agric Ecosyst Environ 24(1):3–33

    Article  Google Scholar 

  • Peixoto RS, Coutinho HLC, Rumjanek NG, Macrae A, Rosado AS (2002) Use of rpoB and 16 S rRNA genes to analyse bacterial diversity of a tropical soil using PCR and DGGE. Lett Appl Microbiol 35(4):316–320

    Article  PubMed  CAS  Google Scholar 

  • Peixoto RS, Coutinho HLC, Madari B, Machado PLOA, Rumjanek NG, van Elsas JD, Seldin L, Rosado AS (2006) Soil aggregation and bacterial community structure as affected by tillage and cover cropping in the Brazilian Cerrados. Soil Tillage Res 90:16–28

    Article  Google Scholar 

  • Peixoto RS, Chaer GM, Franco N, Reis Junior FB, Mendes IC, Rosado AS (2010) A decade of land use contributes to changes in the chemistry, biochemistry and bacterial community structures of soils in the Cerrado. Antonie Van Leeuwenhoek 98:403–413

    Article  PubMed  CAS  Google Scholar 

  • Peixoto R, Chaer GM, Carmo FL, Araújo FV, Paes JE, Volpon A, Santiago GA, Rosado AS (2011a) Bacterial communities reflect the spatial variation in pollutant levels in Brazilian mangrove sediment. Antonie Van Leeuwenhoek 99(2):341–354

    Article  PubMed  CAS  Google Scholar 

  • Peixoto RS, Carmo FL, Santos HF, Andrade LL, Paes JE, Cury J, Rosado AS (2011b) Biomonitoramento: Bioindicadores microbianos da presença de óleo em manguezais. Microbiologia in Foco 14:8–13

    Google Scholar 

  • Petinate SDG, Branquinha MH, Coelho RRR, Vermelho AB, De Simone G (1999a) Purification and partial characterization of an extracellular serine-proteinase of Streptomyces cyaneus, isolated from Brazilian Cerrado soil. J Appl Microbiol 87:557–563

    Article  PubMed  CAS  Google Scholar 

  • Petinate SDG, Martins RM, Coelho RRR, Meirelles MN, Branquinha MH, Vermelho AB (1999b) Influence of growth medium in proteinase and pigment production by Streptomyces cyaneus. Mem Inst Oswaldo Cruz 94:173–177

    Article  PubMed  CAS  Google Scholar 

  • Quirino BF, Pappas G Jr, Tagliaferro A, Collevatti RG, Leonardecz E, Silva MRSS, Bustamante MMC, Kruger RH (2009) Molecular phylogenetic diversity of bacteria associated with soil of the savanna-like Cerrado vegetation. Microbiol Res 164:59–70

    Article  PubMed  CAS  Google Scholar 

  • Ramsay MA, Swannell RPJ, Shipton WA, Duke NC, Hill RT (2000) Effect of bioremediation community in oiled mangrove sediments. Mar Pollut Bull 41:413–419

    Article  CAS  Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Daroub SH, Carmargo FAO, Farmeire WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J V1:283–290

    Google Scholar 

  • Sahoo K, Dhal NK (2009) Potential microbial diversity in mangrove ecosystem: A review. Indian J Mar Sci 38:249–256

    CAS  Google Scholar 

  • Salinas-García JR, Velázquez-García JJ, Gallardo-Valdez M, Díaz-Mederos P, Caballero-Hernández F, Tapia-Vargas LM, Rosales-Robles E (2002) Tillage effects on microbial biomass and nutrient distribution in soils under rain-fed corn production in central-western Mexico. Soil Tillage Res 66:143–152

    Article  Google Scholar 

  • Santos HF, Carmo FL, Cury J, Rosado AS, Peixoto RS (2010a) 18 S rDNAsequences from microeukaryotes reveal oil indicators in mangrove sediment. PLoS One 5(8):e12437

    Article  PubMed  Google Scholar 

  • Santos SN, Kavamura VN, Silva JL, Melo IS, Andreote FD (2010b) Plant growth promoter rhizobacteria in plants inhabiting harsh tropical environments and its role in agricultural improvements. In: DK Maheshwari (Org) Plant growth and health promoting bacteria, 1 edn, vol 1. Springer, Berlin, pp 251–272

    Google Scholar 

  • Santos HF, Carmo FL, Cury J, Lopes AL, Tiedje J, Van Elsas JF, Rosado AS, Peixoto RS (2011a) Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: Bacterial proxies for oil pollution. PLoS One 6(3):e16943

    Article  PubMed  Google Scholar 

  • Santos HF, Carmo FL, Paes JE, Rosado AS, Peixoto RS (2011b) Bioremediation of mangroves impacted by petroleum. Water Air Soil Poll 216:329–350

    Article  CAS  Google Scholar 

  • Semêdo LTAS, Linhares AA, Gomes RC, Manfio GP, Alviano CS, Linhares LF, Coelho RRR (2001) Isolation and characterization of actinomycetes from Brazilian tropical soils. Microbiol Res 155:291–299

    Article  PubMed  Google Scholar 

  • Silva MIG, Melo CTV, Vasconcelos LF, Carvalho AMR, Sousa FCF (2011a) Bioactivity and potential therapeutic benefits of some medicinal plants from the Caatinga (semi-arid) vegetation of Northeast Brazil: a review of the literature. Brazilian J Pharmacogn Rev Bras Farmacogn 22:193–207

    Article  Google Scholar 

  • Silva TF, Coelho MRR, Vollu RE, Goulart FRV, Alviano DS, Alviano CS, Seldin L (2011b) Bacterial community associated with the trunk látex of Hancornia speciosa. Antonie Van Leeuwenhoek 99(3):523–532

    Google Scholar 

  • Souza RF, Coelho RRR, Macrae A, Soares RMA, Nery DCM, Semêdo LTAS, Alviano CS, Gomes RC (2008) Streptomyces lunalinharesii sp. nov., a chitinolytic streptomycete isolated from cerrado soil in Brazil. Int J Syst Evol Microbiol 58(12):2774–2778

    Article  PubMed  Google Scholar 

  • Sprent JI, Gehlot HS (2010) Nodulated legumes in arid and semi-arid environments: are they important? Plant Ecol Divers 3:211–219

    Article  Google Scholar 

  • Stivaletta N, Barbieri R (2008) Endoliths in Terrestrial Arid Environments: Implications for Astrobiology, Cellular Origin, Life in Extreme Habitats and Astrobiology, 1, Volume 12, From Fossils to Astrobiology, Part 2. Pages 3:319–333

    Google Scholar 

  • Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonça-Previato L, James EK, Venturi V (2011) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol 62:241–248

    Google Scholar 

  • Tadra-Sfeir MZ, Souza EM, Faoro H, Müller-Santos M, Baura VA, Tuleski TR, Rigo LU, Yates MG, Wassem R, Pedrosa FO, Monteiro RA (2011) Naringenin regulates expression of genes involved in cell wall synthesis in Herbaspirillum seropedicae. Appl Environ Microbiol 77(6):2180–2183

    Article  PubMed  CAS  Google Scholar 

  • Teixeira FCP, Borges WL, Rumjanek NG, Xavier GR (2010) Characterization of indigenous rhizobia from Caatinga. Brazilian Journal of Microbiology 41:201–208

    Article  Google Scholar 

  • Tupinamba GS, Silva AJR, Souto-Padrón TCBS, Alviano CS, Seldin L, Alviano DS (2008) Antimicrobial activity of Paenibacillus polymyxa SCE2 against some mycotoxin-producing fungi. J Appl Microbiol 105:1044–1053

    Article  PubMed  CAS  Google Scholar 

  • Urich T, Lanzén A, Qi K, Huson DH, Schleper C, Schuster SC (2008) Simultaneous Assessment of Soil Microbial Community Structure and Function through Analysis of the Meta-Transcriptome. PLoS One 3(6):e2527. doi:10.1371/journal.pone.0002527

    Article  PubMed  Google Scholar 

  • Von der Weid I, Duarte GF, van Elsas JD, Seldin L (2002) Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 52:2147–2153

    Article  PubMed  Google Scholar 

  • Yu KS, Wong AH, Yau KW, Wong YS, Tam NF (2005a) Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull 51:1071–1077

    Article  PubMed  CAS  Google Scholar 

  • Yu SH, Ke L, Wong YS, Tam NF (2005b) Degradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments. Environ Int 31:149–154

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Macrae, A., Coelho, R.R.R., Peixoto, R., Rosado, A.S. (2013). Tropical Soil Microbial Communities. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30123-0_115

Download citation

Publish with us

Policies and ethics