Tropical Soil Microbial Communities

  • Andrew Macrae
  • Rosalie R. R. Coelho
  • Raquel Peixoto
  • Alexandre S. Rosado


Tropical soil ecosystems are diverse and complex and are different from those of temperate ecosystems. The various ecosystems found within the tropics provide the setting for diverse microbial niches and evolution. There is not a meaningful correlation between latitude and bacterial diversity, but communities can be characterized by ecotypes and function. Desert soils experience extremes of solar radiation, minimal precipitation, heat, and cold and in them very diverse bacterial communities have evolved and are briefly discussed. In the semiarid tropical biomes, dominated by grass vegetation, we find resilient dry-adapted bacterial biodiversity associated with plants. Water rich tropical environments including the rainforest soils and mangroves sediments are incredibly diverse and retain untold biotechnology potential. Tropical soils provide food for approximately 40% of the World´s population, many of whom are in developing countries. In Brazil, microbial inoculants isolated from tropical soils have been used to significantly improve food production on a large scale and this type of biotechnology is being shared by Embrapa with tropical countries in Africa. Tropical soil bacteria are already being used to remediate polluted soils, promote reforestation, and to protect water resources, but this needs to be scaled up everywhere throughout the tropics. It is of paramount importance to preserve areas within unique tropical ecosystems to ensure that their soil microbial gene pool is not lost to future generations.


Bacterial Community Bacterial Diversity Conventional Tillage Tropical Rainforest Tropical Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adámoli J, Macêdo J, Azevedo LG, Netto JM (1987) Caracterização da região dos Cerrados. In: Goedert WJ (ed) Solos dos Cerrados – Tecnologias e estratégias de manejo. Nobel e Embrapa, São Paulo e Brasília, pp 33–74Google Scholar
  2. Aksornkoae S, Arroyo C, Blasco F, Burbridge PR, Tuck CH, Cintron G et al (1984) Handbook for mangrove area management. United Nations Environment Program and East-West Center, Environment and Policy Institute, Honolulu, Hawaii, p 256Google Scholar
  3. Albuquerque UP, Medeiros PM, Almeida ALS, Monteiro JM, Lins Neto EMF, Melo JG, Santos JP (2007) Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: a quantitative approach. J Ethnopharmacol 114:325–354PubMedCrossRefGoogle Scholar
  4. Alongi DM (2002) Present state and future of the world’s mangrove forests. Aust Inst Marine Sci 29:331–349Google Scholar
  5. Azúa-Bustos A, González-Silva C, Mancilla RA, Salas L, Gómez-Silva B (2011) Hypolithic cyanobacteria supported mainly by fog in the coastal range of the Atacama Desert. Microb Ecol 61(3):568–581PubMedCrossRefGoogle Scholar
  6. Baldani JI, Baldani VLD (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. Anais da Academia Brasileira de Ciêncas 77(3):549–579. doi:10.1590/S0001-37652005000300014CrossRefGoogle Scholar
  7. Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368:413–418. doi:10.1038/368413a0CrossRefGoogle Scholar
  8. Brito EM, Duran R, Guyoneaud R, Goni-Urriza M, Garcia de Oteyza T, Crapez MA et al (2009) A case study of in situ oil contamination in a mangrove swamp (Rio De Janeiro, Brazil). Mar Pollut Bull 58:418–423PubMedCrossRefGoogle Scholar
  9. Burns KA, Codi S, Duke NC (2000) Gladstone, Australia Field Studies: Weathering and Degradation of Hydrocarbons in Oiled Mangrove and Salt Marsh Sediments With and Without the Application of an Experimental Bioremediation Protocol. Mar Pollut Bull 41:392–402CrossRefGoogle Scholar
  10. Carmo FL, Santos HF, Ferreira EM, van Elsas JD, Rosado AS, Peixoto RS (2011) Bacterial Structure and Characterization of Plant Growth Promoting and Oil Degrading Bacteria from the Rhizospheres of Mangrove Plants. J Microbiol 49(535–543):201Google Scholar
  11. Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MA, Teplow DB, Stevens D, Yaver D (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148:675–685Google Scholar
  12. Castillo UF, Harper JK, Strobel GA, Sears J, Alesi K, Ford E, Lin J, Hunter M, Maranta M, Ge H, Yaver D, Jensen JB, Porter H, Robison R, Millar D, Hess WM, Condron M, Teplow D (2003) Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol Lett 29:183–190CrossRefGoogle Scholar
  13. Chanal A, Chapon V, Benzerara K, Barakat M, Christen R, Achouak W, Barras F, Heulin T (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8:514–525. doi:10.1111/j.1462-2920.2005.00921.xPubMedCrossRefGoogle Scholar
  14. Coelho RRR, Drozdowicz A (1978) The occurrence of actinomycetes in a cerrado soil in Brazil. Rev Ecol Biol Sol 15:459–473Google Scholar
  15. Coelho RRR, Lopes A, Semêdo LTAS, Cruz FS (1995) Culture filtrates of actinomycetes isolated from tropical soils inhibit Trypanosoma cruzi replication in vitro. Rev Microbiol 26:307–313Google Scholar
  16. Das S, Lyla PS, Ajmal Khan S (2006) Marine microbial diversity and ecology:importance and future perspectives. Curr Sci 90:1325–1335Google Scholar
  17. De Azeredo LAI, Castilho LR, Leite SGF, Freire DMG, Coelho RRR (2003) Protease production by Streptomyces sp. isolated from Brazilian Cerrado soil. Optimization of culture medium employing statistical experimental design. Appl Biochem Biotechnol 105–108:749–755PubMedCrossRefGoogle Scholar
  18. De Azeredo LAI, Freire DMGF, Soares RMA, Leite SGF, Coelho RRR (2004) Production and partial characterization of thermophilic proteases from Streptomyces sp. isolated from Brazilian Cerrado soil. Enz Microb Technol 34:354–358CrossRefGoogle Scholar
  19. De Azeredo LAI, Lima MB, Coelho RRR, Freire DMG (2006) A low cost fermentation medium for thermophilic protease production by Streptomyces sp 594 using feather meal and corn steep liquor. Curr Microbiol 53:335–339PubMedCrossRefGoogle Scholar
  20. Dias AC, Andreote FD, Rigonato J, Fiore MF, Melo IS, Araújo WL (2010) The bacterial diversity in a Brazilian non-disturbed mangrove sediment. Antonie Van Leeuwenhoek 98:541–551PubMedCrossRefGoogle Scholar
  21. Dos Reis FB Jr, Simon SF, Gross E, Boddey RM, Elliott GN, Neto NE, Loureiro M de F, de Queiroz LP, Scotti MR, Chen W-M et al (2010) Nodulation and nitrogen fixation by Mimosa spp in the Cerrado and Caatinga biomes of Brazil. New Phytol 186:934–946Google Scholar
  22. Duke NC, Burns KA, Swannell RPJ, Dalhaus O, Rupp RJ (2000) Dispersant use and a bioremediation strategy as alternate means of reducing impacts of large oil spills on mangroves: the Gladstone Field Trials. Mar Pollut Bull 41:403–412CrossRefGoogle Scholar
  23. Esposito E, Paulillo SM, Manfio GP (1998) Biodegradation of the herbicide diuron in soil by indigenous actinomycetes. Chemosphere 37:541–548PubMedCrossRefGoogle Scholar
  24. Faoro H, Alves AC, Souza EM, Rigo LU, Cruz LM, Al-Janabi SM (2010) Influence of soil characteristics on the diversity of bacteria in the southern Brazilian. Atlantic Forest. Appl Environ Microbiol 76:4744–4749PubMedCrossRefGoogle Scholar
  25. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631. Scholar
  26. Freitas ADS, Sampaio EVSB, Santos CERS, Fernandes AR (2010) Biological nitrogen fixation in tree legumes of the Brazilian semi-arid caatinga. J Arid Environ 74:344–349CrossRefGoogle Scholar
  27. Fulthorpe RR, Roesch LFW, Riva A, Triplett EW (2008) Distantly sampled soils carry few species in common. ISME J V2:901–910Google Scholar
  28. Furley PA (1999) The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados. Global Ecol Biogeogr 8:223–241Google Scholar
  29. Furley PA (2007) Tropical savannas and associated forests: vegetation and plant ecology. Prog Phys Geogr 31:203–211CrossRefGoogle Scholar
  30. Garcia-Pichel F, Pringault O (2001) Microbiology: Cyanobacteria track water in desert soils. Nature 413:380–381. doi:10.1038/35096640PubMedCrossRefGoogle Scholar
  31. Ghizelini AM, Mendonca-Hagle LCS, Macrae A (2012) Microbial diversity in Brazilian mangrove sediments – a mini review. Brazilian J Microbiol (in press)Google Scholar
  32. Ghosh A, Dey N, Bera A, Tiwari A, Sathyaniranjan KB, Chakrabarti K, Chattopadhyay D (2010) Culture independent molecular molecular analysis of bacterial communities in the mangrove sediment of Sundarban, India. Saline Syst 6:1PubMedCrossRefGoogle Scholar
  33. Gomes RC, Semêdo LTAS, Linhares AA, Guimarães ACC, Alviano CS, Linhares LF, Coelho RRR (1999) Efficiency of the dispersion and differential centrifugation technique in the isolation of chitinolytic actinomycetes from soil. W J Microbiol Biotechnol 15:47–50CrossRefGoogle Scholar
  34. Gomes RC, Semêdo LTAS, Soares RMA, Alviano CS, Linhares LF, Coelho RRR (2000) Chitinolytic activity of actinomycetes from a cerrado soil and their potential. Lett Appl Microbiol 30:146–150PubMedCrossRefGoogle Scholar
  35. Gomes RC, Semêdo LTAS, Soares AS, Alviano CS, Coelho RRR (2001) Purification of a thermostable endochitinase from Streptomyces sp RC 1071 isolated from a cerrado soil and its antagonism against phytopathogenic fungi. J Appl Microbiol 90:653–661PubMedCrossRefGoogle Scholar
  36. Gorlach-Lira K, Coutinho HDM (2007) Population dynamics and extracellular enzymes actrivity of mesophilic and thermophilic bacteria isolated from semi-arid soil of Northeastern Brazil. Brazilian J Microbiol 38:1–7CrossRefGoogle Scholar
  37. Griffin DW, Garrison VH, Herman JR, Shinn EA (2001) African desert dust in the Caribbean atmosphere: microbiology and public health. Aerobiologia 17(3):203–213. doi:10.1023/A:1011868218901Google Scholar
  38. Guo CL, Zhou HW, Wong YS, Tam NFY (2005) Isolation of PAH-degrading bacteria from mangrove sediments and their biodegradation potential. Mar Pollut Bull 51:1054–1061PubMedCrossRefGoogle Scholar
  39. Holguin GVP, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils 33:265–278CrossRefGoogle Scholar
  40. Hopkins DW, MacNaughton SJ, O’Donnell AG (1991) A dispersion and differential centrifugation technique for representatively sampling microorganisms from soil. Soil Biol Biochem 23:217–225CrossRefGoogle Scholar
  41. IUCN (1988) Tropical countries from the IUCN list.…/tropctry.htm. The following list is taken from Plants in Danger: What do we know? Published … TBG02/tropctry Issue 1–15.04.1988 – BJO (site visited on 15/01/12)
  42. Kathiresan K, Qasim SZ (2005) Biodiversity of mangrove ecosystems. Hindustan Publishing Corporation, New Delhi, p 251Google Scholar
  43. Ke L, Wang WQ, Wong TWY, Wong YS, Tam NFY (2003) Removal of pyrene from contaminated sediments by mangrove microcosms. Chemosphere 51:25–34PubMedCrossRefGoogle Scholar
  44. Kristensen E, Alongi DM (2006) Control by fiddler crabs (Uca vocans) and plant roots (Avicennia marina) on carbon, iron and sulfur biogeochemistry in mangrove sediment. Limnol Oceanogr 51:1557–1571CrossRefGoogle Scholar
  45. Kristensen EBS, Dittmar T, Marchand C (2008) Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany 89:201–219CrossRefGoogle Scholar
  46. Lester ED, Satomi M, Ponce A (2007) Microflora of extreme arid Atacama Desert soils. Soil Biol Biochem 39(2):704–708CrossRefGoogle Scholar
  47. Liang JB, Chen YQ, Lan CY, Tam NFY, Zan QJ, Huang LN (2007) Recovery of novel bacterial diversity from mangrove sediment. Mar Biol 150:739–747CrossRefGoogle Scholar
  48. Luan TG, Yu KSH, Zhong Y, Zhou HW, Lan CY, Tam NFY (2006) Study of metabolites from the degradation of polycyclic aromatic hydrocarbons (PAHs) by bacterial consortium enriched from mangrove sediments. Chemosphere 65:2289–2296PubMedCrossRefGoogle Scholar
  49. Magnani GS, Didonet CM, Cruz LM, Picheth CF, Pedrosa FO, Souza EM (2010) Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res 9(1):250–258PubMedCrossRefGoogle Scholar
  50. Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17:458–466PubMedCrossRefGoogle Scholar
  51. Myers N, Mittermeier RA, Mittermeier CG, de Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–856PubMedCrossRefGoogle Scholar
  52. Nepstad DC, Verssimo A, Alencar A, Nobre S, Lima E, Lefebvre P, Schlesinger P, Potterk C, Moutinho P, Mendoza E, Cochrane M, Brooks V (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505–508CrossRefGoogle Scholar
  53. Odokuma LO, Dickson AA (2003) Bioremediation of a Crude Oil Polluted Tropical Mangrove Environment. J Appl Sci Environ Manag 7:23–29Google Scholar
  54. Okoro CK, Brown R, Jones AL, Andrews BA, Asenjo JA (2009) Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile. Antonie Van Leeuwenhoek 95(2):121–133PubMedCrossRefGoogle Scholar
  55. Parkinson D, Coleman DC (1991) Microbial communities, activity and biomass. Agric Ecosyst Environ 24(1):3–33CrossRefGoogle Scholar
  56. Peixoto RS, Coutinho HLC, Rumjanek NG, Macrae A, Rosado AS (2002) Use of rpoB and 16 S rRNA genes to analyse bacterial diversity of a tropical soil using PCR and DGGE. Lett Appl Microbiol 35(4):316–320PubMedCrossRefGoogle Scholar
  57. Peixoto RS, Coutinho HLC, Madari B, Machado PLOA, Rumjanek NG, van Elsas JD, Seldin L, Rosado AS (2006) Soil aggregation and bacterial community structure as affected by tillage and cover cropping in the Brazilian Cerrados. Soil Tillage Res 90:16–28CrossRefGoogle Scholar
  58. Peixoto RS, Chaer GM, Franco N, Reis Junior FB, Mendes IC, Rosado AS (2010) A decade of land use contributes to changes in the chemistry, biochemistry and bacterial community structures of soils in the Cerrado. Antonie Van Leeuwenhoek 98:403–413PubMedCrossRefGoogle Scholar
  59. Peixoto R, Chaer GM, Carmo FL, Araújo FV, Paes JE, Volpon A, Santiago GA, Rosado AS (2011a) Bacterial communities reflect the spatial variation in pollutant levels in Brazilian mangrove sediment. Antonie Van Leeuwenhoek 99(2):341–354PubMedCrossRefGoogle Scholar
  60. Peixoto RS, Carmo FL, Santos HF, Andrade LL, Paes JE, Cury J, Rosado AS (2011b) Biomonitoramento: Bioindicadores microbianos da presença de óleo em manguezais. Microbiologia in Foco 14:8–13Google Scholar
  61. Petinate SDG, Branquinha MH, Coelho RRR, Vermelho AB, De Simone G (1999a) Purification and partial characterization of an extracellular serine-proteinase of Streptomyces cyaneus, isolated from Brazilian Cerrado soil. J Appl Microbiol 87:557–563PubMedCrossRefGoogle Scholar
  62. Petinate SDG, Martins RM, Coelho RRR, Meirelles MN, Branquinha MH, Vermelho AB (1999b) Influence of growth medium in proteinase and pigment production by Streptomyces cyaneus. Mem Inst Oswaldo Cruz 94:173–177PubMedCrossRefGoogle Scholar
  63. Quirino BF, Pappas G Jr, Tagliaferro A, Collevatti RG, Leonardecz E, Silva MRSS, Bustamante MMC, Kruger RH (2009) Molecular phylogenetic diversity of bacteria associated with soil of the savanna-like Cerrado vegetation. Microbiol Res 164:59–70PubMedCrossRefGoogle Scholar
  64. Ramsay MA, Swannell RPJ, Shipton WA, Duke NC, Hill RT (2000) Effect of bioremediation community in oiled mangrove sediments. Mar Pollut Bull 41:413–419CrossRefGoogle Scholar
  65. Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Daroub SH, Carmargo FAO, Farmeire WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J V1:283–290Google Scholar
  66. Sahoo K, Dhal NK (2009) Potential microbial diversity in mangrove ecosystem: A review. Indian J Mar Sci 38:249–256Google Scholar
  67. Salinas-García JR, Velázquez-García JJ, Gallardo-Valdez M, Díaz-Mederos P, Caballero-Hernández F, Tapia-Vargas LM, Rosales-Robles E (2002) Tillage effects on microbial biomass and nutrient distribution in soils under rain-fed corn production in central-western Mexico. Soil Tillage Res 66:143–152CrossRefGoogle Scholar
  68. Santos HF, Carmo FL, Cury J, Rosado AS, Peixoto RS (2010a) 18 S rDNAsequences from microeukaryotes reveal oil indicators in mangrove sediment. PLoS One 5(8):e12437PubMedCrossRefGoogle Scholar
  69. Santos SN, Kavamura VN, Silva JL, Melo IS, Andreote FD (2010b) Plant growth promoter rhizobacteria in plants inhabiting harsh tropical environments and its role in agricultural improvements. In: DK Maheshwari (Org) Plant growth and health promoting bacteria, 1 edn, vol 1. Springer, Berlin, pp 251–272Google Scholar
  70. Santos HF, Carmo FL, Cury J, Lopes AL, Tiedje J, Van Elsas JF, Rosado AS, Peixoto RS (2011a) Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: Bacterial proxies for oil pollution. PLoS One 6(3):e16943PubMedCrossRefGoogle Scholar
  71. Santos HF, Carmo FL, Paes JE, Rosado AS, Peixoto RS (2011b) Bioremediation of mangroves impacted by petroleum. Water Air Soil Poll 216:329–350CrossRefGoogle Scholar
  72. Semêdo LTAS, Linhares AA, Gomes RC, Manfio GP, Alviano CS, Linhares LF, Coelho RRR (2001) Isolation and characterization of actinomycetes from Brazilian tropical soils. Microbiol Res 155:291–299PubMedCrossRefGoogle Scholar
  73. Silva MIG, Melo CTV, Vasconcelos LF, Carvalho AMR, Sousa FCF (2011a) Bioactivity and potential therapeutic benefits of some medicinal plants from the Caatinga (semi-arid) vegetation of Northeast Brazil: a review of the literature. Brazilian J Pharmacogn Rev Bras Farmacogn 22:193–207CrossRefGoogle Scholar
  74. Silva TF, Coelho MRR, Vollu RE, Goulart FRV, Alviano DS, Alviano CS, Seldin L (2011b) Bacterial community associated with the trunk látex of Hancornia speciosa. Antonie Van Leeuwenhoek 99(3):523–532Google Scholar
  75. Souza RF, Coelho RRR, Macrae A, Soares RMA, Nery DCM, Semêdo LTAS, Alviano CS, Gomes RC (2008) Streptomyces lunalinharesii sp. nov., a chitinolytic streptomycete isolated from cerrado soil in Brazil. Int J Syst Evol Microbiol 58(12):2774–2778PubMedCrossRefGoogle Scholar
  76. Sprent JI, Gehlot HS (2010) Nodulated legumes in arid and semi-arid environments: are they important? Plant Ecol Divers 3:211–219CrossRefGoogle Scholar
  77. Stivaletta N, Barbieri R (2008) Endoliths in Terrestrial Arid Environments: Implications for Astrobiology, Cellular Origin, Life in Extreme Habitats and Astrobiology, 1, Volume 12, From Fossils to Astrobiology, Part 2. Pages 3:319–333Google Scholar
  78. Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonça-Previato L, James EK, Venturi V (2011) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol 62:241–248Google Scholar
  79. Tadra-Sfeir MZ, Souza EM, Faoro H, Müller-Santos M, Baura VA, Tuleski TR, Rigo LU, Yates MG, Wassem R, Pedrosa FO, Monteiro RA (2011) Naringenin regulates expression of genes involved in cell wall synthesis in Herbaspirillum seropedicae. Appl Environ Microbiol 77(6):2180–2183PubMedCrossRefGoogle Scholar
  80. Teixeira FCP, Borges WL, Rumjanek NG, Xavier GR (2010) Characterization of indigenous rhizobia from Caatinga. Brazilian Journal of Microbiology 41:201–208CrossRefGoogle Scholar
  81. Tupinamba GS, Silva AJR, Souto-Padrón TCBS, Alviano CS, Seldin L, Alviano DS (2008) Antimicrobial activity of Paenibacillus polymyxa SCE2 against some mycotoxin-producing fungi. J Appl Microbiol 105:1044–1053PubMedCrossRefGoogle Scholar
  82. Urich T, Lanzén A, Qi K, Huson DH, Schleper C, Schuster SC (2008) Simultaneous Assessment of Soil Microbial Community Structure and Function through Analysis of the Meta-Transcriptome. PLoS One 3(6):e2527. doi:10.1371/journal.pone.0002527PubMedCrossRefGoogle Scholar
  83. Von der Weid I, Duarte GF, van Elsas JD, Seldin L (2002) Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 52:2147–2153PubMedCrossRefGoogle Scholar
  84. Yu KS, Wong AH, Yau KW, Wong YS, Tam NF (2005a) Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull 51:1071–1077PubMedCrossRefGoogle Scholar
  85. Yu SH, Ke L, Wong YS, Tam NF (2005b) Degradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments. Environ Int 31:149–154PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andrew Macrae
    • 1
  • Rosalie R. R. Coelho
    • 1
  • Raquel Peixoto
    • 1
  • Alexandre S. Rosado
    • 1
  1. 1.Instituto de Microbiologia Paulo de GóesUniversidade Federal doRio de JaneiroBrazil

Personalised recommendations